

January 10, 2024

Redniss

Mike Conklin Inlands Wetlands Commission Town Hall Annex 238 Danbury Road Wilton, CT 06897

RE: Inland Wetlands Commission Application Project Site: 131 Danbury Road Contract Purchaser: 131 Danbury Wilton Dev AMS LLC (an affiliate of AMS Acquisitions, LLC)

Dear Mr. Conklin,

On behalf of our client, 131 Danbury Wilton Dev AMS LLC (an affiliate of AMS Acquisitions, LLC) (the "Applicant"), the contract purchaser and potential developer of 131 Danbury Road, we are submitting revised materials in response to comments received from Roy Seelye of Cardinal Engineer Associates in a letter dated December 14, 2023 and Stephen Santacroce from the Department of Public Works in a letter dated November 21, 2023. Included herewith for your consideration are 11 copies of the following documents:

- 1. Cardinal Engineering Response Letter, prepared by SLR International, dated January 9, 2024
- Stephen Santacroce (DPW) Response Letter, prepared by SLR International, dated January 9, 2024
- 3. Site Engineering Plans prepared by SLR, dated October 23, 2023 and revised through January 9, 2024, including sheets:
 - a. Title Sheet
 - b. NL Notes and Legend
 - c. EX Existing Conditions
 - d. SP Site Vicinity Plan
 - e. LA Site Plan Layout
 - f. LS Site Plan Landscaping
 - g. GR Site Plan Grading
 - h. UT Site Plan Utilities
 - i. SE-1 Sediment and Erosion Control Plans
 - j. SE-2 Sediment and Erosion Control Specifications and Details
 - k. SD-1 Site Details

IWC Application – 131 Danbury Road January 10, 2024 Page 2 of 2

- l. SD-2 Site Details
- m. SD-3 Site Details
- n. SD-4 Site Details
- o. SD-5 Site Details
- p. SE-6 Site Details
- q. SD-7 Site Details
- r. ABG Combined Average Building Grade
- s. FP Floodplain Earthwork
- t. EW Proposed Site Earthwork
- u. VH-1 Vehicle Turning Movement Fire Truck
- v. VH-2 Vehicle Turning Movement SU-30 and 15' Box Truck
- w. SL-1B Site Lighting Photometric Calculation (By Apex Lighting Solutions)
- Drainage Report, prepared by SLR, dated October 23, 2023 and revised through January 9, 2024
- 5. Engineering Report Floodplain Analysis, prepared by SLR, dated November 27, 2023
- 6. Wetland and Watercourse Delineation and Impact Assessment, prepared by SLR, dated October 23, 2023 and revised January 5, 2024
- 7. Preliminary Geotechnical Engineering Report, prepared by SLR, dated January 5, 2024
- 8. Zone Change Map, prepared by SLR, dated November 27, 2023 with the corresponding list of adjacent property owners.

The Applicant looks forward to presenting the proposal to the Commission at its meeting on January 25, 2024.

Sincerely,

2) 7 7 4

Craig J. Flaherty, P.E.

January 9, 2024

Michael Conklin Director of Environmental Affairs Town of Wilton 238 Danbury Road Wilton, CT 06897

SLR Project No.: 21543.00001

RE: Wilton Inland Wetlands and Watercourses Agency Review Application for a Significant Regulated Activity Application #2904(S) ASML Acquisitions, LLC 131 Danbury Road, Wilton, Connecticut

Dear Mr. Conklin,

SLR International Corporation (SLR) is in receipt of a letter addressed to you from Roy Seelye, PE, Senior Project Manager and Darin Lemire, PE, CPESC, CPSWQ, Senior Hydraulic Engineer of Cardinal Engineering Associates dated December 14, 2023, in regard to the above-referenced project. We offer the following responses to the comments contained therein:

Town of Wilton Inland Wetlands Commission Application

- C. APP-1: A description of chemical and physical characteristics of the fill materials to be placed in the Regulated Area was not observed.
- R. APP-1: Any fill material needed in the regulated areas will be clean, native topsoil and granular materials. Note #17 has been added to the Title sheet.

Engineering Reports

<u>Drainage Report – Proposed Multifamily Development (prepared by SLR International</u> <u>Corporation, dated 10/23/23)</u>

- C. RPT-1: As requested by the Town Engineering Department, additional information is needed on the development in the floodplain. The information should include calculations and a discussion to show there is no net fill within the floodplain of the Norwalk River.
- R. RPT-1: Additional information on the floodplain and earthwork has been added to the set. The project does not result in an increase in fill in the floodplain.
- C. RPT-2: Wilton Zoning regulations require certification by PE that encroachments in the floodway do not result in any increase in base flood elevations (0.00 ft.) for the

100-year flood. Certification by a professional engineer with supporting hydrologic and hydraulic info (e.g. Hecras modeling) is needed.

R. RPT-2: See Engineering Report – Floodplain Analysis prepared by SLR International Corporation dated November 27, 2023.

C. RPT-3: Related to hydraulic documentation, the tailwater elevation used (138.8 feet) for the 18-inch HDPE pipe discharging to the Norwalk River should be based on the hydraulic modeling for Norwalk River and a joint probability analysis.

R. RPT-3: As a conservative approach, the pipe calculations were completed using the tailwater elevation at the crown of the discharge pipe, the most restrictive condition to the flow of the discharge pipe.

- C. RPT-4: Provide supporting information (percolation tests, infiltration tests, test pit data, etc.) for the infiltration rates selected (2 inches per hour) and typical groundwater elevations at the site.
- R. RPT-4: Borings were performed on site on December 13, 2023, which show typical groundwater elevations of approximately 137 to 139 on the site. Boring logs and permeability tests have been added to the Drainage Report. Infiltration systems have been shifted to avoid the groundwater, and site specific permeability rates have been used to size the systems.
- C. RPT-5: On page 4, a description of the soil types described hydrologic soil types B/D, C, and D at the site, but the calculations show mainly HSG D. The site is mapped by NRCS as mainly urban land.

R. RPT-5: A majority of the project is located in the area mapped by NRCS as "Urban Land," Map Unit Symbol 307, with a rating of HSG D.

C. RPT-6: Catch basins with 2-foot sumps are not classified by the CT Stormwater Manual as a stormwater BMP. The manual recommends 4-foot sumps with a hood. CCB-7, CCB-10, and CCB-26 appear to be good candidates for 4-foot sumps.

R. RPT-6: Comment noted. The sumps on these basins have been increased to 4 ft.

- C. RPT-7: As related to Stormwater Best Practices, the proposed project includes significant areas of new roof and pavement which often can result in stormwater runoff that is at higher temperatures than runoff from landscaped areas. Pretreatment with respect to potential thermal pollution should be described more specifically in the report to show that it is addressed.
- R. RPT-7: The overall project results in a reduction of impervious areas over existing conditions. The proposed subsurface systems will promote infiltration and extend the discharge time allowing for the water to cool off before draining to the Norwalk River. Furthermore, the use of permeable pavers in parking and plaza areas will provide additional thermal reduction. This is a significant improvement over existing conditions where all the pavement

sheet flows directly to the Norwalk River. A discussion of this has been added to the Drainage Report.

C. RPT-8: The 100-year runoff for PR-16: East Rooftop is shown on Hydrocad printout as being routed to the front lawn rain garden, but the proposed conditions drainage area map lists "Roof to CLCB 21". Confirm where the East Rooftop drains.

R. RPT-8: PR-16: East Rooftop drains to the front lawn rain garden. The *HydroCAD*[®] model and plans have been revised to reflect this.

- C. RPT-9: The 100-year peak flow runoff for PR-11: Building Roof is shown as 15.7 cfs with a volume of approximately 50,000 cf, but after routing through reach R1: Roof Leader (8 inch round pipe) the outflow is only 1.4 cfs. The underground detention system S-2 only provides 5,500 cubic feet of storage so there doesn't appear to be sufficient storage to warrant such a large decrease in the peak flow in this area.
- R. RPT-9: System S-2 has been sized to provide sufficient storage for the design 25year storm event. Storage for the 100-year storm is not a requirement. For larger storms, it is expected that water from the roof will discharge through overflow scuppers and be collected by the onsite inlet structures.
- C. RPT-10: The storm sewer report from Bldg to MH 13 shows only 0.77 cfs conveyed of the 4.6 cfs capacity. This seems very small based on size of building.

R. RPT-10: Pipe calculations have been updated.

- C. RPT-11: The plan for the storm sewer report from CCB30 and CCB14 to the outfall (System 3) is hard to read due to the overlapping text.
- R. RPT-11: Text for System 3 has been adjusted.
- C. RPT-12: System 3 storm sewer tabulation in the stormsewer report shows several pipes where the total flow is very small in relation to their capacity. Could smaller pipe be used? (Line 6: Total Flow=0.3 cfs, capacity = 3.5 cfs, Line 7: Total Flow = 0.2 cfs, capacity = 2.9 cfs, Line10: Total Flow=0.8 cfs, capacity =15 cfs, Line 15: Total Flow= 1.1 cfs, capacity =12 cfs)

R. RPT-12: A minimum 12" pipe is proposed within the drive aisles and parking as is our standard practice.

- C. RPT-13: The CDS unit is shown with four pipe inlets which may not be possible since the unit is one of the smaller CDS units (5-foot diameter). A site specific detail showing the inlet configuration and the treatment efficiency sheet should be provided.
- R. RPT-13: The CDS unit and associated pipes have been revised. The CDS unit now has two inlet pipes and one outlet pipe.

C. RPT-14: The plan in the stormsewer report for Outlet System 1, 2, and 3 also is hard to read. Lines 7 and 9 do not show a capacity.

R. RPT-14: Storm sewer report has been updated.

- C. RPT. 15: The 2004 Connecticut Stormwater Management Manual was revised in September 2023 and the Manual will be effective March 30, 2024 so it may be beneficial to incorporate the changes from the Manual (or at least the significant ones such as WQV calculated on the first 1.3 inches of rainfall) into this project if they could be reasonably accommodated.
- R. RPT. 15: This project is classified as a redevelopment project as it has greater than 40% directly connected impervious area, so only 50% of the calculated water quality volume is required per Connecticut Department of Energy & Environmental Protection (CTDEEP). The current design retains the first 1 inch, so it already exceeds the new WQV requirements.

Wetland and Watercourse Delineation and Impact Assessment (prepared by SLR International Corporation, dated 10/23/23

C. WWI-1: It appears that the narrative does not conform with the current design. The report should be updated to reflect the actual design included in the application.

R. WWI-1: Comment noted. See revised wetlands report.

C. WWI-2: FEMA Mapping, Pg. 6-FEMA 100-year flood elevations on the site are slightly higher than noted, ranging from 146.3 feet to 146.6 feet.

R. WWI-2: Comment noted.

C. WWI-3: 6.0 Proposed Project, Pg. 10, Par. 1 – It is stated that there are 318 proposed parking spaces. This may require a Major Traffic Generator application to the Office of the State Traffic Administration (OSTA). Applicant should confirm the total number of spaces. A Traffic Study may be required if the total number of spaces exceeds 200.

R. WWI-3: Comment noted. An OSTA application has already been submitted.

C. WWI-4: 6.0 Proposed Project, Pg. 10, Par. 3 – Note that portions of the building (garage floor slab) is included in the URA.

R. WWI-4: Comment noted. See revised wetlands report.

C. WWI-5: 6.0 Proposed Project, Pg. 10, Par. 5 - "No significant direct impacts to the wetlands area are proposed. " Note that work includes the removal of the "concrete flume" and the installation of the storm drainage outfall, including installation of the riprap splash pad immediately adjacent to the wetlands / Norwalk River. This will require excavation and installation of riprap directly within the wetlands and within the limits of the Ordinary High Water.

R. WWI-5: Comment noted. See revised wetlands report.

C. WWI-6: 6.1 Sediment and Erosion Control Measures, Pg. 11, Par. 2 – Revise description of site access during construction. Two points of access are shown on the plans.

R. WWI-6: Comment noted. See revised wetlands report.

- C. WWI-7: 6.1 Sediment and Erosion Control Measures, Pg. 11, Par. 2 Sediment trap Riprap overflow discharges are not shown on the plans.
- R. WWI-7: An arrow has been added to Sheet SE-1 to show the overflow direction of the sediment traps.

Engineering Plans

- C. We recommend including a site demolition plan or site preparation plan that outlines material to be removed (including pavement and concrete) and what materials are to remain. This plan should address any removal/capping/abandonment of existing site utilities including drainage. The site demolition plan should call out the trees to be removed also.
- R. Almost everything on the site is to be removed. A site demolition plan or site preparation plan will be prepared as part of the detailed building permit submission. All trees within the project disturbance area will be removed except those along the river, which have been called out to remain on Sheet LA.

ALTA/NSPS Survey

- C. The survey prepared by BLEW & Associates shows underground electrical, a water line, and overhead electrical on the north side of the building that appear to conflict with the new building. There is an outside aboveground storage tank (AST) on the south side that appears to be using fuel oil that is not addressed in the plans. On the north side of the site, there appears to be a well with a concrete slab cover which should be investigated. Abandonment of the well according to the CT State Regulations may be necessary.
- R. All conflicting existing items will be removed to construct the project. These elements will be delineated on the detailed plans for the building permit.

Sheet 1 Title Sheet

C. T-1: Project Vicinity Site Map: Note area of the Norwalk River Floodway. See Sheet 3 Comment EX-1 below regarding limits of 100-year flood.

R. T-1: Area of the Norwalk River Floodway has been noted on the revised plans.

C. T-2: Note 10. The CTDOT Standard Specifications for Roads, Bridges, Facilities and Incidental Construction, Form 818 (2002) is scheduled to be replaced with Form 819 on January 2024. All work shall conform to the revised edition.

R. T-2: Note 10 has been revised.

C. T-3: Note 12. All Materials shall be stored above the flood limits of the Norwalk River.

R. T-3: Note 12 has been revised.

C. T-4: Add note that the site shall remain clean of trash and debris at all times. Adequate trash storage facilities (dumpsters, trash cans, etc.) shall be provided and emptied on a routine basis and as needed. Trash shall not be stored within the limits of the 100-year flood.

R. T-4: Note 15 has been added to the Title Sheet.

C. T-5: Add note stating that a CTDOT Encroachment Permit is required for all work within the Route 7 ROW.

R. T-5: Note 16 has been added to the Title Sheet.

Sheet 2 Notes and Legend

C. NL-1: Legend – Show all existing and proposed site features including bollards, bollard lights, FEMA lines, etc. Review survey and legend to verify symbols are correct. For instance, the existing stone walls along the street line and the southern property line do not match the wall as shown on the legend.

R. NL-1: The legend has been updated.

C. NL-2: Stormwater Maintenance Program – Note A; 1st Par. Four-foot sumps are called out in the note. Catch Basin Detail on Sheet SD-4 calls out a two-foot sump. Revise detail.

R. NL-2: Detail has been revised.

C. NL-3: Stormwater Maintenance Program – Note A; 2nd Par. Last sentence beginning with "Pavement sweeping" is not complete. Appears to be part of 3rd Paragraph.

R. NL-3: The sentence "Pavement Sweeping" is a sub-header for the following paragraph that discusses when the parking area and roadways shall be swept.

- C. NL-4: Stormwater Maintenance Program The hydrodynamic separator is not located prior to the underground galleries.
- R. NL-4: The stormwater maintenance program has been revised.
- C. NL-5: Construction Sequence- The application package contained a sequence of or staging plan prepared by AMS Construction Management LLC for the site. The construction duration was listed as 30 months. This sequence and information should be coordinated with the sequence provided on the Notes and Legend plan. Expected temporary parking and construction office locations should be designated.

R. NL-5: The plans have been revised to reference the AMS construction narrative. The construction management plan will be expanded with the building permit submission.

- C. NL-6: Construction Sequence- The sequencing should include removal of the existing building and associated utility removals/disconnects prior to filling. Utility pole(s) along the roadway may need relocation. Mention of town staff should include Town Director of Environmental Affairs.
- R. NL-6: The submitted construction management plan will be expanded for the building permit submission and with input from the construction manager.
- C. NL-7: Construction Sequence See erosion control note SE-1-11 about leaving pavement buffer along river as long as possible for stabilization.
- R. NL-7: Reference has been made to the AMS construction narrative.

Sheet 3 Existing Conditions

- C. EX-1: Limits of the 100-year flood. Per FEMA mapping (FIRM 2010) and the Flood Insurance Study (2013), the stie falls between cross section N (Elev. 141.2) and cross section O (Elev. 153.1). The limit of the 100-year flood (Zone AE) at the site is at approximate elevation 146.3 at the south end of the property and ±146.6 at the northern side. Revised the plans accordingly. Revise earthwork calculations for cuts and fills within the area of the 100-year flood and impacts on flood storage capacity of the site.
- R. EX-1: As per FEMA requirements, the 100-year flood line is to be shown as graphically represented on the FEMA maps and not by interpolating

elevations. Earthwork calculations were conducted based on a floodplain elevation of ±146.5 as the most conservative approach.

- C. EX-2: Existing rock wall along the southern property line varies in size/width and is not straight. Who owns the wall?
- R. EX-2: Ownership of the wall is unclear. No disturbance is proposed to the wall. A callout has been added to Sheet LA.

Sheet 4 Site Vicinity Plan

C. SP-1: Addresses of adjacent properties would be helpful. It might be a plan that could be helpful in discussions with CT DOT.

R. SP-1: The project's zoning application includes a list of adjacent property owners. This information can be provided if requested by CTDOT.

Sheet 5 Site Plan-Layout

- C. LA-1: On the north side of the site, the plan calls out the existing evergreen screening to remain, but seems unlikely that it could withstand the significant earthwork planned along this strip including installation of a retaining wall. Also, the landscape plan appears to show plantings here (27 Douglas Firs).
- R. LA-1: Proposed evergreen screening on the plans has been removed . Proposed grades will match existing at the property line to preserve existing evergreens on the adjacent property.
- C. LA-2: The proposed driveway on the north side of the site is a new connection to State Route 7. Per Town of Wilton Engineering, a traffic report or summary along with CT DOT review is necessary. Driveway profiles may be required for both locations.

R. LA-2: A Traffic Study has been included with the Planning and Zoning submission.

- C. LA-3: The plan should include a zoning table indicating lot dimensions, coverage, building height, and parking numbers.
- R. LA-3: Zoning data has been added to the Title sheet.
- C. LA-4: ADA parking spots should be dimensioned.
- R. LA-4: ADA parking spots have been dimensioned.

- C. LA-5: Since all of the accessible parking is shown at the northeast entrance at the only site entrance, additional safety measures may be warranted for safety for pedestrians. Consider additional measures such as a speed hump, elevated crosswalk, speed table, and an ADA ramp on the sidewalk across from the parking towards front of the building. Review accessible route from the accessible parking area to the building entrance.
- R. LA-5: The sidewalk along the east side of the front drop-off area has been extended and a drop ramp with detectable warning strip has been added to accommodate ADA access.
- C. LA-6: Some dimensioning of the parking spots (standard and accessible) should be included for the spaces in the building footprint. Is 9 ft. wide spaces between elevator/stairwells and columns adequate for opening of car doors, etc.?
- R. LA-6: Parking stall dimensions have been added to plan within the building footprint. A 9' wide parking stall is adequate space to open a car door.
- C. LA-7: It should be checked that the building columns in the on-grade parking area don't interfere with area and access to accessible spaces. The typical building column should be called on the plans.
- R. LA-7: The parking under the building was laid out by the architect and coordinated with the column layout. The typical building column has been called out on the plans.
- C. LA-8: The symbol B in the sign legend appears to be outdated.
- R. LA-8: Comment noted. Sign legend has been updated.
- C. LA-9: Direction/orientation of one-way sign at entrance should be noted.
- R. LA-9: Direction of sign has been added to the legend.
- C. LA-10: Provide "Van" sign at all Van accessible parking stalls. Include in a table.
- R. LA-10: Van signs have been provided in the sign legend.
- C. LA-11: Site lighting does not appear to be adequate (Insufficient pole mounted lights or wall mounted lighting). A photometric plan should be prepared clearly showing all fixtures and illuminance with closeness of the property lines and river area taken into consideration.

R. LA-11: Photometric plan is included in the set.

C. LA-12: Driveway alignment plan may be required to show access to back of building by fire department trucks. The curves on the northwest and northeast corner appear to be restrictive.

R. LA-12: See Sheet VH-1 for fire truck turning movements. Additionally a fire consultant has been retained to coordinate with the Wilton Fire Department.

- C. LA-13: All of the proposed walls should be indicated on the site plan. It appears that only wall #2 is being called out (36 inch high field stone wall). The eastern end of this wall may need to be relocated due to the installation of the water meter pit or the pit may need to be relocated.
- R. LA-13: All proposed walls have been indicated on the site plan. The water meter pit has been relocated away from the eastern end of wall #2.
- C. LA-14: The site exit should be labeled.
- R. LA-14: One-way exit has been labeled.
- C. LA-15: Locations for the storage of snow should be evaluated since the site is situated so close to the property lines and snow melt may impact the wetlands and river.
- R. LA-15: A snow removal plan will be developed by the applicant. The expectation is that small storm events will have snow plowed to the curb line and larger storms will require trucking offsite. The site design benefits from the majority of the parking under cover.
- C. LA-16: There are 9 dark circles (along the curb line in the front of the building) which appear to be bollards and should be called out on the plan.
- R. LA-16: The protective bollards have been called out in the plan.
- C. LA-17: Provide 4 feet between crosswalks and stop bars.
- R. LA-17: Four feet of spacing has been provided between crosswalks and stop bars.
- C. LA-18: Provide stop sign on north side of the exit driveway.
- R. LA-18: A stop sign on the north side of the exit has been added.
- C. LA-19: Area on the south side of the building, just east of garage entrance-is this double stack of parking stalls? How is back row of parking to be accessed?
- R. LA-19: The tandem spaces are intended for tenant use only. The double stack of parking stalls are not counted in the zoning parking count.
- C. LA-20: Indicate location and swing for doors at stairwells within the building/garage. Where do elevator doors open? Is there a location of safe entering and waiting for elevators? Appears doors to stairs and elevator open to either parking spaces or travel aisles. Note on drawing the location of the elevators.

R. LA-20: Doors to elevators and stairwells have been added to the plan.

- C. LA-21: How is access to elevators from handicap spaces provided without having to travel between cars? Provide accessible route.
- R. LA-21: Accessible parking spaces have been shifted to provide safe access directly to the elevator doors to limit the path of travel within the drive lane.
- C. LA-22: Two move-in truck spaces (9'x24') too small for WB-30, WB-40, etc. Labeled at 15; long. Is this intended for vans and pick-up trucks only?
- R. LA-22: No large moving trucks are expected for the apartments. The intended use is for vans and pickup trucks.
- C. LA-23: Appears inadequate space available at the southern of 2 truck spaces for turning in and out of space.
- R. LA-23: Turning movements for truck spaces have been provided on Sheet VH-2.
- C. LA-24: What is the material between permeable pavers west of the garage and garage slab?
- R. LA-24: A flush concrete curb edger has been added between the permeable pavers and garage slab.
- C. LA-25: Appears curb is to be installed between grass pavers and paved parking/drive on west end of property. Is this flush curb? Mountable curb?
- R. LA-25: The curb installed between the grass pavers and paved parking/drive on the west end of the property is a flush curb. Callouts were added to the plan.
- C. LA-26: One bollard light and one tree uplight are shown and noted along stone dust path and middle concrete fire truck outrigger pad. Show all. Provide separate symbols for each.
- R. LA-26: Separate symbols have been provided for both bollard lights and tree uplights.
- C. LA-27: How is grass paver drive on west side of site to be maintained in winter? Plowed?
- R. LA-27: In the winter, the grass paver drive on the west side of the site should be maintained by a plow where the plow is slightly raised up. Any disturbed areas would be seeded in the spring.

C. LA-28: Have location and size of concrete fire truck outrigger locations been approved by the fire marshal?

R. LA-28: A Fire Consultant has been retained and a plan review with the Wilton Fire Department is scheduled.

- C. LA 29: Provide parking table with total number of spaces, standard spaces, handicap accessible spaces and van spaces.
- R. LA-29: Parking data has been added to the Title sheet.
- C. LA-30: Note location of all signs, including signage. It appears there may be signs on Walls 2 & 3.
- R. LA-30: All signs on the walls are conceptual. Final submission of the signs will be submitted separately.
- C. LA-31: How is snow to be removed from permeable parking spaces on west side of garage? Will snow removal interfere with cobble filter strip? Are spaces to be receive sand and/or salt?
- R. LA-31: Snow on the permeable parking spaces on the west side of the garage will be removed by plow or snow blower. Snow removal should not interfere with cobble filter strip. It is not expected that this area will need to be sanded or salted.
- C. LA-32: Stormwater infiltration areas at northwest and southwest corner of site should be delineated.
- R. LA-32: Stormwater infiltration areas are shown in dashed lines and called out on plans.
- C. LA-33: Is existing stone wall along street line to be removed. Note on plans.
- R. LA-33: The existing stone wall along the street line is to be removed. Callout has been added to the Existing Conditions plan.
- C. LA-34: Parking space on south edge of garage, between the two entrances, extends beyond the building. Is this intended? What is the pavement material?
- R. LA-34: The parking space on the south edge of the garage, between the two entrances, will extend beyond the building and is a bituminous material.
- C. LA-35: ADA ramp and granite stair at front of building Does wall for ramp continue across the top of the stair? Show on detail.
- R. LA-35: The wall for the ADA ramp will stop at the top of the ramp.

C. LA-36: Stair and stair detail shown on SD-4 should correspond with each other. It appears the stair detail is a typical detail that does not apply to this site.

R. LA-36: Typical detail is to be used for the stairs. A specific detail will be developed with the building permit submission.

- C. LA-37: ADA ramps along Danbury Road Identify ramp type per CTDOT Guide Sheets. Ramps may require curbing due to close proximity to roadway curbing.
- R. LA-37: ADA drop ramps along Danbury Road are CTDOT Type 4a with a detectable warning pad. Notes have been added to the plans.
- C. LA-38: Concrete radius curb at driveways Note proposed concrete curb shall be tapered to match existing bituminous curb.
- R. LA-38: Notes have been added to the plans.
- C. LA-39: Call out on plan that the proposed concrete sidewalk along Danbury Road shall meet and match proposed sidewalk to the north. Note sidewalk to end south of exit drive and to match existing grade.
- R. LA-39: Proposed concrete sidewalks along Danbury Road shall meet and match the proposed sidewalk to the north. The south sidewalk will meet existing grades. Notes have been added to the plans.

Sheet 6 Site Plan-Landscaping

- C. LS-1: It appears that the plan is to keep the large sycamore on the southwest corner of the site. Installation of the proposed drainage in this location would appear to undermine its root system.
- R. LS-1: The large sycamore tree has been noted as to be removed on the revised plans.
- C. LS-2: New England Wetland mix may not survive in the front of the building if the area doesn't have wetland characteristics. The bioretention mix should have a depth of at least 24 inches and the groundwater elevations expected in the area should be provided. The area may need shading by larger plantings (could the large maple remain?) to create additional biodiversity.
- R. LS-2: The plans have revised to replace the Wetland Mix with the New England Erosion Control/Restoration Mix for Detention Basins and Moist Sites. This seed mix includes a combination of Facultative Wet to Facultative Upland species that insures germination and survival during periods of extended inundation.

The detail has been revised to show 24 inches of bioretention soil mix.

Geotechnical exploration has identified groundwater in the vicinity of elevation 138.7' the bottom of our stormwater infiltration rain garden is 146.5'.

- C. LS-3: The significant amount of plantings may require an irrigation system and plan.
- R. LS-3: While the design intent is to propose plant species that are native and sustainable, it may be necessary to provide drip irrigation within the planting beds and spray heads for the rear lawn access drive for use during plant establishment and periods of drought.
- C. LS-4: Existing evergreen screen on property adjacent to the site to the north is to remain. What is the impact of the proposed landscape buffer (27 Douglas Firs, 10 Norway Spruce) on existing root systems. What is the estimated spread of the Norway Spruce. Can be up to 40 feet. Suggest noting specific variety if smaller tree is proposed.

R. LS-4: Proposed evergreen screen is to be removed from the plans to limit impact to existing evergreen trees on adjacent site to the north.

- C. LS-5: Swamp White Oak at southwest corner of garage. Seems to be too close to building for this species. Island appears to be too small.
- R. LS-5: Swamp White Oak has been shifted north into a larger 8'-0" wide planting bed.
- C. LS-6: Tupelo along parking areas may require pruning of lower limbs to allow for access to vehicles.
- R. LS-6: A note has been added to the Plant Schedule on Sheet LS, identifying that all proposed Tupelo are required to have a 6'-0" min. branch height.
- C. LS-7: Tufted Hair Grass-concern regarding sightlines at drive intersections. May obstruct views. Also, concern over taller shrubs that may obstruct visibility for safety concerns in parking areas.
- R. LS-7: Tufted Hair Grass will not grow above 3' in height and are planted far enough off the entry/exit so it will not impact sight lines. The Lowbush Blueberry plants in the parking island have a maximum growth height of 3'-0".
- C. LS-8: The landscaped areas in the front of the proposed building may not benefit from the amount of proposed filling. Some of these areas may benefit from being depressed.
- R. LS-8: Comment noted.

Sheet 7 Site Plan-Grading

C. GR-1: The grading in the area of Retaining Wall 4 on the northeast side of the site appears to be based on the grades at 141 Danbury Road prior to construction. Since construction, the grades in this area are higher.

R. GR-1: Grading has been revised to coordinate with the new higher grades at 141 Danbury Road.

C. GR-2: The grading plan should indicate spot grades in the accessible areas (including parking) to show that it complies with ADA requirements. Other areas may benefit from spot grades also (in the footprint of the proposed building, in the driveways close to where they connect to Route 7, in the low spot of the wildflower area, etc.)

R. GR-2: Additional spot grades have been areas added to the plans.

C. GR-3: Spot grades within the building footprint range from 143.8 to 146.00. The entire garage will be below the limits of the 100-year flood (El. 146.3 – El. 146.6). Provide a plan (or narrative) outlining where vehicles will be moved to in the event of a storm event. This is the same for surface parking outside the limits of the building as well.

R. GR-3: The applicant will prepare a storm management plan.

- C. CR-4: The FEMA FIS profile of the Norwalk River indicates that the 10-year storm flood elevation is ±144.9. The western portion of the site, including the infiltration areas and the storm drainage detention systems will be under water. How will they perform in the flooded condition? Approximately 60% of the vehicles parked in the garage will be within the area of the flood and the cars parked in the eastern portion of the garage may become trapped.
- R. GR-4: The infiltration basins and chambers are primarily designed for water quality as the project results in a decrease in impervious cover. Water quality features are sized for the frequent, small storms and not the larger storm events. These facilities will be temporarily flooded but will drain as the storm flow recedes. The storm water system will be inspected and cleaned (if necessary) after each flood event. The storm system will continue to function as designed after the flood event.
- C. GR-5: It may assist with readability if the hatch of the proposed building was turned off on the grading plan.

R. GR-5: Comment noted. The plan has been revised.

C. GR-6: Provide top of wall and bottom of wall elevations for all site walls, including at each step/change in elevation. Suggest providing elevation view for each wall.

Walls not shown to correct width (24") as noted on the Stone Veneer Masonry Block Wall detail.

R. GR-6: Top of wall and bottom of wall elevations for all site walls have been noted, including each change in elevation.

C. GR-7: Contour 145 near entrance to building/garage on south side seems to conflict with grading within the garage. Provide spot grades to determine floor slab grade.

R. GR-7: A proposed retaining wall breaks up the grades within the garage. Additional spot grades have been added to the plan for clarification.

C. GR-8: Construction of Wall #4 will trap water from adjacent site that is in the existing condition flows southeasterly across the site. In the proposed condition it will flow westerly between Wall #4 and the existing wall on the adjacent site and discharge onto the adjacent site. Suggest adding a yard drain at the western end of the existing wall and connect to CCB-28.

R. GR-8: All water that does not infiltrate in the grass area will continue to flow west towards the Norwalk River.

- C. GR-9: Wall #4 height is greater than 6 feet at its highest point. Review typical wall section. Concrete cantilever retaining wall or geotextiles may be required for walls with greater heights. Suggest fence along top of wall to prevent falling, etc.
- R. GR-9: A fence has been added to the top of the retaining wall on Sheet LA and a detail added to Sheet SD-7. Final wall design will occur with building permit submission and wall structural design will likely vary depending on the constraints.
- C. GR-10: Provide spot grades at intersection of drive from drop-off area and exit drive.

R. GR-10: Additional spot grades have been added to the plans.

- C. GR-11: Provide greater detail of grading of street sidewalk, particularly in relation to front wildflower meadow. Will wildflower meadow overtop and drain onto street? At the south end of the "meadow, the sidewalk drains to the street; in the middle, it drains to the "meadow"; at the north end the sidewalk drains to the street. Suggest consistency in draining in one direction or the other. Suggest providing a greater buffer between the "meadow" and the streetline. See note UT-2.
- R. GR-11: Additional spot grades have been added to the plans.
- C. GR-12: Show grading south of Retaining Wall #1 to property line.
- R. GR-12: Grading south of Retaining Wall #1 to property line has been added to the plan.

- C. GR-13: Wall #1 height is greater than 5 feet at its highest point. Review typical wall section. Concrete cantilever retaining wall or geotextiles may be required for walls with greater heights. Suggest fence along top of wall to prevent falling, etc.
- R. GR-13: Modular block walls will be engineered by a structural engineer licensed in the State of Connecticut as part of the building permit submission. Design will conform to all applicable building codes. A railing has been added and called out on Sheet LA.
- C. GR-14: Provide flush symbol or note flush condition where flush condition is proposed.
- R. GR-14: Notes have been added to Sheet 'GR' identifying flush conditions.
- C. GR-15: Show transformers and switch gear on grading plan. Provide top of slab elevations.
- R. GR-15: Transformers and switch gears are now shown on Sheet 'GR'. Spot grades have been added to the transformer slab.
- C. GR-16: Show generator pad and provide top of slab elevation.
- R. GR-16: Generator pad is now shown on Sheet 'GR'. Spot grades have been added to the generator slab.
- C. GR-17: Grading at storm drainage outlet (endwall) is not shown correctly. Proposed contours are too close together. Either extend the endwall or use wingwall type endwall.
- R. GR-17: Grading at storm drainage outlet has been revised.
- C. GR 18: The plan omits a small portion of the site on the northwest corner.
- R. GR-18: An inset has been added to Sheet GR.

Sheet 8 Site-Plan Utilities

- C. UT-1: The plan appears to indicate only one stormwater discharge from the building (located on the south side Inv=143.2). Other connections to the underground drainage system may be necessary at other parts of the building. Note all drainage piping from building and note if it is roof drainage only.
- R. UT-1: The final number of connections will not be determined until a plumbing engineer is engaged for the building permit submission.
- C. UT-2: OVFL-19 An additional dome grate or drainage structure may be needed in the front wildflower area near the road in case there is a blockage with the proposed

one on the south near the site exit. Is TF elev. At the top of the riser or dome? Note diameter of riser and dome.

R. UT-2: It is our opinion that one domed grate will be used in the front of the wildflower area. Additional labels have been added to the plans.

- C. UT-3: Show garage floor drains and piping. Provide oil/grease separator for garage floor drains. Show connection to sanitary sewer.
- R. UT-3: There are no drains proposed within the garage. The ground floor is pitched to flow to the cobble infiltration trench.
- C. UT-4: CB CLCB 21 Inv, 15" HDPE = 150.9; Top of pipe elev. = 152.25; TF elev. = 152.4; Cover = 0.15'. Provide 2.0 ft. cover minimum. Provide roof drain invert.
- R. UT-4: The plans have been revised.
- C. UT-5: CB CCB 18 TF elev. = 152.2 appears high.
- R. UT-5: The plans have been revised.
- C. UT-6: The elevation of the 12-inch HDPE inletting to CCB 18 should be confirmed at the crossing of the water and fire service to insure adequate separation.
- R. UT-6. It is our opinion adequate separation will be provided.
- C. UT-7: The inlet pipe (12-inch) appears undersized to convey flow from the building roof (1.8 acres) to MH-13 and into the detention chambers.
- R. UT-7: The inlet pipe has been resized, but the final pipe size will be determined when a plumbing engineer is engaged for the Building Permit submission.
- C. UT-8: HDPE pipe lengths for stormwater should be measured from the structure wall to structure wall rather than center of inlet structure to outlet structure.
- R. UT-8: HDPE pipe lengths have been adjusted.
- C. UT-9: Type of HDPE drainage pipe (ADS N-12 or equivalent?) should be called out or reference a detail.
- R. UT-9: Typical ADS N-12 HDPE pipe will be used and has been noted on the plans.
- C. UT-10: The detail (SD-4) of the 18-inch discharge from the site with the flap gate shows both a flared concrete end and a splash pad. The detail shows a larger splash pad.
- R. UT-10: Splash pad sizing has been coordinated between the details and the revised plans.

- C. UT-11: Show connection to underslab and/or foundation drainage.
- R. UT-11: A foundation drain has been added to the plans.
- C. UT-12: The sanitary lateral appears significantly deep. The lateral may be able to be raised if a drop at the manhole at the street is approved by utility. Or is depth to allow for connection to garage floor drains?
- R. UT-12: The proposed depth is to accommodate for the building, but final elevations will be determined when a plumbing engineer is engaged for the building permit submission.
- C. UT-13: Show existing utilities to remain.
- R. UT-13: No existing utilities are to remain. Utility Note 7 has been added to Sheet IN.
- C. UT-14: Note utilities to be removed.
- R. UT-14: All existing utilities are to be removed. Utility Note 7 has been added to Sheet IN.
- C. UT-15: Proposed gas service appears to go through ex. utility pole.
- R. UT-15: Proposed gas service location has been revised.
- C. UT-16: 4" sanitary Lateral appears to be inadequate based on number of units. Provide pipe sizing calculations. Note pipe material.
- R. UT-16: An 8" SDR-35 PVC sanitary lateral is proposed per comments from Wilton WPCA.
- C. UT-17: Show any wall drains and connections to storm drainage system.
- R. UT-17: Wall drains and connections to storm drainage system have been added to Sheet UT.
- C. UT-18: CB CCB 26 Invert 15" HDPE =140.1; Top of pipe = 141.45. Top of frame elev. – 143.3; Cover = 1.85. Provide 2.0 ft. cover minimum. For best hydraulics, invert of 15" HDPE outlet pipe should be 0.25' lower than 12" HDPE inlet pipe.
- R. UT-18: Invert elevation has been adjusted.
- C. UT-19: Provide details for MH-15, MH-12 and MH-5-f ft. dia. with weir.
- R. UT-19: Details have been provided on Sheet SD-5.

C. UT-20: Some storm manholes are relatively shallow. Eccentric cone may not apply. Provide shallow manhole detail.

R. UT-20: Manhole with a flat slab top will be used. Detail has been added to Sheet SD-4.

- C. UT-21: MH-15. TF elevation incorrect ("2.4").
- R. UT-21: MH-15 TF elevation has been corrected to 149.6.
- C. UT-22: Verify 4" domestic water service is adequate for number of units/occupants of building.
- R. UT-22: 4" domestic water service will be adequate but final sizing will be determined when a plumbing engineer is engaged for the building permit submission.
- C. UT-23: Provide verification that sufficient pressure is available for fire service to serve entire building.
- R. UT-23: The water company has provided a will serve letter and with the adjacent similar use, it would have the same demands. Also, a fire hydrant test has been performed to verify sufficient flow and pressure.
- C. UT-24: Show limits of trenching in Route 7. Provide State Highway pavement repair detail.
- R. UT-24: Trench limits have been provided.
- C. UT-25: CCB 18 TF = 152.5. Grade behind CB is 150.0 Revise TF elevation.
- R. UT-25: TF elevation has been revised.
- C. UT-26: Show all underground utilities including but not limited to primary and secondary electric, site lighting services, telephone, CATV, etc.
- R. UT-26: This detailed information will be shown on the building permit submission once an electrical engineer has coordinated with Eversource.
- C. UT-27: Show location of gas meter.
- R. UT-27: This detailed information will be shown on the building permit submission once the architect and mechanical engineer has coordinated with Eversource.
- C. UT-28: Additional information is needed on generator. Verify approval from gas company that generator is served directly from gas main and if the meter be located at the generator. Noise of generators in relation to residential uses (across the street,

etc., particularly when testing is a concern). Provide information on noise mitigation.

- R. UT-28: A 4'-0" height solid board screen fence has been added to the plans and a detail has been added to Sheet SD-7. Gas company coordination will occur by the electrical/mechanical engineer prior to building permit submission Noise mitigation is not required for an emergency generator.
- C. UT-29: Landscaping may interfere with access to transformers and switch gear. Suggest providing clear area from pavement to transformers and access doors.
- R. UT-29: Landscaping has been revised to provide clear access from the drive isle to the transformers.
- C. UT-30: Water meter vault shown adjacent to retaining wall. Wall footing and vault may be in conflict.

R. UT-30: The water meter vault has been moved.

- C. UT-31: Removal of existing discharge pipe from the existing catch basin on the south side of the property will require work on adjacent property. Have rights to perform work on the property been acquired? Show work to be conducted on the adjacent parcel, including restoration after pipe is removed.
- R. UT-31: The discharge pipe from the existing catch basin on the south side of the property will be plugged at the property line, a callout has been added to Sheet UT.
- C. UT-32: Provide dia. of riser and dome grate at OVFL-25 and OVFL-3.

R. UT-32: A callout has been added to the riser dome and grate for OVFL-25 and OVFL-3.

- C. UT-33: Has a subsurface soils investigation (borings, test pits) been conducted in the area of infiltration areas and subsurface stormwater storage systems? What is the depth to rock/ledge? What is the soil type? Will soil provide infiltration (well drained) or will it retain water (silt / clays). Total depth to bottom of stone from existing grade is up to 7.5 feet.
- R. UT-33: Boring data has been added to Sheet NL and infiltration tests added into the Drainage Report.
- C. UT-34: Provide observation and cleaning ports on underground detention systems and isolator rows. Provide location on plans.
- R. UT-34: Observation and cleaning ports have been added to the underground chamber systems.

C. UT-35: Provide manifold to connect underground detention system rows. The underground detention systems should be labeled to prevent confusion since they are located on the south side and two are close to the same size.

R. UT-35: Manifolds have been added to the underground chamber systems and the systems have been labeled.

C. UT-36: We do not recommend connecting roof leaders from "Jewel Box" to storm system that requires treatment as roof damage is considered "clean". Suggest connecting the roof leaders to MH-13.

R. UT-36: The storm system from the "Jewel Box" roof is stored completely within the front rain garden. It would not be necessary to connect the roof leaders to MH-13.

- C. UT-37: Tupelo trees proposed on the islands along the southern parking area are on top of the subsurface detention units. Taproots may conflict with and damage stormwater units.
- R. UT-37: Trees have been shifted to avoid the underground detention system.
- C. UT-38: Suggest providing a sump at MH-9, MH-16 & MH-22 at inlets to isolator rows. Provide detail.

R. UT-38: A sump is not needed at MH-9, MH-16, & MH-22. The isolator row will collect sediment and provide water quality.

C. UT-39: OVFL-25-Consider considerably shortening the 8" HDPE and using a manhole to the east of the infiltration area and matching crowns with the 15" pipe.

R. UT-39: Manhole 25A has been added to the plans.

C. UT-40: Consider backflow preventers or check valves to 8" HDPE outlets from infiltration areas to protect the stormwater system from the river during flooding.

R. UT-40: The plans call for a flap gate at the outlet to the Norwalk River.

- C. UT-41: Consider using RCP pipe in the area east of the main building and at the 18" discharge including at the driveway entrances and exits. RCP would be advised due to the close proximity to utilities, added durability, possible high groundwater, and floodplain location.
- R. UT-41: We believe HDPE pipe is appropriate for the site.
- C. UT-42: MH-9 has inverts that appear low (137.7 ft.).
- R. UT-42: The storm system has been revised.

C. UT-43: The 18-inch outfall pipe doesn't appear to have enough capacity. If the 15 inch and 18-inch pipes upstream flow full, then the single 18-inch pipe at the flat slope of 0.65% seems inadequate.

R. UT-43: The size of the outfall pipe has been upgraded to a 24-inch pipe.

- C. UT-44: The outfall, including the required grading and riprap splash pad, require work directly within the limits of the inland wetlands. Provide calculations to show that the remaining streambank will be stabilized and not subject to erosion due to the discharge of stormwater. The riprap pad may need to be installed further towards the river.
- R. UT-44: The riprap has been sized properly based on size of outlet pipe, velocity, and flow. Calculations can be found in the. Riprap will be provided on all disturbed side slopes from the headwall to the river.

Sheet 9 Sediment and Erosion Control Plan

- C. SE-1-1: Provide silt fence along edge of Danbury Road (Route 7).
- R. SE-1-1: Silt fence has been added along edge of Danbury Road (Route 7).
- C. SE-1-2: At the northwest corner of the site near the river, the lines for the silt fence and straw appear to be cut off and show a break in the E & S controls. It would be recommended to move the wattle farther to the east away from the river and the OHW.
- R. SE-1-2: The wattle has been moved farther to the east away from the river and the OHW.
- C. SE-1-3: Typically, Infiltration areas should not be used as sediment traps. If used as sediment traps, the areas should be over-excavated and thoroughly cleaned.
- R. SE-1-3 Comment noted. A note has been added to the plans.
- C. SE-1-4: Suggest turbidity curtain along river in this location due to excavation along riverbank.
- R. SE-1-4: No riverbank excavation is needed except for where the outlet pipe is proposed. We believe the turbidity curtain would not be appropriate with the flowing water.
- C. SE-1-5: Addition of a concrete wash out area (outside of the floodplain) with a sign for concrete trucks is recommended. The detail should include notes specifying its location and appropriate management.

R. SE-1-5: A concrete washout location has been added to Sheet SE-1 and detail to Sheet SE-2.

- C. SE-1-6: Soil stockpile areas are in the area of the "Wildflower Meadow" in the front of the property. Where are stockpiles to be relocated during work in this area? This area may be hard to access during start of construction due to proximity of existing building. A phased soil erosion plan to address issues where stockpiles may need to be moved as site is built out seems helpful.
- R. SE-1-6: The need to stockpile soils on site is minimal beyond a small pile for topsoil. The contractor will provide a final plan for stockpile areas with the building permit submission. The location on the plan is intended to identify that soil stockpiles shall require erosion control protections.
- C. SE-1-7: Construction entrance pads are located in areas of fills up to 5 feet.
- R. SE-1-7: The entrance pad in areas of fill will be rebuilt as the grade is raised and adjusted during construction.
- C. SE-1-8: Silt fence along southern property line is shown on top of the existing stone wall and within the existing swale.
- R. SE-1-8: The silt fence has been adjusted.
- C. SE-1-9: The location of sediment traps and dirt bags should be located out of the floodplain. Grading of sediment traps should be mindful of groundwater elevations.
- R. SE-1-9: It is necessary to have the sediment traps within the lower portion of the site to be the most effective and to capture the entire watershed.
- C. SE-1-10: Recommend leaving a strip of pavement in place (25 to 30 feet) along the river in the upland review area from north side of site to the south for as long as possible for stabilization purposes. Fire truck access road with permeable pavers could be scheduled towards end of construction with landscaping.
- R. SE-1-10: The ability to leave this pavement area is highly dependent on the actual construction logistics, schedule, and time of year. It may be beneficial to establish the enhanced vegetative buffer earlier in the construction-phase.
- C. SE-1-11: Recommend construction fencing with gates along the front of the property. Detail(s) should be included in detail sheets.
- R. SE-1-11: Comment noted. The site security plan will be developed at the time of Building Permit Submission.

- C. SE-1-12: CTDEEP has modified the Guidelines for Soil Erosion and Sediment Control and revised the Water Quality Manual which becomes available effective in March 2024.
- R. SE-1-12: Comment noted.

Sheet 10 Sediment and Erosion Control Specifications and Details

- C. SE-2-1: Dirtbag minimum size and type should be specified.
- R. SE-2-1: The specification of the dirtbag minimum size and type would depend on the pump size used, which will be determined by the contractor and the supplier.
- C. SE-2-2: Coordinate Temporary Sediment Trap Detail with plans.
- R. SE-2-2: Temporary Sediment Trap detail has been coordinated with plans.
- C. SE-2-3: Provide inlet control detail for domed yard drains.
- R. SE-2-3: The inlet control detail for the domed yard drains would be the same as all other inlet protection details.
- C. SE-2-4: Recommend minimum size of 12-inch diameter for wattles to be used.
- R. SE-2-4: A note has been added to the straw wattle detail.
- C. SE-2-5: The dewatering plan requested by the town should have associated dewatering details such as a settling basin for dewatering discharges.
- R. SE-2-5: A dewatering plan will be prepared with the building permit submission.

Sheet 11 Site Details SD-1

- C. SD-1-1: The sheet shows details for stamped & colored sidewalk, concrete pavers along integral concrete walk. It is not clear on the plans where these are going to be installed. Additional call outs seem appropriate.
- R. SD-1-1: Callouts have been added to the plans to coordinate with the details.
- C. SD-1-2: Standard Duty Bituminous Concrete and standard Base Is it the intent to use Marshal Mix bituminous concrete (Class 1, Class 2).

R. SD-1-2: Yes

- C. SD-1-3: Concrete Pad for Fire Truck Outriggers Thickness of concrete and base does not appear to be appropriate for proposed load. Concrete called to be "permeable" on the site plans. Modify detail accordingly. Provide mix design of permeable concrete.
- R. SD-1-3: The concrete pad design will be coordinated with the fire marshal. Detail has been revised.

Sheet 12 Site Details SD-2

- C. SD-2-1: Clarify if all the proposed walls will have a stone masonry veneer. Provide elevation view of all walls, including location of changes in heights, concrete base. Provide detail how concrete base transitions from one elevation to another. We suggest a course of free draining material behind the wall including weep holes or a perforated drain. As noted above, the height of the walls are as high as 6 feet. We suggest changing the wall type to concrete cantilever (with stone facia) or provide a geotextile.
- R. SD-2-1: Retaining walls have been numbered on Sheet 'LA'. Retaining Walls #1 and #4 are constructed of modular blocks and Retaining Walls #2 and #3 are constructed of dry-laid fieldstones.
- C. SD-2-2: At top left of sheet, there are painted pavement markings that show arrows that don't appear to be used for project. It may help to remove these for clarity.
- R. SD-2-2: The pavement markings detail has been modified.
- C. SD-2-3: Provide electric, telephone, utility conduit trench details. Provide handhole detail(s) as required.
- R. SD-2-3: The details for electric, telephone, and utility conduit trench are conceptually shown at this level. Additional information may be provided at the time of building permit submission and after coordination with the utility companies.
- C. SD-2-4: Provide transformer pad detail.
- R. SD-2-4: Utility pad detail has been added to Sheet SD-1.

Sheet 13 Site Details SD-3

C. SD-3-1: Suggest providing structural planting soil in areas where plantings are adjacent to paved areas and sidewalk.

R. SD-3-1: It is our opinion structural planting soil is not needed adjacent to the paved areas and sidewalks.

C. SD-3-2: Concrete Stair with Handrail Detail – Refers to Enlarged Detail "A" which is not provided. Note height of handrail. Does not appear to correspond with site plan and stair at front of building. Trench drain not shown on plans. No retaining wall provided on plans. Detail should match sidewalk material types at top and bottom of stair (pavers). Show location of rail on site plan.

R. SD-3-2: Stair and Handrail details have been updated and added to the Detail Sheets. Handrail locations have been added to Sheet 'LA'.

- C. SD-3-3: Accessible Ramp Section Shown as concrete. Site plan calls out pavers. Coordinate between details and site plans.
- R. SD-3-3: Details plan and site plans have been coordinated. Plan has been adjusted to show the accessible ramp as concrete.
- C. SD-3-4: Concrete Ramp at Building Face Suggest detail for entranceway. We do not recommend pavers at the doorway as pavers may move as result of frost, etc. and prevent the door from opening.
- R. SD-3-4: Pavers will be set on concrete and will not heave as a result of frost.
- C. SD-3-5: Mow strip not shown on plans.
- R. SD-3-5: Mow strip callout has been added to Sheet 'LS'.

Sheet 14 Site Details SD-4

- C. SD-4-1: Provide CL Basin top detail.
- R. SD-4-1: Town of Wilton CLCB detail has been added.
- C. SD-4-2: Provide flap gate detail.
- R. SD-4-2: A flap gate detail has been added to Sheet SD-4.
- C. SD-4-3: Provide end wall detail for 18-inch discharge pipe.
- R. SD-4-3: End wall detail for 24-inch discharge pipe has been added to Sheet SD-4.
- C. SD-4-4: Larger bollard sized may be more appropriate for the protection of the transformers and generators.

R. SD-4-4: The final size of the bollards will be coordinated with the utility company.

- C. SD-4-5: Provide riprap splash pad detail for end wall outlet.
- R. SD-4-5: Riprap splash pad has been sized for the end wall outlet.
- C. SD-4-6: Provide manhole frame and cover detail or call-out specific type and size.
- R. SD-4-6: Manhole frame and cover detail has been provided.
- C. SD-4-7: Storm Trench Detail Note Final Backfill material if existing material is deemed unsuitable.
- R. SD-4-7: A note has been added to the storm trench detail.
- C. SD-4-8: Where are square Area Drains located? Remove detail if not required for this project.
- R. SD-4-8: The square area drain detail has been removed.
- C. SD-4-9: Use Town of Wilton Standard Type C and Type C-L Catch Basin details. Or modify the currently used detail to add 2 courses of brick below top.
- R. SD-4-9: A Town of Wilton Standard Type C and a Type C-L detail has been added to Sheet SD-4.
- C. SD-4-10: Use Town of Wilton Standard Manhole Detail.
- R. SD-4-10: A Town of Wilton Standard Manhole detail has been added to Sheet SD-4.
- C. SD-4-11: Rain Garden and Filter Strip Detail "Rain Gardens" are not identified as such on plans. Coordinate plans and details with same nomenclature. Show location of the infiltration strip on plans. Revise detail to correspond with site plans.
- R. SD-4-11: "Rain Gardens" have been properly identified on the plans. Additionally, the plans and details have been amended with the same nomenclature.
- C. SD-4-12: Provide detail(s) for weirs to be used in manholes.
- R. SD-4-12: Details for weirs to be used for manholes 5, 12, and 15 have been provided on Sheet SD-5.

Sheet 15 Site Details SD-5

C. SD-5-1: Provide water meter pit detail.

R. SD-5-1: A water meter pit detail has been provided on Sheet SD-6.

- C. SD-5-2: Provide site information and sizing calculations for the CONTECH CDS 2025-5-C Hydrodynamic Separator.
- R. SD-5-2: Sizing calculations have been provided in the Stormwater Report.
- C. SD-5-3: CTDOT Trench Repair Detail Typically, state road sections include 9 inches of pavement. Provide verification that CTDOT has approved the pavement repair detail.
- R. SD-5-3: The final pavement section will be determined by the CTDOT as part of the Encroachment Permit process.

Site Plan – Alternative Compared

- C. A description of the alternatives should be provided. Although only a sketch is required for the alternatives, additional details such as any proposed plantings, storm drainage, rain gardens or other stormwater treatment measures, etc. should be called out.
- R. The alternative plan was provided for discussion, and we believe the proposed plan is superior to the alternate plan. We are ready to discuss further with the Commission if requested.

Please feel free to contact us if you have any questions on the above responses.

Regards,

SLR International Corporation

uma

Thomas J. Daly, PE US Manager of Civil & Structural Engineering tdaly@slrconsulting.com Attachments

21543.00001.j524.ltr.docx

Jason C. Williams, PLA, NCI Principal Landscape Architect jwilliams@slrconsulting.com

January 9, 2024

Attention: Stephen Santacroce, PE Town of Wilton 238 Danbury Road Wilton, Connecticut 06897

SLR Project No.: 141.21543.00001

RE: 131 Danbury Road Wilton, Connecticut

Dear Mr. Santacroce,

SLR International Corporation (SLR) is in receipt of a memo dated November 21, 2023, addressed to Mike Conklin, Environmental Affairs, from Stephen Santacroce, PE, of the Town of Wilton, regarding the above-referenced project. We offer the following responses to the comments contained therein:

Wetlands Application Review

C1. Note that since the property abuts Route 7, the State DOT will review the design plans as it relates to their roadway.

R1. Comment noted. An initial presentation of the plans to the CDOT has been completed

C2. For record tracking purposes, please provide the following:

Existing pervious surface area (sqft) Existing impervious surface area directly connected to the water coarse (sqft) Existing impervious surface area not connected to the water coarse (sqft) Proposed pervious surface area (sqft) Proposed impervious surface area disconnected from the water coarse (sqft) Proposed impervious surface area directly connected to the water coarse (sqft) (Definition of "directly connect" versus "disconnect" is as defined in the State MS4 program).

R2. The values are as follows:

Existing pervious surface area: 60,642 s.f.

Existing impervious surface area directly connected to watercourse: 140,623 s.f. Existing impervious surface area not connected to the watercourse: 0 s.f. Proposed pervious surface area: 73,293 s.f.

Proposed impervious surface area directly connected to watercourse: 2,037 s.f. Proposed impervious surface area disconnected from watercourse: 125,752 s.f.

C3. Any proposed structures and/or landscape features, including plantings, within the floodway shall be certified by an engineer to withstand calculated base flood velocities.

R3. Comment noted. If a flood results in damage, the plantings will be replaced. Based pm flood modeling, the values for various flood events are:

Flood	WSEL (ft NAVD)	Max. Depth* (ft)	Overbank Vel (ft/s)	Channel Vel (ft/s)
10-year	144.3	2.3	0.31	1.7
50-year	146.2	4.2	0.48	2.6
100-year	146.7	4.7	0.58	3.1
500-year	148.1	6.1	0.89	4.4
* - measured from a proposed elevation of 142 near the top of the channel bank were plantings are located.				

C4. There shall be no net fill proposed for the site within the regulated floodplain. Provide an earthwork cut and fill computation for review.

R4. Sheet FP has been added to the plans in the site plan submission set. The net earthwork within the floodplain is +/- 72 cubic yards (+/-1,965 cubic yards of total cut and +/-1,893 cubic yards of total fill).

- C5. Provide documentation that floodplain elevation in post development meets all zoning requirements.
- **R5.** Engineering Report Floodplain Analysis and sheet FP are included within the submission.
- C6. Provide water quality units upstream of proposed stormwater infiltration systems to minimize sediment and debris entering infiltration units.
- R6. Water Quality Units have been added to the site plan submission plans.
- C7. Provide manufacturer's specifications for the maintenance of the proposed stormtech infiltrators.

R7. Manufacturer's specifications have been added to sheet SD-4 in the site plan submission plans

C8. Based on the amount of infiltrators, evaluate installing a curtain drain along the southern property line to capture any potential groundwater that may infiltrate onto the property to the south.

R8. A curtain drain has been added to the plans along the southern wall in the site plan submission plans.

C9. Shift the proposed rain garden adjacent to Route 7 five feet to the west so that there's at least four feet of walkable grass area behind the sidewalk.

R9. The proposed sidewalk has moved from the front along Route 7 to the back of the rain garden in the site plan submission plans.

C10. Depict proposed catch basins for the parking area under the building, considering that most of the parking area is within a floodzone. Any drains proposed shall be routed to an oil-water separator prior to discharging to the proposed stormwater management

system. Please confirm if any state regulations require that these drains have to tie into the sanitary system.

R10. No catch basins are proposed for the covered parking spaces at this time.

C11. At this time test pits are required to determine soil characteristics and groundwater depths. Soil percolation tests should be conducted to determine infiltration rates.

R11. Borings have been performed. Geotechnical report has been included with the submission, and boring data is included on Sheet NL and in the drainage report. Drainage report has been updated based on site-specific infiltration rates.

- C12. Depict footing drain discharge. No footing drains shall be connected to sanitary sewers.
- R12. Footing drains have been added to the plans in the site plan submission set.
- C13. The excavation planned in close proximity to the river will likely result in encountering groundwater. A dewatering plan should be prepared and added to the sediment and erosion control drawings.

R13. A note has been added to sheet SE-1 in the site plan submission set.

Planning & Zoning Review

C14. The project is subject to obtaining approvals from Wilton's WPCA Commission to connect additional units into the sanitary sewer system. The WPCA is currently evaluating all flows from proposed development projects. Separate letter will follow for WPCA related items.

R14. Comment noted.

C15. The proposed driveway entrance may be problematic. Engineer to submit a traffic report or summary, subject to approval by the Town's Independent Consultant as well as the State's Review and approval. A DOT OSTA review approval is most likely. Coordinate with the State DOT.

R15. A Traffic Impact Study prepared by SLR International Corporation has been submitted. Coordination with CTDOT is underway.

C16. All proposed work in the State Right of Way shall be subject to the State Encroachment Permit approval.

R16. Comment noted.

- C17. Proposed sidewalks along Route 7 shall be in accordance with Town of Wilton sidewalk details modified to be on 8" of process material.
- R17. Sidewalk details on sheet SD-1 have been modified to show 8" of processed material in the site plan submission set.
- C18. Sidewalks and grass strip shall be pitched towards roadway per town standards.
- R18. A comment has been added to the GR sheet in the site plan submission set.
- C19. The plan is subject to review by the Town of Wilton Fire Marshal.

R19. Comment noted. A fire consultant has been retained to coordinate with the Wilton Fire Department.

C20. Prior to the issuance of a Certificate of Occupancy, a certified as-built drawing and certified letter signed by a Professional Engineer indicating that all work was completed in accordance with the design plans shall be submitted to the Town of Wilton.

R20. Comment noted.

Should you have any further questions, please do not hesitate to contact me at (203) 271-1773.

Regards,

SLR International Corporation

uma (

Thomas J. Daly, PE Manager of Civil & Structural Engineering tdaly@slrconsulting.com

Cc: Ryan Sutherland, AMS Acquisitions

尜SLR

Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Prepared for: Ryan Sutherland, AMS Acquisitions Management Corporation

One Bridge Plaza North, Suite 840 Fort Lee, New Jersey 07024

Prepared by:

SLR International Corporation

99 Realty Drive, Cheshire, Connecticut, 06410

SLR Project No.: 141.21543.00001

October 23, 2023

Revised January 9, 2024

Making Sustainability Happen

Drainage Report

Proposed Multifamily Development 131 Danbury Road Wilton, Connecticut October 23, 2023 SLR #141.21543.00001

This Drainage Report has been prepared in support of the proposed multifamily development on Danbury Road in the town of Wilton, Connecticut. This redevelopment project will add a new building and demolish the existing building and reconfigure the parking lot and all associated site infrastructure.

Figure 1 – 131 Danbury Road, MBL: 70-1

Table 1 – Stormwater Data

Parcel Size Total	4.75 acres
Existing Impervious Area (Watershed Area)	3.23 acres
Proposed Impervious Area (Watershed Area)	2.97 acres
Soil Type (Hydrologic Soil Group)	"B/D," "C," and "D"
Existing Land Use	Open space, building, and impervious
Proposed Land Use	Open space, building, and paved/impervious
Design Storm for Stormwater Management	No increases in peak rates of runoff for the 2-, 10-, 25-, 50-, and 100-year storms; Connecticut Department of Energy & Environmental Protection (CTDEEP) water quality flow (WQF) treatment, water quality volume (WQV)
Water Quality Measures	Catch basins with 4-foot sumps, detention/infiltration storage for WQV, an isolator row within the underground infiltration systems, permeable pavers, and water quality basins
Design Storm for Storm Drainage	25-year storm
Federal Emergency Management Agency (FEMA) Special Flood Hazard Areas	Area of Minimal Flood Hazard (Zone X), Area of Undetermined Flood Hazard (Zone D), Special Flood Hazard Areas with Base Flood Elevation (Zone AE) and Regulatory Floodway
Connecticut Department of Energy & Environmental Protection Aquifer Protection Areas	None

Stormwater Management Approach

The proposed stormwater management system for the project focuses on providing water quality management while attenuating proposed peak flows. Water quality treatment in accordance with the CTDEEP requirements for WQV and WQF for a redevelopment project is provided. The proposed stormwater treatment train consists of catch basins with 4-foot sumps, water quality basins, and subsurface infiltration systems with isolator rows to provide additional water quality treatment.

The computer program entitled *Hydraflow Storm Sewers Extension for AutoCAD*[®] *Civil 3D*[®] *2023* by Autodesk, Inc. was used for designing the proposed storm drainage collection system. Storm drainage computations performed include pipe capacity and hydraulic grade line calculations. The contributing watershed to each individual catch basin inlet was delineated to determine the drainage area and land coverage. These values were used to determine the stormwater runoff to each inlet using the Rational Method. The rainfall intensities for the site

were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10, Precipitation Frequency Data Server (PFDS). The proposed storm drainage system is designed to provide adequate capacity to convey the 25-year storm event.

Water Quality Management

Water quality measures or Best Management Practices (BMPs) have been incorporated into the design to maintain water quality to provide protection of the areas downgradient of the proposed development. The proposed stormwater management system will include catch basins with 4-foot sumps, subsurface infiltration systems with isolator rows for water quality treatment, water quality basins, and permeable pavers.

The subsurface chamber systems incorporate isolator rows that consist of a row of chambers where stormwater is further treated prior to entering the rest of the storage chamber system, thus enhancing sediment removal and protecting the storage chambers from sediment accumulation. These systems have been designed to meet criteria recommended by the CTDEEP 2004 Stormwater Quality Manual. The device was designed based on the determined WQF, which is the peak-flow rate associated with the WQV and sized based on the manufacturer's specifications. There are also three water quality basins proposed that will provide retention volume along their bottom, thus creating a water guality feature within it. This serves several purposes, including stormwater renovation and first-flush retention. The vegetation will provide pollutant removal by filtering stormwater runoff and utilizing excess nutrients that may be present in the stormwater. The CTDEEP 2004 Stormwater Quality Manual (Chapter 7) recommends methods for sizing stormwater treatment measures with WQV computations. The WQV addresses the initial stormwater runoff, also commonly referred to as the "first-flush" runoff. The WQV provides adequate volume to store the runoff associated with the first 1 inch of rainfall, which tends to contain the highest concentration of potential pollutants. Supporting calculations have been included in the Appendix of this report. This project is a redevelopment project with greater than 40% existing directly connected impervious area, so 50% of the calculated WQV is required. The provided WQV of approximately 11,335 CF exceeds the minimum required calculated WQV of 5,290 CF. Additionally, the WQV exceeds the required WQV that would be required under the revised Connecticut Stormwater Management Manual that will be effective March 30, 2024, which requires that the first 1.3 inches of rainfall runoff will be required to be stored. The provided WQV also exceeds the required WQV under the revised manual, which would be approximately 6,880 CF.

Subsurface infiltration allows for temperature mitigation through infiltration to the ground, convective cooling from the surrounding subsurface substrate, and removal of runoff from direct sunlight, thus preventing additional heating from solar energy. The use of permeable pavers in parking and plaza areas will also be beneficial for temperature reduction of impervious runoff.

Hydrologic Analysis

A hydrologic analysis was conducted to analyze the predevelopment and postdevelopment peak-flow rates from the site. Four analysis points that receive runoff from the site were selected. Analysis Point 1 represents a majority of the site, including the parking and building areas and drains to the Norwalk River. Analysis Point 2 represents the front lawn area. Under proposed conditions, this area will be connected to the site stormwater system that eventually drains to the Norwalk River (AP-1). Analysis Point 3 represents the area of the site that drains towards Danbury Road. Analysis Point 4 represents the area of the site the drains to the existing landscaped area south of the entrance drive. Analysis Point 5 represents the area of the site of the site of the site draining to the catch basin located along the paved access road on the south side of the

building. No part of the site will be draining to this location under proposed conditions. The total watershed area delineated is approximately 4.6 acres under both existing and proposed conditions.

The method of predicting the surface water runoff rates utilized in this analysis was a computer program titled *HydroCAD 10.20-3c* by HydroCAD Software Solutions LLC. The *HydroCAD* program is a computer model that utilizes the methodologies set forth in the *Technical Release No. 55* (TR-55) manual and *Technical Release No. 20* (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The *HydroCAD* computer modeling program is primarily used for conducting hydrology studies such as this one.

The *HydroCAD* computer program forecasts the rate of surface water runoff based upon several factors. The input data includes information on land use, hydrologic soil type, vegetation, contributing watershed area, time of concentration, rainfall data, storage volumes, and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and stormwater management basins. The input data for rainfalls with statistical recurrence frequencies of 2, 10, 25, 50, and 100 years was obtained from the NOAA Atlas 14, Volume 10 database. The corresponding rainfall totals are listed below.

Storm Frequency	Rainfall (inches)
2-year	3.53
10-year	5.39
25-year	6.56
50-year	7.42
100-year	8.35

Land use for the site under existing and proposed conditions was determined from field survey and aerial photogrammetry. Land use types used in the analysis included grassed or open space, building, and impervious (paved) cover. Soil types in the watershed were determined from the CTDEEP Geographic Information System (GIS) database of the USDA-NRCS soil survey for Fairfield County, Connecticut. For the analysis, the site was determined to contain hydrologic soil types "B/D," "C," and "D" as classified by USDA-NRCS (see Appendix I). Composite runoff Curve Numbers (CN) for each subwatershed were calculated based on the different land use and soil types. The time of concentration (Tc) was estimated for each subwatershed using the TR-55 methodology and was computed by summing all travel times through the watershed as sheet flow, shallow concentrated flow, and channel flow.

Borings were taken on site, and laboratory permeability tests were performed in the approximate areas of the proposed infiltration BMPs. 50% of the permeability result was used for the exfiltration rates in the *HydroCAD* model. In areas where the infiltration BMPs were within the vicinity of multiple results, the more conservative value was used. Soil test results and a map of the boring locations is included in Appendix J.

The existing conditions were modeled with the *HydroCAD* program to determine the peak-flow rates for the various storm events at each analysis point. A revised model was developed incorporating the proposed site conditions, the underground chamber system, and the stormwater management basins. The flows obtained with the revised model were then compared to the results of the existing conditions model. Peak-flow rates from the project site

were controlled by the storage volume provided within the underground infiltration system and the detention basins connected in series.

The following peak rates of runoff were obtained from the *HydroCAD* hydrology results:

Analysis Point 1 – Norwalk River					
	Peak Runoff Rate (cubic feet per second)				nd)
Storm Frequency (years)	2	10	25	50	100
Existing Conditions	8.92	14.05	17.24	19.58	22.11
Proposed Conditions	2.43	8.13	12.14	14.21	16.45

Analysis Point 2* – Front Lawn					
	Peak Runoff Rate (cubic feet per second)				
Storm Frequency (years)	2	10	25	50	100
Existing Conditions	0.88	1.68	2.2	2.58	2.99
Proposed Conditions	0.00	0.00	0.00	0.37	0.93

*Note: The area draining to AP-2 subsequently drains to AP-1 under proposed conditions.

Analysis Point 3 – Danbury Road					
	Peak Runoff Rate (cubic feet per second)				nd)
Storm Frequency (years)	2	10	25	50	100
Existing Conditions	0.00	0.00	0.00	0.00	0.00
Proposed Conditions	0.09	0.14	0.17	0.20	0.22

Analysis Point 4 – Landscape Island					
	Peak Runoff Rate (cubic feet per second)				
Storm Frequency (years)	2	10	25	50	100
Existing Conditions	0.08	0.15	0.20	0.23	0.27
Proposed Conditions	0.29	0.57	0.75	0.89	1.04

Analysis Point 5** – Access Drive Catch Basin (Existing Only)					
	Peak Runoff Rate (cubic feet per second)				
Storm Frequency (years)	2	10	25	50	100
Existing Conditions	1.52	2.54	3.18	3.64	4.14
Proposed Conditions	0.00	0.00	0.00	0.00	0.00

**Note: The existing structure at AP-5 was removed under proposed conditions.

Water Quality Basin 1 – North*						
	Water Surface Elevation (feet)					
Storm Frequency (years)	2	10	25	50	100	
Proposed Conditions	139.6	139.9	139.9	140.0	140.0	

*Top of Basin Elevation = 141.0

Water Quality Basin 2 – South**						
	Water Surface Elevation (feet)					
Storm Frequency (years)	2	10	25	50	100	
Proposed Conditions	139.9	140.0	140.0	140.0	140.0	

**Top of Basin Elevation = 141.0

Water Quality Basin 3 – Front Lawn Meadow***					
	Water Surface Elevation (feet)				
Storm Frequency (years)	2	10	25	50	100
Proposed Conditions	148.3	148.7	149.0	149.1	149.2

***Top of Basin Elevation = 150.0

Sut	surface Infi	Itration Sys	tem 1*		
		Water Surface Elevation (feet)			
Storm Frequency (years)	2	10	25	50	100
Proposed Conditions	143.8	144.3	144.5	144.7	144.9

* Inside Top of Chamber Elevation = 145.0

Subsurface Infiltration System 2**					
	Water Surface Elevation (feet)				
Storm Frequency (years)	2	10	25	50	100
Proposed Conditions	144.0	144.8	144.9	144.9	144.9

** Inside Top of Chamber Elevation = 145.0

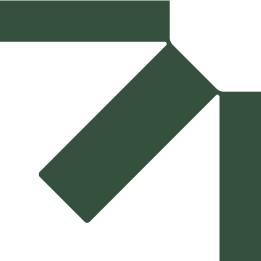
Subs	urface Infili	tration Syst	em 3***										
	Water Surface Elevation (feet)												
Storm Frequency (years)	2	10	25	50	100								
Proposed Conditions	142.2	142.6	143.0	143.2	143.4								

*** Inside Top of Chamber Elevation = 143.4

Conclusion

The results of the hydrologic analysis demonstrate that there will be no increases in peak-flow rates from the proposed development. This was achieved for storm events modeled through a planned stormwater management system with subsurface infiltration systems and stormwater management basins. Manholes with internal weir wall structures at the outlets of the subsurface infiltration systems were designed to provide peak-flow attenuation and maximize water quality volume within the systems. The proposed development will also introduce a new stormwater treatment train consisting of catch basins with 2-foot sumps, isolator rows in the underground infiltration systems, water quality basins, and permeable pavers.

All supporting documentation and stormwater-related computations are attached to this report along with the *Hydrographs* model results for stormwater management and *Hydraflow Storm Sewers* model results for the proposed storm drainage system. Illustrative watershed maps for both existing and proposed conditions are also attached to this report.


Appendices

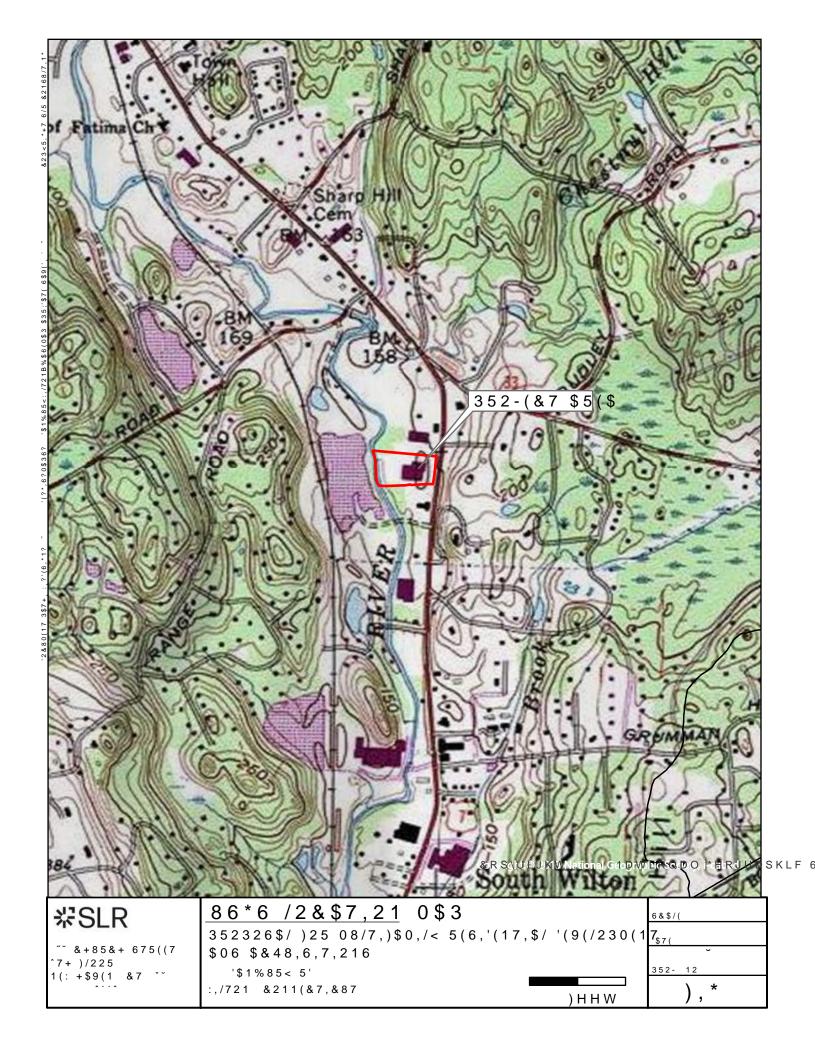
- Appendix A United States Geological Survey Location Map
- Appendix B FEMA Flood Insurance Rate Map
- Appendix C Natural Resources Conservation Service Hydrologic Soil Group Map
- Appendix D Storm Drainage Computations
- Appendix E Water Quality Computations
- Appendix F Hydrologic Analysis Existing Conditions
- Appendix G Hydrologic Analysis Proposed Conditions
- Appendix H Watershed Maps

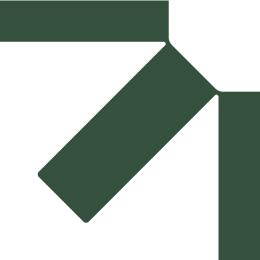
Appendix I NRCS Web Soil Survey

Appendix J Permeability Test Results

Appendix A United States Geological Survey Location Map

Proposed Multifamily Development


131 Danbury Road, Wilton, Connecticut Drainage Report


Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023

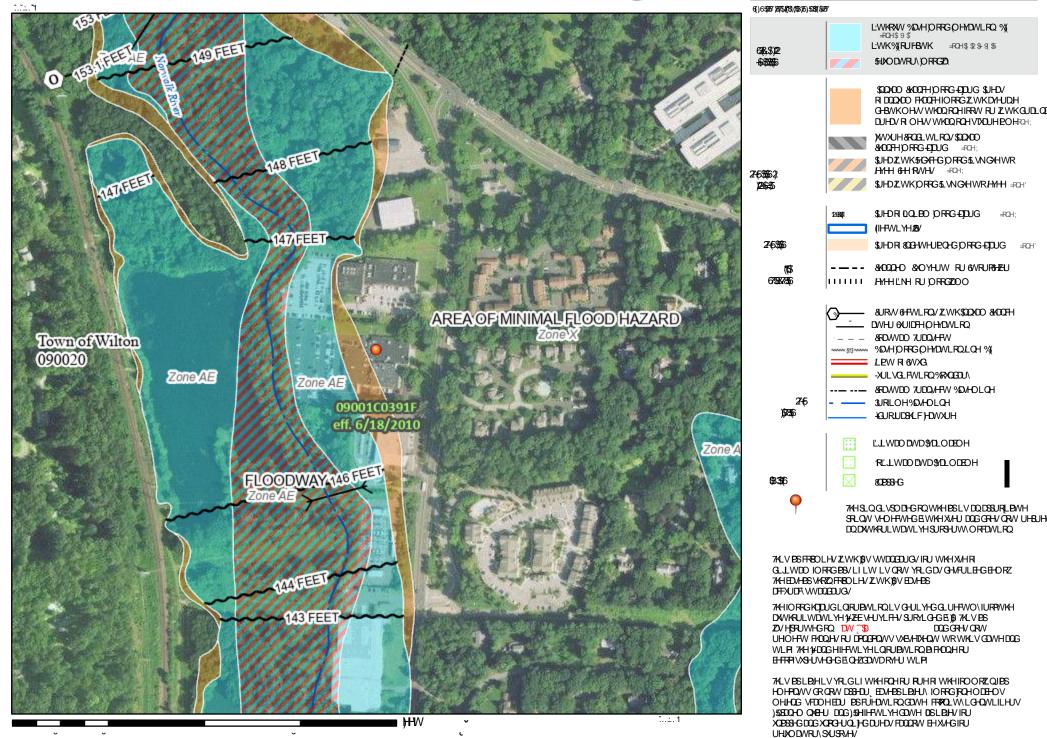
Appendix B FEMA Flood Insurance Rate Map

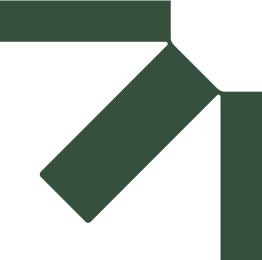
Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171


October 23, 2023


DWLRODO ORRGEDUGDHU) 51 WWH

HHOG

%DMHBS, PUHU\ 6RXUFH, 866 DWL RODO DG

Appendix C Natural Resources Conservation Service Hydrologic Soil Group Map

Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

	MAP LEGEN)	MAP INFORMATION
Area of Interest (AOI)	8	Spoil Area	The soil surveys that comprise your AOI were mapped at
Area of Interes		Stony Spot	1:12,000.
Soils	â	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit	Polygons	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
Soil Map Unit	Lines	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Soil Map Unit	Points	Special Line Features	contrasting soils that could have been shown at a more detailed
Special Point Features	Water Fe		scale.
BlowoutBorrow Pit	~	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
💥 Clay Spot	Transpor +++	rtation Rails	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Closed Depres	sion 🛹	Interstate Highways	Coordinate System: Web Mercator (EPSG:3857)
Gravel Pit	~	US Routes	Maps from the Web Soil Survey are based on the Web Mercato
Gravelly Spot	~	Major Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
🔇 Landfill	~	Local Roads	Albers equal-area conic projection, should be used if more
👗 🛛 Lava Flow	Backgro	und	accurate calculations of distance or area are required.
Marsh or swar		Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.
Mine or Quarry			Soil Survey Area: State of Connecticut
Miscellaneous			Survey Area Data: Version 22, Sep 12, 2022
Perennial Wat	er		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Rock Outcrop			Date(s) aerial images were photographed: Oct 21, 2022—Oct
Saline Spot			27, 2022
Sandy Spot			The orthophoto or other base map on which the soil lines were
Severely Erod	ed Spot		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
Sinkhole			shifting of map unit boundaries may be evident.
Slide or Slip			
💋 Sodic Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Map Onit Symbol		Acres III AOI	Fercent of AOI
103	Rippowam fine sandy loam	0.5	6.6%
305	Udorthents-Pits complex, gravelly	0.9	13.2%
307	Urban land	5.3	77.0%
W	Water	0.2	3.3%
Totals for Area of Interest		6.9	100.0%

Appendix D Storm Drainage Computations

(*will be provided at a later date)

Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Wilton, Connecticut, USA* Latitude: 41.1787°, Longitude: -73.4171° Elevation: 147 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

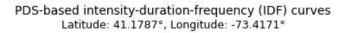
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

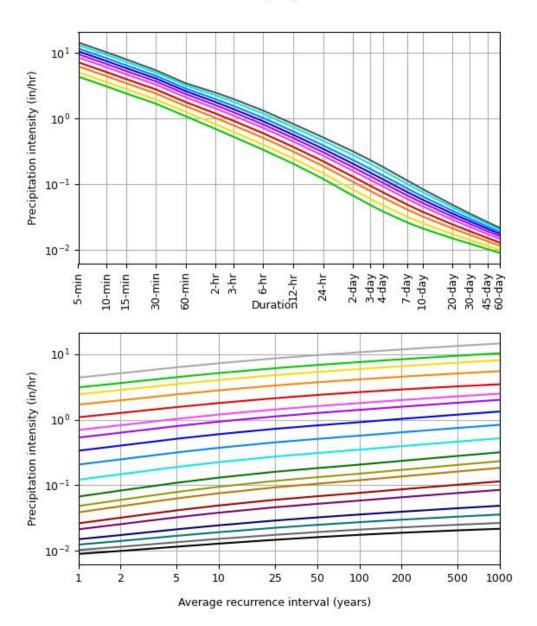
NOAA, National Weather Service, Silver Spring, Maryland

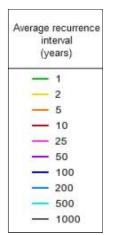
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	ased poir	nt precipit	ation freq	uency es	timates w	ith 90% co	onfidence	intervals	(in inches	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.38	5.10	6.28	7.25	8.59	9.61	10.7	11.8	13.3	14.5
	(3.42-5.54)	(3.97-6.46)	(4.87-7.97)	(5.60-9.25)	(6.42-11.4)	(7.02-13.0)	(7.54-14.8)	(7.94-16.8)	(8.63-19.6)	(9.19-21.8)
10-min	3.10 (2.42-3.92)	3.61 (2.81-4.58)	4.45 (3.46-5.65)	5.14 (3.97-6.56)	6.08 (4.54-8.05)	6.81 (4.97-9.17)	7.55 (5.34-10.5)	8.34 (5.62-11.9)	9.43 (6.11-13.9)	10.3 (6.51-15.4)
15-min	2.43 (1.90-3.08)	2.83 (2.21-3.59)	3.48 (2.71-4.43)	4.03 (3.11-5.14)	4.77 (3.56-6.32)	5.34 (3.90-7.19)	5.92 (4.19-8.22)	6.54 (4.41-9.32)	7.39 (4.80-10.9)	8.07 (5.11-12.1)
30-min	1.70 (1.32-2.15)	1.97 (1.54-2.50)	2.42 (1.88-3.08)	2.80 (2.16-3.57)	3.31 (2.47-4.38)	3.71 (2.70-4.98)	4.11 (2.90-5.68)	4.52 (3.05-6.44)	5.07 (3.29-7.45)	5.49 (3.47-8.22)
60-min	1.09 (0.850-1.38)	1.26 (0.986-1.60)	1.55 (1.21-1.97)	1.79 (1.38-2.29)	2.12 (1.58-2.80)	2.38 (1.73-3.19)	2.63 (1.85-3.63)	2.88 (1.95-4.11)	3.22 (2.09-4.73)	3.47 (2.20-5.20)
2-hr	0.696	0.821	1.03	1.20	1.43	1.61	1.79	1.99	2.27	2.49
	(0.547-0.876)	(0.644-1.03)	(0.802-1.30)	(0.929-1.52)	(1.07-1.88)	(1.18-2.15)	(1.27-2.48)	(1.35-2.82)	(1.48-3.31)	(1.58-3.71)
3-hr	0.532 (0.419-0.667)	0.633 (0.498-0.793)	0.796 (0.625-1.00)	0.932 (0.727-1.18)	1.12 (0.845-1.47)	1.26 (0.931-1.69)	1.41 (1.01-1.95)	1.57 (1.07-2.22)	1.81 (1.18-2.64)	2.00 (1.28-2.97)
6-hr	0.336	0.402	0.510	0.600	0.724	0.816	0.914	1.03	1.19	1.33
	(0.266-0.418)	(0.318-0.501)	(0.403-0.637)	(0.471-0.753)	(0.549-0.946)	(0.607-1.09)	(0.660-1.26)	(0.699-1.44)	(0.779-1.72)	(0.848-1.96)
12-hr	0.206 (0.164-0.255)	0.248 (0.197-0.306)	0.315 (0.250-0.392)	0.372 (0.294-0.464)	0.450 (0.343-0.584)	0.508 (0.379-0.673)	0.569 (0.413-0.782)	0.641 (0.438-0.893)	0.746 (0.489-1.07)	0.834 (0.533-1.22)
24-hr	0.121	0.147	0.189	0.224	0.273	0.309	0.347	0.393	0.462	0.519
	(0.097-0.148)	(0.118-0.180)	(0.151-0.233)	(0.178-0.278)	(0.210-0.353)	(0.232-0.408)	(0.254-0.476)	(0.269-0.545)	(0.303-0.659)	(0.333-0.755)
2-day	0.067	0.082	0.108	0.130	0.160	0.182	0.206	0.235	0.279	0.317
	(0.054-0.081)	(0.066-0.101)	(0.087-0.133)	(0.104-0.160)	(0.124-0.206)	(0.138-0.239)	(0.152-0.281)	(0.161-0.323)	(0.184-0.396)	(0.204-0.458)
3-day	0.048	0.059	0.078	0.094	0.116	0.132	0.149	0.171	0.204	0.232
	(0.039-0.058)	(0.048-0.072)	(0.063-0.096)	(0.075-0.115)	(0.090-0.149)	(0.100-0.173)	(0.111-0.204)	(0.118-0.234)	(0.134-0.288)	(0.149-0.334)
4-day	0.038	0.047	0.062	0.075	0.092	0.105	0.119	0.136	0.161	0.183
	(0.031-0.046)	(0.038-0.057)	(0.050-0.076)	(0.060-0.092)	(0.072-0.118)	(0.080-0.137)	(0.088-0.162)	(0.093-0.185)	(0.107-0.228)	(0.118-0.263)
7-day	0.026	0.031	0.041	0.049	0.059	0.067	0.076	0.086	0.101	0.114
	(0.021-0.031)	(0.026-0.038)	(0.033-0.050)	(0.039-0.059)	(0.046-0.076)	(0.051-0.087)	(0.056-0.102)	(0.060-0.117)	(0.067-0.142)	(0.074-0.163)
10-day	0.021	0.025	0.032	0.038	0.046	0.051	0.058	0.065	0.076	0.084
	(0.017-0.025)	(0.020-0.030)	(0.026-0.039)	(0.030-0.046)	(0.036-0.058)	(0.039-0.066)	(0.043-0.077)	(0.045-0.088)	(0.050-0.106)	(0.055-0.120)
20-day	0.015	0.017	0.021	0.024	0.028	0.032	0.035	0.039	0.044	0.048
	(0.012-0.017)	(0.014-0.020)	(0.017-0.025)	(0.019-0.029)	(0.022-0.036)	(0.024-0.040)	(0.026-0.046)	(0.027-0.052)	(0.029-0.061)	(0.031-0.068)
30-day	0.012	0.014	0.016	0.019	0.022	0.024	0.027	0.029	0.033	0.035
	(0.010-0.014)	(0.011-0.016)	(0.013-0.020)	(0.015-0.023)	(0.017-0.027)	(0.019-0.031)	(0.020-0.035)	(0.020-0.039)	(0.022-0.045)	(0.023-0.050)
45-day	0.010	0.011	0.013	0.015	0.017	0.019	0.021	0.022	0.024	0.026
	(0.008-0.012)	(0.009-0.013)	(0.011-0.016)	(0.012-0.018)	(0.013-0.021)	(0.014-0.024)	(0.015-0.027)	(0.016-0.030)	(0.016-0.034)	(0.017-0.037)
60-day	0.008	0.009	0.011	0.012	0.014	0.016	0.017	0.018	0.020	0.021
	(0.007-0.010)	(0.008-0.011)	(0.009-0.013)	(0.010-0.015)	(0.011-0.018)	(0.012-0.020)	(0.012-0.022)	(0.013-0.024)	(0.013-0.028)	(0.014-0.030)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

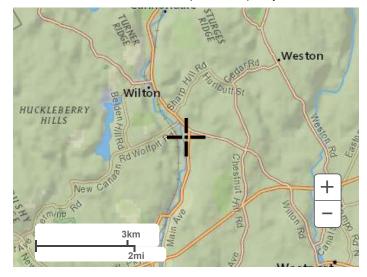

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

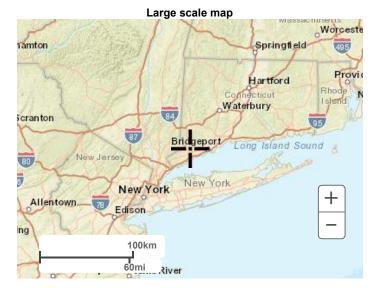
5-min	2-day
- 10-min	— 3-day
— 15-min	— 4-day
- 30-min	— 7-day
- 60-min	- 10-day
2-hr	— 20-day
3-hr	30-day
- 6-hr	45-day
- 12-hr	— 60-day
- 24-hr	

NOAA Atlas 14, Volume 10, Version 3

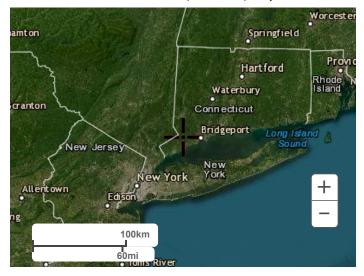

Created (GMT): Mon Oct 16 16:00:53 2023

Back to Top

Maps & aerials


Small scale terrain

Precipitation Frequency Data Server


Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

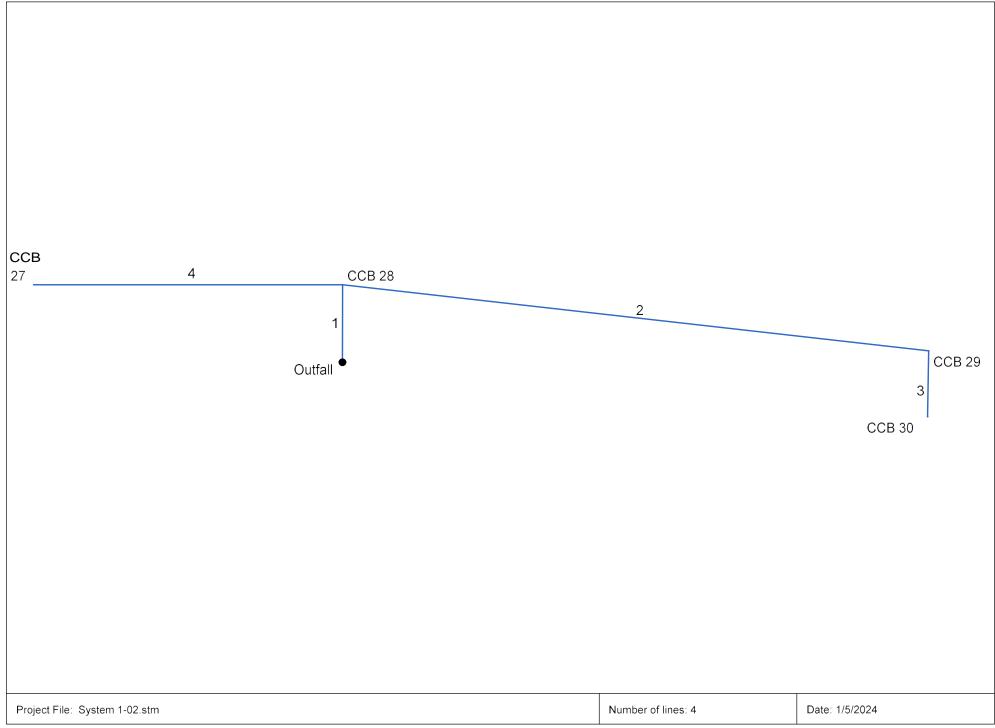
Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Storm Sewer IDF Curves

Int. (in/hr) 14.00 -- 14.00 100-Yr 12.00 -- 12.00 50-Yr 10.00 -- 10.00 25-Yr 8.00 8.00 10-Yr 6.00 6.00 5-Yr - 4.00 4.00 2-Yr 2.00 -2.00 1-Yr 0.00 -- 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 Time (min)


•	: Proposed Multi- : Wilton, Connec		opment	By: Checked:	RH	Date: Date:	Rev:1/5/2
Basin Name	Impervious Area C=0.9 (sf)	Grassed Area C=0.3 (sf)	Wooded Area C=0.2 (sf)	Total Area (sf)	Total Area (ac)	Weighted C	Tc (min)
			System 1 UG				
CCB 27	5008	7986	0	12994	0.30	0.53	5.0
CCB 28	8279	281	0	8560	0.20	0.88	5.0
CCB 29	678	0	0	678	0.02	0.90	5.0
CCB 30	675	0	0	675	0.02	0.90	5.0
			System 3 UG				
CCB 7	4855	323	0	5178	0.12	0.86	5.0
CCB 10	4743	4000	0	8743	0.20	0.63	5.0
CCB 14	2320	74	0	2394	0.05	0.88	5.0
CCB 17	1062	0	0	1062	0.02	0.90	5.0
CCB 18	1860	1144	0	3004	0.07	0.67	5.0
OVFL 19	1883	6304	0	8187	0.19	0.44	5.0
CLCB 20	1759	0	0	1759	0.04	0.90	5.0
CLCB 21	1740	0	0	1740	0.04	0.90	5.0
			Outlet				
CCB 6	3375	63	0	3438	0.08	0.89	5.0
CCB 26	3046	820	0	3866	0.09	0.77	5.0
CCB 26A	5350	1203	0	6553	0.15	0.79	5.0
OVFL 3	/FL 3 1885		0	5887	0.14	0.49	5.0
OVFL 25	1069	5874	0	6943	0.16	0.39	5.0

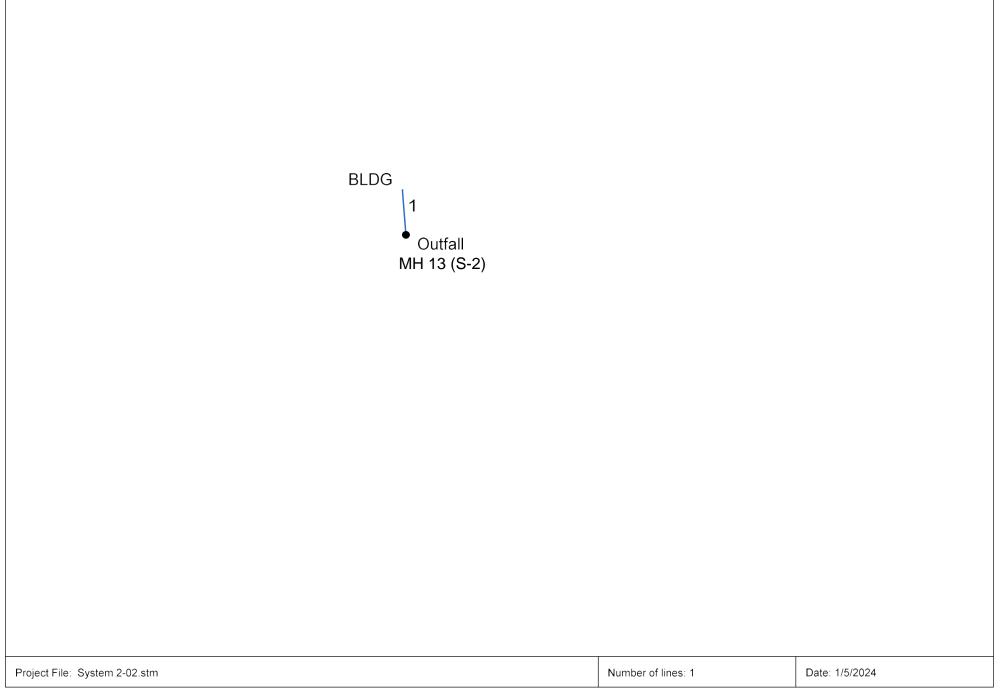
tional Mathed Individual Pasin Calculations

	Ratio	nal Methoo	d Roof Dra	ain System	Calculation	S	
•	: Proposed Multi-Far : Wilton, Connecticu		nt	By Checked	: <u>RH</u>	Date: Date:	Rev:1/5/24
	Total Roof R	unoff to Propo	osed Storm Di	ainage System	(In Hydraflow M	lodel)	
C	ROOF TO FRONT LAWN RAIN GARDEN 0.90 8.59						
A Q	0.07 0.57						

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Aligni	nent			Flov	/ Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
1	End	20.000	-89.848	Comb	0.00	0.20	0.88	5.0	142.60	2.00	143.00	12	Cir	0.012	1.50	151.20	MH 21 (S-1) - CCB
2	1	217.000	94.347	Comb	0.00	0.02	0.90	5.0	145.00	1.01	147.20	12	Cir	0.012	1.50	150.80	CCB 28 - CCB 29
3	2	17.000	86.938	Comb	0.00	0.02	0.90	5.0	147.20	0.59	147.30	12	Cir	0.012	1.00	150.80	CCB 29 - CCB 30
4	1	114.000	-90.149	Comb	0.00	0.30	0.53	5.0	143.00	0.88	144.00	12	Cir	0.012	1.00	147.50	CCB 28 - CCB 27
Project File: System 1-02.stm											_1	Number	of lines: 4	1	1	Date: 1	/5/2024


Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	20.000	0.20	0.54	0.88	0.18	0.37	5.0	6.6	7.6	2.83	5.46	4.13	12	2.00	142.60	143.00	143.60	143.72	151.50	151.20	MH 21 (S-1) - CC
2		217.000		0.04	0.90	0.02	0.04	5.0	5.2	8.4	0.30	3.88	2.61	12	1.01	145.00	147.20	145.19	147.43	151.20	150.80	CCB 28 - CCB 29
3		17.000		0.02	0.90	0.02	0.02	5.0	5.0	8.6	0.15	2.96	1.52	12	0.59	147.20	147.30	147.43	147.46	150.80	150.80	CCB 29 - CCB 30
4		114.000		0.30	0.53	0.16	0.16	5.0	5.0	8.6	1.36	3.61	2.89	12	0.88	143.00	144.00	143.72	144.49	151.20	147.50	CCB 28 - CCB 27
Proje	ect File:	System	1-02.st	m												Number	of lines: 4	•		Run Da	te: 1/5/202	24
NOT	ES:Inte	ensity = 3	8.51 / (I	nlet time	e + 3.60)	^ 0.70;	Return p	eriod =Y	′rs. 25;	c = cir	e = ellip	b = box										

Hydraulic Grade Line Computations

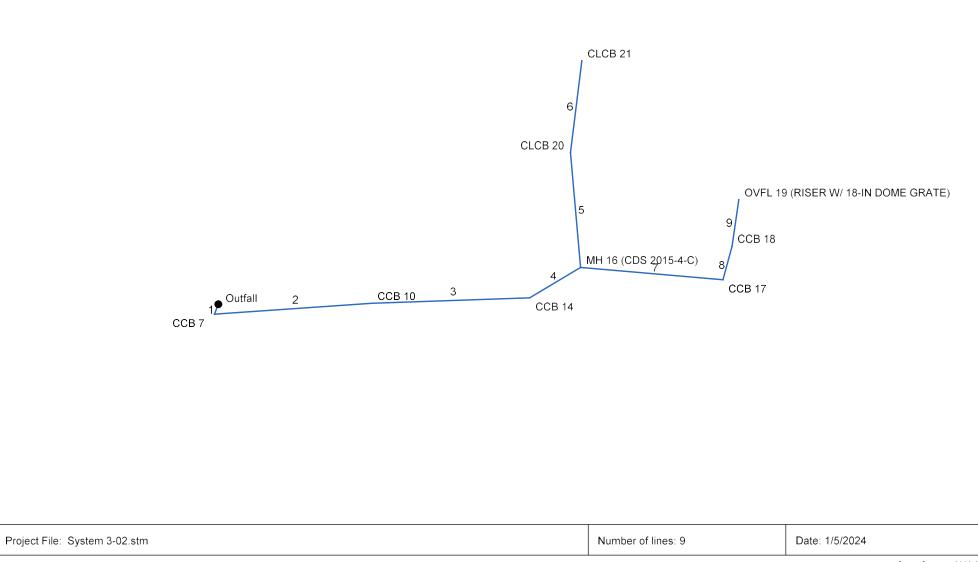
Line	Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	elev	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss (ft)	coeff (K)	loss (ft)
1	12	2.83	142.60	143.60	1.00	0.61	3.60	0.20	143.80	0.538	20.000	143.00	143.72 j	0.72**	0.61	4.67	0.34	144.06	0.712	0.625	n/a	1.50	0.51
2	12	0.30	145.00	145.19	0.19*	0.10	2.94	0.08	145.27	0.000	217.00	0147.20	147.43	0.23**	0.13	2.27	0.08	147.51	0.000	0.000	n/a	1.50	n/a
3	12	0.15	147.20	147.43	0.23	0.08	1.15	0.06	147.48	0.000	17.000	147.30	147.46 j	0.16**	0.08	1.89	0.06	147.52	0.000	0.000	n/a	1.00	n/a
4	12	1.36	143.00	143.72	0.72	0.39	2.25	0.19	143.91	0.000	114.00	0144.00	144.49 j	0.49**	0.39	3.53	0.19	144.69	0.000	0.000	n/a	1.00	0.19
Proi	ect File: S		-02 stm												lumber o	f lines: /	 L		Run	Date: 1	1/5/2024		
				cal depth.;	j-Line co	ontains h	yd. jump	; c = c	ir e = ellip	b = box							-						

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

ine		Align	ment			Flov	/ Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	Length (ft) 6.000	angle (deg) -93.988		Q (cfs) 4.54	Area (ac)	0.00	Time (min) 0.0	EI Dn (ft) 143.20	Slope (%)	EI Up (ft) 143.30	Size (in) 12	Cir	Value (n) 0.012	Coeff (K) 1.00	Rim EI (ft) 151.20	MH 13 (S-2) - BLDG
Projec	t File: Sys	tem 2-02.st	m			I						Number c	of lines: 1			Date: 1	/5/2024

Drng Area Station Rnoff Area x C Тс Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len coeff (I) flow full Total Slope Dn Up Up Line To Incr Total Syst Up Dn Incr Inlet Size Dn Line (ft) (ac) (C) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) (ac) (min) 4.54 1 End 6.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 4.98 5.81 12 1.67 143.20 143.30 144.20 144.27 150.70 151.20 MH 13 (S-2) - BL Project File: System 2-02.stm Number of lines: 1 Run Date: 1/5/2024 NOTES:Intensity = 38.51 / (Inlet time + 3.60) ^ 0.70; Return period =Yrs. 25 ; c = cir e = ellip b = box


Storm Sewer Tabulation

Page 1

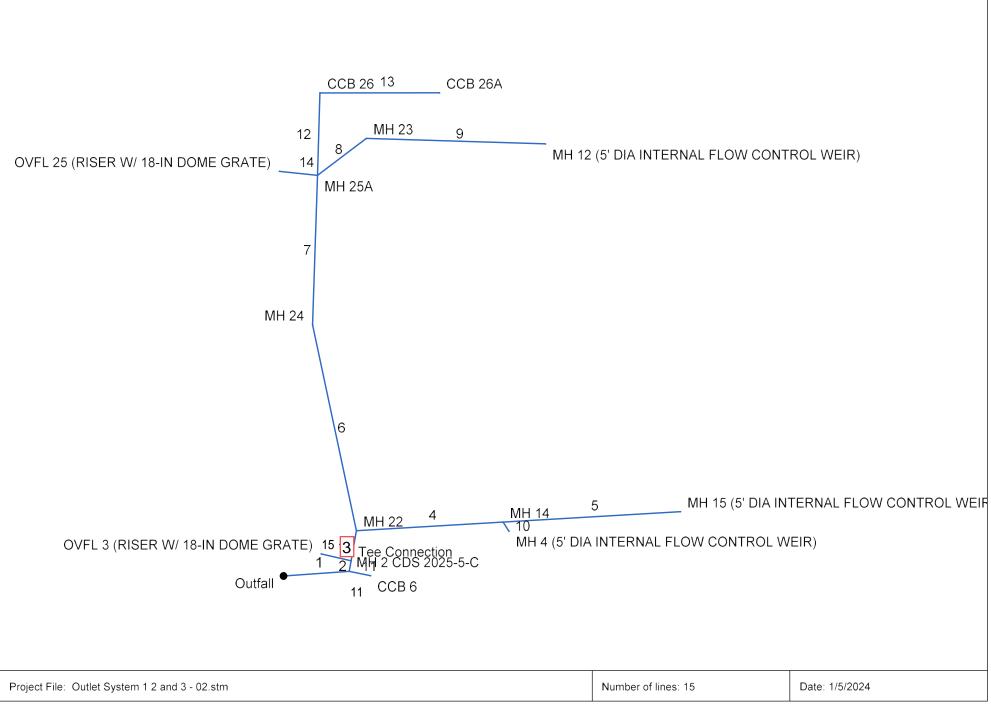
Hydraulic Grade Line Computations

(in) 1 1		(cfs) 4.54	Invert elev (ft)	elev		Area	Vel	Vel	EGL		-	L								+	1	coeff	loss
1 1	12	4.54		1	l` '	(sqft)	(ft/s)	head	elev	Sf (%)		Invert elev (ft)	elev		Area (sqft)		Vel head (ft)	elev		Ave Sf (%)	Enrgy Ioss		(ft)
			143.20	144.20			5.78		(ft)				(ft) 144.27					(π) 144.80					0.53
Project F	File: S	ystem 2	2-02.stm											 N	lumber o	f lines: 1			Run	Date: 1	1/5/2024		

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

.ine	Alignment Flow Data										Line ID						
lo.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	8.000	111.000	Comb	0.00	0.12	0.86	5.0	141.00	1.25	141.10	18	Cir	0.012	1.50	144.80	MH 5 (S-3) - CCB 7
2	1	117.000	-115.000	Comb	0.00	0.20	0.63	5.0	141.10	1.20	142.50	12	Cir	0.012	0.50	147.10	CCB 7 - CCB 10
3	2	117.000	2.000	Comb	0.00	0.05	0.88	5.0	142.50	1.03	143.70	12	Cir	0.012	0.81	150.90	CCB 10 - CCB 14
4	3	44.000	-29.000	мн	0.00	0.00	0.00	0.0	143.70	1.36	144.30	12	Cir	0.012	0.92	152.50	CCB 14 - MH 16
5	4	86.000	-64.000	Grate	0.00	0.04	0.90	5.0	147.00	3.48	149.99	12	Cir	0.012	0.50	154.40	MH 16 - CLCB 20
6	5	69.000	12.000	Grate	0.00	0.04	0.90	5.0	150.00	0.94	150.65	12	Cir	0.012	1.00	154.40	CLCB 20 - CLCB 21
7	4	106.000	36.000	Comb	0.00	0.02	0.90	5.0	144.30	1.32	145.70	12	Cir	0.012	1.48	149.50	MH 16 - CCB 17
8	7	26.000	-80.000	Comb	0.00	0.07	0.67	5.0	145.70	0.77	145.90	12	Cir	0.012	0.50	149.60	CCB 17 - CCB 18
9	8	35.000	-7.000	DrGrt	0.00	0.19	0.44	5.0	145.55	1.00	145.90	12	Cir	0.012	1.00	149.00	CCB 18 - OVFL 19
		tem 3-02.stn										Number				Date: 1	


Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x C		Tc					Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Rim Elev		Line ID	
Line	То		Incr	icr Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up		
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
1	End	8.000		0.73	0.86	0.10	0.49	5.0	7.2	7.3	3.60	12.72		18	1.25	141.00	141.10	142.50	142.50	144.90	144.80	MH 5 (S-3) - CCB	
2		117.000		0.61	0.63	0.13	0.39	5.0	6.8	7.5	2.94	4.22	4.23	12	1.20	141.10	142.50	142.61	143.24	144.80	147.10	CCB 7 - CCB 10	
3		117.000		0.41	0.88	0.04	0.26	5.0	6.2	7.8	2.07	3.91	3.42	12	1.03	142.50	143.70	143.41	144.31	147.10	150.90	CCB 10 - CCB 14	
4		44.000		0.36	0.00	0.00	0.22	0.0	6.0	7.9	1.75	4.51	3.65	12	1.36	143.70	144.30	144.31	144.86	150.90	152.50	CCB 14 - MH 16	
5		86.000		0.08	0.90	0.04	0.07	5.0	5.6	8.2	0.59	7.19	4.12	12	3.48	147.00	149.99	147.19	150.31	152.50	154.40	MH 16 - CLCB 20	
6		69.000		0.04	0.90	0.04	0.04	5.0	5.0	8.6	0.31	3.74	1.89	12	0.94	150.00	150.65	150.31	150.88	154.40	154.40	CLCB 20 - CLCB	
7	4	106.000		0.28	0.90	0.02	0.15	5.0	5.4	8.3	1.23	4.43	3.06	12	1.32	144.30	145.70	144.86	146.17	152.50	149.50	MH 16 - CCB 17	
8	7	26.000		0.26	0.67	0.05	0.13	5.0	5.3	8.4	1.09	3.38	3.16	12	0.77	145.70	145.90	146.17	146.34	149.50	149.60	CCB 17 - CCB 18	
9	8	35.000	0.19	0.19	0.44	0.08	0.08	5.0	5.0	8.6	0.72	3.86	1.99	12	1.00	145.55	145.90	146.34	146.25	149.60	149.00	CCB 18 - OVFL 1	
Proje	ct File:	System	3-02.st	m												Number	of lines: 9)		Run Date: 1/5/2024			
NOT	ES:Inte	nsity = 3	8.51 / (I	nlet time	+ 3.60)	^ 0.70;	Return p	eriod =Y	′rs. 25 ;	c = cir e	e = ellip	b = box											

Hydraulic Grade Line Computations

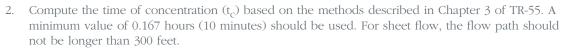
n) 18 12 12	(cfs) 3.60	Invert elev (ft)	HGL elev (ft)	Depth	Area	Vel	Val	1	-		Upstream Check JL coeff												
12				(ft)	(sqft)	(ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Sf	Enrgy Ioss (ft) (K)		loss (ft)	
		141.00	142.50	1.50	1.77	2.04	0.06	142.56	0.100	8.000	141.10	142.50	1.40	1.72	2.09	0.07	142.57	0.087	0.093	0.007	1.50	0.10	
12	2.94	141.10	142.61	1.00	0.62	3.74	0.22	142.82	0.579	117.00	0142.50	143.24 j	0.74**	0.62	4.72	0.35	143.59	0.723	0.651	0.762	0.50	0.17	
	2.07	142.50	143.41	0.91	0.51	2.75	0.26	143.67	0.000	117.00	0143.70	144.31 j	0.61**	0.51	4.09	0.26	144.57	0.000	0.000	n/a	0.81	0.21	
12	1.75	143.70	144.31	0.61	0.45	3.46	0.23	144.54	0.000	44.000	144.30	144.86 j	0.56**	0.45	3.85	0.23	145.09	0.000	0.000	n/a	0.92	0.21	
12	0.59	147.00	147.19	0.19*	0.11	5.52	0.12	147.31	0.000	86.000	149.99	150.31	0.32**	0.22	2.73	0.12	150.42	0.000	0.000	n/a	0.50	n/a	
12	0.31	150.00	150.31	0.31	0.14	1.50	0.08	150.39	0.000	69.000	150.65	150.88 j	0.23**	0.14	2.28	0.08	150.96	0.000	0.000	n/a	1.00	n/a	
12	1.23	144.30	144.86	0.56	0.36	2.71	0.18	145.04	0.000	106.00	0145.70	146.17 j	0.47**	0.36	3.41	0.18	146.35	0.000	0.000	n/a	1.48	0.27	
12	1.09	145.70	146.17	0.47	0.33	3.03	0.17	146.34	0.000	26.000	145.90	146.34 j	0.44**	0.33	3.29	0.17	146.51	0.000	0.000	n/a	0.50	0.08	
12	0.72	145.55	146.34	0.79	0.25	1.08	0.13	146.47	0.000	35.000	145.90	146.25	0.35**	0.25	2.89	0.13	146.38	0.000	0.000	n/a	1.00	n/a	
t File: S	 System 3	3-02.stm											 N	Number of lines: 9						n Date: 1/5/2024			
t	12 12 12	12 1.23 12 1.09 12 0.72	12 1.23 144.30 12 1.09 145.70 12 0.72 145.55	12 1.23 144.30 144.86 12 1.09 145.70 146.17 12 0.72 145.55 146.34	12 1.23 144.30 144.86 0.56 12 1.09 145.70 146.17 0.47 12 0.72 145.55 146.34 0.79 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	12 1.23 144.30 144.86 0.56 0.36 12 1.09 145.70 146.17 0.47 0.33 12 0.72 145.55 146.34 0.79 0.25 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	12 1.23 144.30 144.86 0.56 0.36 2.71 12 1.09 145.70 146.17 0.47 0.33 3.03 12 0.72 145.55 146.34 0.79 0.25 1.08 I2 0.72 145.55 146.34 0.79 0.25 1.08 I2 1.09 145.70 146.34 0.79 1.25 1.08 I2 1.72 145.55 146.34 0.79 1.25 1.08 I2 1.72 145.55 146.34 0.79 1.25 1.08 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 14 145.55 146.34 0.79 1.08 1.08 0.13 12 0.72 145.55 146.34 0.79 1.08 0.13 14 145.55 146.34 0.79 1.25 1.08 0.13 14 145.55 146.34 0.79 1.25 1.08 1.13 15 145.55 146.34 1.49 1.49 1.49 1.49 1.49 14 144.55 146.34 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 14 145.45 145.45 145.45 145.45 146.47 146.47 14 145.45 145.45 145.45 146.47 146.47 146.47 14 145.45 145.45 145.45 146.47 146.47 146.47 14 145.45 145.45 146.47 146.47 146.47 146.47 14 145.45 146.47 146.47 146.47 146.47 146.47</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 0.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.17 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.94 145.95 146.34 0.79 1.55 1.08 0.13 146.47 0.000 145.95 145.95 146.34 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 0.000 26.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 14 145.45 145.55 146.34 0.79 1.55 1.08 1.18 1.45.47 1.000 35.000 14 145.45 145.55 146.34 0.79 1.55 1.08 1.18 1.45.47 1.000 1.50 14 145.45 145.45 145.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 12 1.09 145.70 146.37 0.47 0.33 3.03 0.17 146.34 0.000 26.000 145.90 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 145.91 IAS IAS</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 j 12 1.09 145.70 146.34 0.79 0.25 1.08 0.17 146.47 0.000 35.00 145.90 146.34 j 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.95 146.34 146.34 146.34 146.34 146.34 146.35 146.35 146.35 146.35 145.95 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 0.47** 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.47 0.000 26.000 145.90 146.34 0.47** 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.91 146.34 0.79 145.91 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.2</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 0.47* 0.33 12 1.09 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.35** 0.25* 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25** 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25*** 15 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25*** 15 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145</td> <td>1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17j 0.47** 0.36 3.41 12 1.09 145.70 146.17 0.47 0.37 3.03 0.17 146.47 0.000 145.90 146.34j 0.44** 0.33 3.29 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.5** 0.25 2.89 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.5** 0.25 2.89 Image: State Stat</td> <td>12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.00 106.00 145.70 146.17 0.47** 0.36 3.41 0.18 12 1.09 145.70 146.17 0.41 0.33 3.03 0.17 146.34 0.000 26.000 145.90 146.34 0.44** 0.33 3.29 0.17 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 146.25 0.35** 0.25 2.89 0.13 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 146.25 0.5** 0.25 2.89 0.13 Automation of the set of</td> <td> 1 23 144 30 144.80 144.86 0.56 0.36 2.71 0.18 145.04 0.00 160.00 145.70 146.17 0.47* 0.36 3.41 0.18 146.31 1 20 145.70 146.17 0.47 0.37 0.37 0.37 0.37 0.17 146.34 0.00 26.00 145.90 146.30 0.44** 0.33 0.29 0.17 146.31 1 2 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 145.90 146.25 0.5** 0.25 0.25 0.25 0.13 146.38 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td> 123 143.0 144.80 0.56 0.56 0.57 0.57 0.45.70 145.70 145.70 0.45.70 0.45.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 145.70<td> 1 23 143.0 143.0 144.8 0.5 0.5 0.3 2.71 0.8 145.0 0.00 145.0 16.00 145.0 146.17 0.47* 0.3 3.41 0.18 146.35 0.00 0.00 1 45.7 146.51 0.00 145.0 146.17 0.3 3.0 0.17 146.31 0.00 145.0 145.0 146.35 0.44** 0.3 3.2 0.17 146.51 0.00 0.00 1 45.7 145.5 146.3 0.7 0.5 1.6 0.5 1.6 0.1 146.3 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.7 145.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.5 145.0 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5</td><td> 123 1430 14450 0.56 0.36 0.71 0.18 145.00 0.00 145.00 145.10 0.47 0.41 0.41</td><td> 123 144.30 144.60 0.56 0.36 0.36 0.36 0.37 0.36 0.454 0.47* 0.36 0.47* 0.46 0.47* 0.46 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.48 0.48 0.48 <li0.48< li=""> <li0.48< <="" td=""></li0.48<></li0.48<></td></td>	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 14 145.55 146.34 0.79 1.08 1.08 0.13 12 0.72 145.55 146.34 0.79 1.08 0.13 14 145.55 146.34 0.79 1.25 1.08 0.13 14 145.55 146.34 0.79 1.25 1.08 1.13 15 145.55 146.34 1.49 1.49 1.49 1.49 1.49 14 144.55 146.34 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 14 145.45 145.45 145.45 145.45 146.47 146.47 14 145.45 145.45 145.45 146.47 146.47 146.47 14 145.45 145.45 145.45 146.47 146.47 146.47 14 145.45 145.45 146.47 146.47 146.47 146.47 14 145.45 146.47 146.47 146.47 146.47 146.47	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 0.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.17 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 145.94 145.95 146.34 0.79 1.55 1.08 0.13 146.47 0.000 145.95 145.95 146.34 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.34 0.000 26.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 14 145.45 145.55 146.34 0.79 1.55 1.08 1.18 1.45.47 1.000 35.000 14 145.45 145.55 146.34 0.79 1.55 1.08 1.18 1.45.47 1.000 1.50 14 145.45 145.45 145.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45 1.45.45	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 12 1.09 145.70 146.37 0.47 0.33 3.03 0.17 146.34 0.000 26.000 145.90 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 145.91 IAS IAS	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 j 12 1.09 145.70 146.34 0.79 0.25 1.08 0.17 146.47 0.000 35.00 145.90 146.34 j 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 145.95 146.34 146.34 146.34 146.34 146.34 146.35 146.35 146.35 146.35 145.95 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145.96 145	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 0.47** 12 1.09 145.70 146.17 0.47 0.33 3.03 0.17 146.47 0.000 26.000 145.90 146.34 0.47** 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.95 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.35** 145.91 145.91 146.34 0.79 145.91 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.2	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17 0.47* 0.33 12 1.09 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.35** 0.25* 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25** 14 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25*** 15 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.00 145.90 146.25 0.3*** 0.25*** 15 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145	1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.04 0.000 106.00 145.70 146.17j 0.47** 0.36 3.41 12 1.09 145.70 146.17 0.47 0.37 3.03 0.17 146.47 0.000 145.90 146.34j 0.44** 0.33 3.29 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.5** 0.25 2.89 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.000 35.000 145.90 146.25 0.5** 0.25 2.89 Image: State Stat	12 1.23 144.30 144.86 0.56 0.36 2.71 0.18 145.00 106.00 145.70 146.17 0.47** 0.36 3.41 0.18 12 1.09 145.70 146.17 0.41 0.33 3.03 0.17 146.34 0.000 26.000 145.90 146.34 0.44** 0.33 3.29 0.17 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 146.25 0.35** 0.25 2.89 0.13 12 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 146.25 0.5** 0.25 2.89 0.13 Automation of the set of	 1 23 144 30 144.80 144.86 0.56 0.36 2.71 0.18 145.04 0.00 160.00 145.70 146.17 0.47* 0.36 3.41 0.18 146.31 1 20 145.70 146.17 0.47 0.37 0.37 0.37 0.37 0.17 146.34 0.00 26.00 145.90 146.30 0.44** 0.33 0.29 0.17 146.31 1 2 0.72 145.55 146.34 0.79 0.25 1.08 0.13 146.47 0.00 35.00 145.90 145.90 146.25 0.5** 0.25 0.25 0.25 0.13 146.38 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	 123 143.0 144.80 0.56 0.56 0.57 0.57 0.45.70 145.70 145.70 0.45.70 0.45.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 0.45.70 145.70 145.70<td> 1 23 143.0 143.0 144.8 0.5 0.5 0.3 2.71 0.8 145.0 0.00 145.0 16.00 145.0 146.17 0.47* 0.3 3.41 0.18 146.35 0.00 0.00 1 45.7 146.51 0.00 145.0 146.17 0.3 3.0 0.17 146.31 0.00 145.0 145.0 146.35 0.44** 0.3 3.2 0.17 146.51 0.00 0.00 1 45.7 145.5 146.3 0.7 0.5 1.6 0.5 1.6 0.1 146.3 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.7 145.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.5 145.0 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5</td><td> 123 1430 14450 0.56 0.36 0.71 0.18 145.00 0.00 145.00 145.10 0.47 0.41 0.41</td><td> 123 144.30 144.60 0.56 0.36 0.36 0.36 0.37 0.36 0.454 0.47* 0.36 0.47* 0.46 0.47* 0.46 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.48 0.48 0.48 <li0.48< li=""> <li0.48< <="" td=""></li0.48<></li0.48<></td>	 1 23 143.0 143.0 144.8 0.5 0.5 0.3 2.71 0.8 145.0 0.00 145.0 16.00 145.0 146.17 0.47* 0.3 3.41 0.18 146.35 0.00 0.00 1 45.7 146.51 0.00 145.0 146.17 0.3 3.0 0.17 146.31 0.00 145.0 145.0 146.35 0.44** 0.3 3.2 0.17 146.51 0.00 0.00 1 45.7 145.5 146.3 0.7 0.5 1.6 0.5 1.6 0.1 146.3 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.7 145.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.00 145.0 145.0 146.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.00 1 45.5 146.4 0.5 0.5 146.3 0.00 0.5 0.5 146.3 0.00 0.5 0.5 145.0 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5 146.5 0.5	 123 1430 14450 0.56 0.36 0.71 0.18 145.00 0.00 145.00 145.10 0.47 0.41 0.41	 123 144.30 144.60 0.56 0.36 0.36 0.36 0.37 0.36 0.454 0.47* 0.36 0.47* 0.46 0.47* 0.46 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.47* 0.48 0.48 0.48 0.48 <li0.48< li=""> <li0.48< <="" td=""></li0.48<></li0.48<>	

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line	e Alignment				Flow Data					Physical Data							Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	43.000	-4.075	МН	0.00	0.00	0.00	0.0	137.30	0.70	137.60	24	Cir	0.012	0.98	142.70	HEADWALL 1 - MH 2
2	1	7.000	-75.824	None	0.00	0.00	0.00	0.0	137.60	1.43	137.70	24	Cir	0.012	1.00	143.00	MH 2 - TEE
3	2	20.000	0.000	мн	0.00	0.00	0.00	0.0	137.70	0.50	137.80	24	Cir	0.012	0.98	143.30	TEE - MH 22
4	3	96.000	76.527	мн	0.00	0.00	0.00	0.0	137.80	3.73	141.38	15	Cir	0.012	0.90	145.10	MH 22 - MH 14
5	4	116.000	0.000	мн	4.07	0.00	0.00	0.0	141.50	1.98	143.80	15	Cir	0.012	1.00	147.30	MH 14 - MH 15
6	3	138.000	-22.113	мн	0.00	0.00	0.00	0.0	137.80	0.43	138.40	18	Cir	0.012	0.29	143.10	MH 22 - MH 24
7	6	98.000	13.934	мн	0.00	0.00	0.00	0.0	138.40	0.41	138.80	18	Cir	0.012	1.00	143.10	MH 24 - MH 25A
8	7	40.000	50.948	мн	0.00	0.00	0.00	0.0	139.60	0.50	139.80	15	Cir	0.012	0.68	143.30	MH 25A - MH 23
9	8	117.000	38.878	мн	3.10	0.00	0.00	0.0	139.80	2.91	143.20	12	Cir	0.012	1.00	146.70	MH 23 - MH 12
10	4	7.000	60.852	мн	3.34	0.00	0.00	0.0	141.50	1.43	141.60	12	Cir	0.012	1.00	145.10	MH 14 - MH 4
11	1	14.203	15.546	Comb	0.00	0.08	0.89	5.0	139.86	0.99	140.00	12	Cir	0.012	1.00	143.20	MH 2 - CCB 6
12	7	54.000	-0.186	Comb	0.00	0.09	0.77	5.0	138.80	0.74	139.20	15	Cir	0.012	1.50	142.70	MH 25A - CCB 26
13	12	78.000	88.216	Comb	0.00	0.15	0.79	5.0	139.20	1.41	140.30	12	Cir	0.012	1.00	143.80	CCB 26 - CCB 26A
14	7	25.000	-85.916	DrGrt	1.09	0.00	0.00	0.0	138.80	0.80	139.00	8	Cir	0.012	1.00	140.00	MH 25A - OVFL 25
15	2	20.000	-87.138	DrGrt	0.85	0.00	0.00	0.0	137.65	1.75	138.00	8	Cir	0.012	1.00	141.00	TEE - OVFL 3
Project	Project File: Outlet System 1 2 and 3 - 02.stm						Number of lines: 15 Date: 7				Date: 1	/5/2024					

Storm Sewer Tabulation

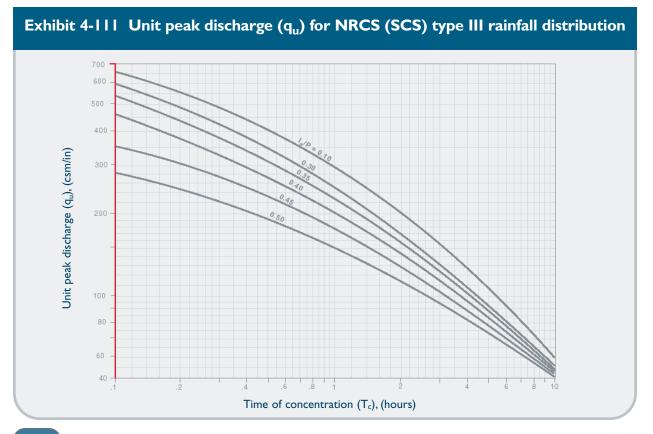

Statio	n	Len	Drng A	rea	Rnoff coeff	Area x	С	Тс		Rain	Total flow		Vel	Pipe		Invert El	ev	HGL Ele	ev.	Grnd / Rim Elev		Line ID
	То		Incr	Total	coerr	Incr	Total	Inlet	Syst	-(1)	TIOW	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	43.000	0.00	0.32	0.00	0.00	0.26	0.0	7.7	8.8	14.74	20.47	4.81	24	0.70	137.30	137.60	139.30	139.41	139.43	142.70	HEADWALL 1 - M
2	1	7.000	0.00	0.24	0.00	0.00	0.19	0.0	7.6	8.8	14.11	29.28	4.49	24	1.43	137.60	137.70	139.78	139.80	142.70	143.00	MH 2 - TEE
3	2	20.000	0.00	0.24	0.00	0.00	0.19	0.0	7.6	8.9	13.27	17.33	4.22	24	0.50	137.70	137.80	140.12	140.18	143.00	143.30	TEE - MH 22
4	3	96.000	0.00	0.00	0.00	0.00	0.00	0.0	0.4	0.0	7.41	13.51	6.30	15	3.73	137.80	141.38	140.45	142.46	143.30	145.10	MH 22 - MH 14
5	4	116.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	4.07	9.85	4.40	15	1.98	141.50	143.80	142.46	144.62	145.10	147.30	MH 14 - MH 15
6	3	138.000	0.00	0.24	0.00	0.00	0.19	0.0	6.9	9.3	5.93	7.50	3.36	18	0.43	137.80	138.40	140.45	140.82	143.30	143.10	MH 22 - MH 24
7	6	98.000	0.00	0.24	0.00	0.00	0.19	0.0	6.4	9.6	5.99	7.27	3.39	18	0.41	138.40	138.80	140.88	141.15	143.10	143.10	MH 24 - MH 25A
8	7	40.000	0.00	0.00	0.00	0.00	0.00	0.0	0.4	0.0	3.10	4.95	2.53	15	0.50	139.60	139.80	141.33	141.41	143.10	143.30	MH 25A - MH 23
9	8	117.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.10	6.58	4.41	12	2.91	139.80	143.20	141.47	143.95	143.30	146.70	MH 23 - MH 12
10	4	7.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.34	4.61	4.69	12	1.43	141.50	141.60	142.46	142.38	145.10	145.10	MH 14 - MH 4
11	1	14.203	0.08	0.08	0.89	0.07	0.07	5.0	5.0	10.7	0.76	3.83	3.37	12	0.99	139.86	140.00	140.16	140.36	142.70	143.20	MH 2 - CCB 6
12	7	54.000	0.09	0.24	0.77	0.07	0.19	5.0	5.8	10.0	1.88	6.02	1.53	15	0.74	138.80	139.20	141.33	141.37	143.10	142.70	MH 25A - CCB 26
13	12	78.000	0.15	0.15	0.79	0.12	0.12	5.0	5.0	10.7	1.26	4.58	1.61	12	1.41	139.20	140.30	141.42	141.50	142.70	143.80	CCB 26 - CCB 26
14	7	25.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	1.09	1.17	3.12	8	0.80	138.80	139.00	141.33	141.50	143.10	140.00	MH 25A - OVFL 2
15	2	20.000		0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.85	1.73	2.44	8	1.75	137.65	138.00	140.12	140.20	143.00	141.00	TEE - OVFL 3
Proje	ct File:	Outlet S	System	1 2 and 3	3 - 02.stn	n										Numbe	r of lines: 1	5		Run Da	te: 1/5/20	24
NOT	ES·Inte	ensity = 4	8 06 / //	nlet time	+ 3 60)	^ 0 70	 Return r	eriod = Y	′rs 100	· c = cir	e = elli	b = bc)X			1				1		
NOTES:Intensity = 48.06 / (Inlet time + 3.60) ^ 0.70; Return period =Yrs. 100 ; c = cir e = ellip b = box																						

Hydraulic Grade Line Computations

.ine	Size	Q	Downstream						Len	Upstream									Mino				
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)		Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Ave Sf (%)	Enrgy Ioss (ft)	Coeff (K)	loss (ft)
1	24	14.74	137.30	139.30	2.00	3.14	4.69	0.34	139.64	0.362	43.000	137.60	139.41	1.81	2.99	4.93	0.38	139.79	0.317	0.339	0.146	0.98	0.37
2	24	14.11	137.60	139.78	2.00	3.14	4.49	0.31	140.10	0.332	7.000	137.70	139.80	2.00	3.14	4.49	0.31	140.12	0.332	0.332	0.023	1.00	0.31
3	24	13.27	137.70	140.12	2.00	3.14	4.22	0.28	140.40	0.293	20.000	137.80	140.18	2.00	3.14	4.22	0.28	140.45	0.293	0.293	0.059	0.98	0.27
4	15	7.41	137.80	140.45	1.25	1.13	6.04	0.57	141.02	1.122	96.000	141.38	142.46 j	1.08**	1.13	6.56	0.67	143.13	1.028	1.075	n/a	0.90	0.60
5	15	4.07	141.50	142.46	0.96	0.85	4.01	0.36	142.82	0.000	116.00	0143.80	144.62 j	0.82**	0.85	4.80	0.36	144.97	0.000	0.000	n/a	1.00	n/a
6	18	5.93	137.80	140.45	1.50	1.77	3.36	0.18	140.62	0.272	138.00	0138.40	140.82	1.50	1.77	3.36	0.18	141.00	0.272	0.272	0.376	0.29	0.05
7	18	5.99	138.40	140.88	1.50	1.77	3.39	0.18	141.05	0.278	98.000	138.80	141.15	1.50	1.77	3.39	0.18	141.33	0.278	0.278	0.272	1.00	0.18
8	15	3.10	139.60	141.33	1.25	1.23	2.53	0.10	141.43	0.196	40.000	139.80	141.41	1.25	1.23	2.53	0.10	141.50	0.196	0.196	0.079	0.68	0.07
9	12	3.10	139.80	141.47	1.00	0.64	3.95	0.24	141.71	0.646	117.00	0143.20	143.95 j	0.75**	0.64	4.88	0.37	144.32	0.767	0.707	n/a	1.00	0.37
10	12	3.34	141.50	142.46	0.96	0.66	4.30	0.40	142.86	0.000	7.000	141.60	142.38	0.78**	0.66	5.07	0.40	142.78	0.000	0.000	n/a	1.00	n/a
11	12	0.76	139.86	140.16	0.30*	0.20	3.80	0.13	140.30	0.000		140.00	140.36	0.36**	0.26	2.94	0.13	140.50	0.000	0.000	n/a	1.00	0.13
12	15	1.88	138.80	141.33	1.25	1.23	1.53	0.04	141.36	0.072		139.20	141.37	1.25	1.23	1.53	0.04	141.40	0.072	0.072	0.039	1.50	0.05
13	12	1.26	139.20	141.42	1.00	0.79	1.61	0.04	141.46	0.107		140.30	141.50	1.00	0.79	1.61	0.04	141.54	0.107	0.107	0.084	1.00	0.04
14	8	1.09	138.80	141.33	0.67	0.35	3.12	0.15	141.48	0.694		139.00	141.50	0.67	0.35	3.12	0.15	141.65	0.694	0.694	0.174	1.00	0.15
15	8	0.85	137.65	140.12	0.67	0.35	2.44	0.09	140.21	0.422	20.000	138.00	140.20	0.67	0.35	2.44	0.09	140.30	0.422	0.422	0.084	1.00	0.09
Proje	ect File: 0	Uutlet Sy	stem 1 2 a	nd 3 - 02.s	stm									 N	umber o	f lines: 1	5		Run	Date: 1	/5/2024		

	SLR Const	ulting					Project	21543.00001
	СОМРИТА	TION SHEE	T - WATER	QUALITY F	LOW (W	QF)	Made By:	JLS
Subject:				·			Date:	1/5/2024
-		131 Danbu	ry Rd, Wil	ton, Conn	ecticut		Chkd by:	
							Date:	
CDS Unit - N	I <u>H 16</u>							
			Imperv.					
Contributing			Area	Total Area				
Basins			(acres)	(acres)				
Total			0.89	1.11				
Table 4.1: W	$QV = (P)(R_v$,)(A)/12 =		0.071	acre-feet			
Where:								
I = % of Impe				80%				
R _v = volumet	ric runoff co	eff. 0.05 + 0	.009(I) =	0.772				
P = design p	recipitation (1.0" for wate	er quality sto	rm) =	1	inch		
A = site area	(acres) =			1.11	acres =	0.0017	miles ²	
Q = runoff de	epth (in wate	rshed inches	s) = [WQV(a	crefeet)]*[12	(inches/f	oot)]/draina	age area (ac	res)
			Q =	0.772				
CN = 1000 /	[10+ 5P + 10	$DQ - 10(Q^2 +$	1.25QP) ^{0.5}]	=	98			
Where:								
Q = runoff de	epth (in wate	rshed inches	s)					
			t _c =	0.1	hours			
Type III Rain	fall Distribut	ion:						
From Table 4	1-1, la =	0.041		la/P =	0.041			
(TR-	55)							
From Exhibit	4-III, q _u =	700	csm/in.					
(TR-	55)							
WQF = (qu)(0.94	cfs		CDS 202	5-5-C Flo	w = 3.2 cfs	-> OK

MH 2



3. Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

	Table 4-1 Ia values for runoff curve numbers									
Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)			
40 41 42 43 44 45 46 47 48 49 50 51		55 56 57 58 59 60 61 62 63 64 65		71 72 73 74 75 76 77 78 79 80	0.778 0.740 0.703 0.667 0.632 0.597 0.564 0.532 0.500	85 86 87 88 89 90 91 92 93 94 95	0.326 0.299 0.273 0.247 0.222 0.198 0.174 0.151 0.128 0.105			
51 52 53 54	1.922 1.846 1.774 1.704	66 67 68 69	0.985	81 82 83 84	0.439	96				

O Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

CDS

Model

1515-3

2015-4

2015-5

2015-6

2020-5

2020-6

2025-5

2025-6

3020-6

3025-6

3030-6

3035-6

4030-8

4040-8

Product Flow Rates

CASCADE		
Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

Treatment Rate²

(cfs)

1.00

1.40

1.40

1.40

2.20

2.20

3.20

3.20

3.90

5.00

5.70

6.50

7.50

9.50

VORTECHS		
Medel	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
STC 450i	0.40	46
STC 900	0.89	89
STC 2400	1.58	205
STC 4800	2.47	543
STC 7200	3.56	839
STC 11000	4.94	1086
STC 16000	7.12	1677

1 Additional sediment storage capacity available – Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

Sediment Capacity¹

(CF)

14

25

39

57

39

57

39

57

57

57

57

57

151

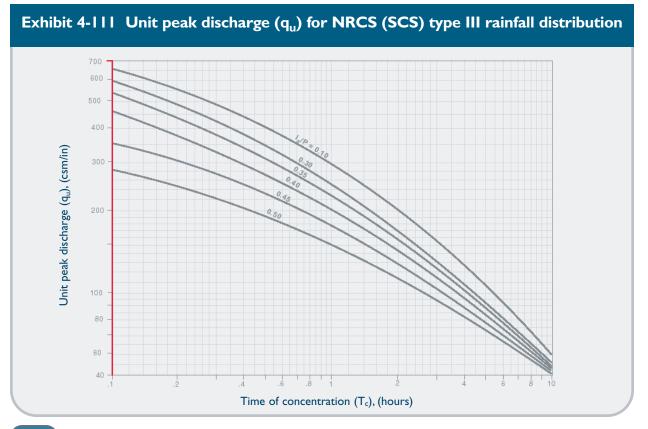
151

STORMWATER SOLUTIONS

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get social with us:

	SLR Const	ulting					Project	21543.00001
	COMPUTA	TION SHEE	T - WATER	QUALITY F	LOW (W	QF)	Made By:	JLS
Subject:							Date:	11/29/2023
		131 Danbu	ry Rd, Wil	ton, Conn	ecticut		Chkd by:	
							Date:	
CDS Unit - N	<u>1H 13</u>							
			Imperv.					
Contributing			Area	Total Area				
Basins			(acres)	(acres)				
Total			1.84	1.84				
T 11 4 4 14								
Table 4.1: W	$QV = (P)(R_{v})$,)(A)/12 =		0.146	acre-feet			
Where:								
I = % of Impe				100%				
$R_v = volumet$.,	0.950				
P = design p	recipitation (1.0" for wate	er quality sto	rm) =	1	inch		
A = site area	(acres) =			1.838	acres =	0.0029	miles ²	
Q = runoff de	epth (in wate	rshed inches	· - ·	/	2(inches/f	oot)]/draina	age area (ac	res)
			Q =	0.950				
CN = 1000 /	[10+ 5P + 10	$0Q - 10(Q^2 +$	1.25QP) ^{0.5}]	=	100			
Where:								
Q = runoff de	epth (in wate	ershed inches	s)					
			t _c =	0.1	hours			
Type III Rain								
From Table 4	,	98		la/P =	98			
(TR-								
From Exhibit	4-III, q _u =	700	csm/in.					
(TR-	-55)							
WQF = (qu)(A)(Q) =	1.91	cfs		Cascade	CS-4 Flo	w = 2.0 cfs	-> OK



- Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A 2. minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- 3. Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

Ο Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

	Table 4-1Iavalues for runoff curve numbers									
Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)			
45 46 47 48 49		55 56 57 58 59 60 61 62 63 64 65		70	0.817 0.778 0.740 0.703 0.667 0.632 0.597 0.564 0.532	85 86 87 88 90 91 92 93 94 95	0.326 0.299 0.273 0.247 0.247 0.222 0.198 0.174 0.151 0.128			
51 52 53 54	1.922 1.846 1.774 1.704	68		81 82 83 84	0.439	96 97 98	0.083 0.062 0.041			

Read the unit peak discharge (q_u) *from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below)* Ο for appropriate t_c

Product Flow Rates

CASCADE		
Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

Treatment Rate²

(cfs)

1.00

1.40

1.40

1.40

2.20

2.20

3.20

3.20

3.90

5.00

5.70

6.50

7.50

9.50

VORTECHS		
Medel	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)		
STC 450i	0.40	46		
STC 900	0.89	89		
STC 2400	1.58	205		
STC 4800	2.47	543		
STC 7200	3.56	839		
STC 11000	4.94	1086		
STC 16000	7.12	1677		

1 Additional sediment storage capacity available – Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

Sediment Capacity¹

(CF)

14

25

39

57

39

57

39

57

57

57

57

57

151

151

CDS

Model

1515-3

2015-4

2015-5

2015-6

2020-5

2020-6

2025-5

2025-6

3020-6

3025-6

3030-6

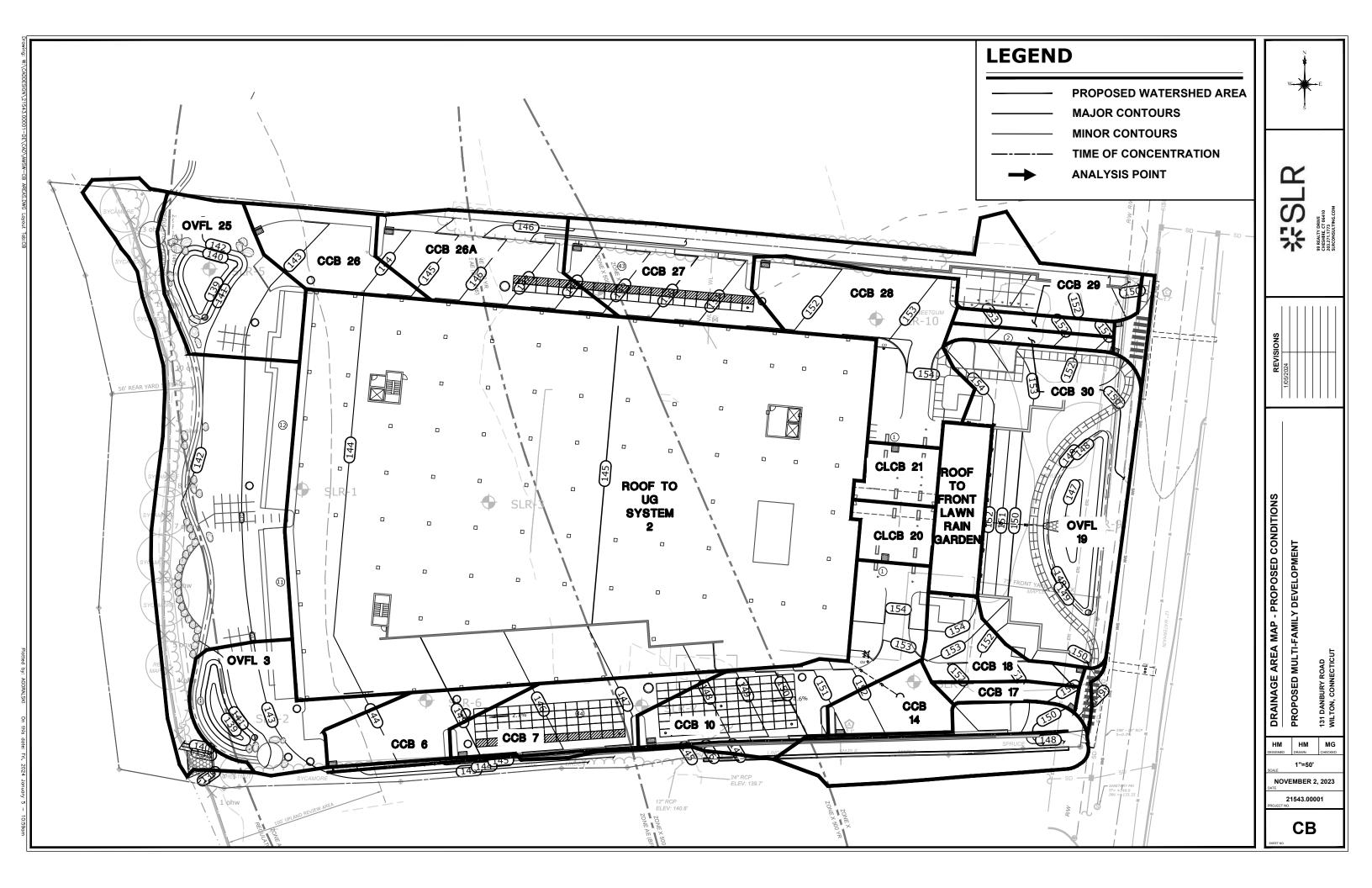
3035-6

4030-8

4040-8

STORMWATER SOLUTIONS

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.


Get social with us: fin S

Outlet Protection Calculations										
Project: Proposed Multi-Fam	ilv Devel	opment	<u>By:</u> RH	Date:	11/02/23					
Location: Wilton, Connecticut			<u>Checked:</u>	Date:	Rev:1/5/24					
Outlet I.D. HEADWALL 1 TO R	IVER		<u>onoonou.</u>	<u>Bate.</u>	1.01.110121					
*Based on Connecticut DOT Drain	nage Mar	nual, Section 11.1	<u>3</u>							
	-									
Description:										
CONCRETE HEADWALL 1 T	O RIVER	R								
Design Criteria (100-yr Storm Ev		0								
Q (cfs) = 14.74 D (in) = 24	$R_p(ft) =$ $S_p(ft) =$									
	F ()									
V (fps) = 4.81	Tw (ft)=	0.5								
Q= Flow rate at discharge poin	nt in cubi	c feet ner second	(cfs)							
D= Outlet pipe diameter (in)		e leet per second	(03)							
V= Flow velocity at discharge	noint (ft/s	3)								
R_p = Maximum inside pipe rise		-)								
S _p = inside diametere for circul		ns of maximum ir	side pipe span for non	-circular	sections (ft)					
T _w = Tailwater depth (ft)										
<u>Based on Table 11-12.1 ເ</u>	ise Type	'A'> TW< 0.5	Rp							
Rip Rap Stone Size:	e									
<u>Velocity</u> <u>Rip Rap Speci</u>	fication		D ₅₀ Stone Size							
0-8 fps Modified			5 inches							
$\frac{Preformed Scour Hole Dimensions}{F(ft)=0.5(R_p)}$	<u>=</u>	n/a								
$C(ft)=3.0(S_p)+6.0(F)$	_	n/a								
$B(ft)=2.0(S_p)+6.0(F)$	_	n/a								
B(R) = 2.0(3p) + 0.0(1)	_	II/a								
Rip Rap Splash Pad Dimension										
	<u>s.</u> =	15	ft							
L_a W1 = 3.0(S _p) min.	=	6	ft							
W2 = 3.0(Sp)+0.7(La) min.	=	17	ft							
d (Depth of Stone)	=	12	inches							

Outlet Protection Calculations										
Project: Proposed Multi-Fam	ily Developm		<u>By:</u> RH	<u>Date:</u>	Rev:1/5/24					
Location: Wilton, Connecticut Outlet I.D. JEWEL BOX ROOF		<u>c</u>	hecked:	<u>Date:</u>						
<u>Jewel Box Roop</u>	DRAIN									
*Based on Connecticut DOT Drair	nage Manual,	Section 11.13								
	-									
Descriptions										
Description: Jewel Box roof drain to front la										
Design Criteria (100-yr Storm Ev										
Q (cfs) = 0.57	$R_p(ft) = 1$									
D(in) = 12	$S_p(ft) = 1$									
V (fps) = 1.87	Tw (ft)= 1									
Q= Flow rate at discharge poi	nt in cubic fe	et per second (cf	s)							
D= Outlet pipe diameter (in)			-)							
V= Flow velocity at discharge	point (ft/s)									
R _p = Maximum inside pipe rise										
S _p = inside diametere for circul	ar sections o	f maximum insid	e pipe span for non-	circular s	sections (ft)					
T _w = Tailwater depth (ft)										
Based on Table 11-13.1 เ	ise Type 'B' -	> TW≥ 0.5 Rp								
		· · · · · · · · · · · · · · · · · · ·								
Rip Rap Stone Size:		_								
Velocity Rip Rap Speci	fication		50 Stone Size							
0-8 fps Modified		5	inches							
Preformed Scour Hole Dimension	ons:									
F(ft)=0.5(R _p)	= n/a									
C(ft)=3.0(S _p)+6.0(F)	= n/a									
B(ft)=2.0(S _p)+6.0(F)	= n/a									
Din Dan Salach Dad Dimonsion	e ·									
Rip Rap Splash Pad Dimension L _a	<u>s:</u> = 10	ft								
W^{-a} = 3.0(S _p) min.	= 3	ft								
W2 = 3.0(Sp)+0.4(La) min.	= 7	ft								
d (Depth of Stone)	= 12	in	ches							

Appendix E Water Quality Computations

Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023

Proposed Multi-Family Development 131 Danbury Road, Wilton, Connecticut


Water Quality Volume (WQV)

Site Area Impervious Area Percent Impervious Cover, I	= = =	4.752 2.96 62	ac ac %
Volumetric Runoff Coefficient, R R=0.05 + 0.009(I)	=	0.610	
Water Quality Volume	=	0.243	ac-ft
$WQV = \frac{(1'')(R)(A)}{12}$	=	10580	cf
Current site DCIA > 40%	=	5290	cf
Provided Water Quality Volume			
North Infiltration Basin	=	580	cf
South Infiltration Basin	=	330	cf
Front Lawn Rain Garden	=	2410	CF
Infiltration System S-1	=	1700	cf
Infiltration System S-2	=	4005	cf
Infiltration System S-3	=	2310	cf
Total	=	11335	cf

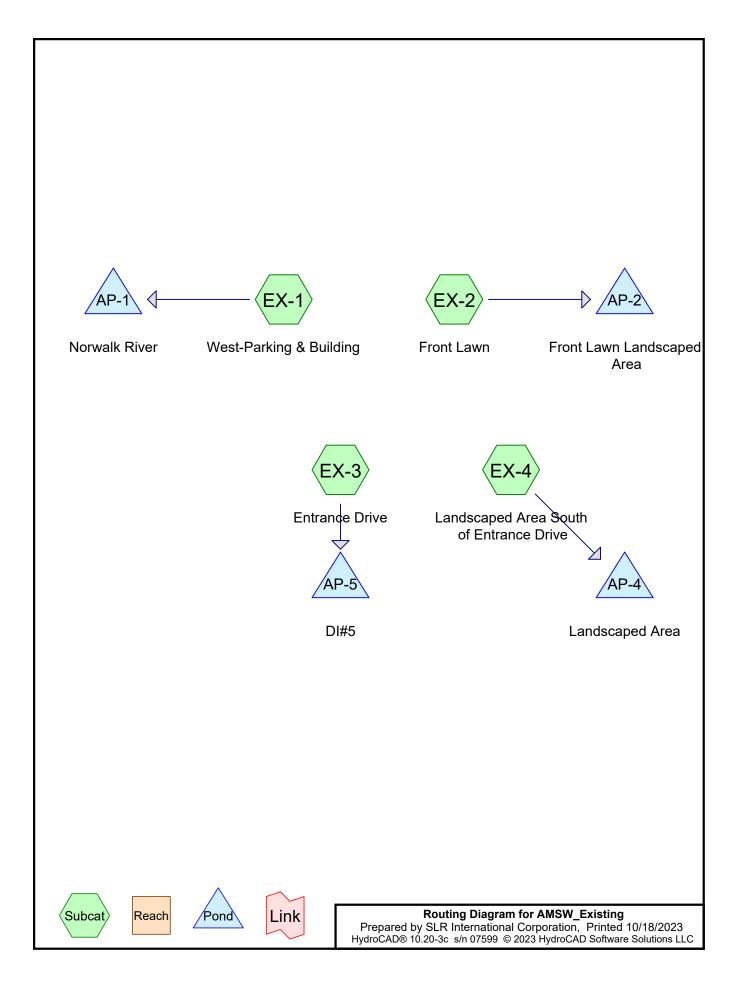
Proposed Multi-Family Development 131 Danbury Road, Wilton, Connecticut

Required Water Quality Flow (WQF)

Water Quality Volume Drainage Area, A	= =	0.243 4.752	ac-ft ac
Runoff Depth in Watershed inches, Q $Q = \frac{WQVx12}{A}$	=	0.613	in
Design Precipitation, P	=	1	in
Runoff Curve Number, CN	=	96	
$CN = \frac{1000}{\left[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{\frac{1}{2}}\right]}$			
From Table 4-1 in Chapter 4 of TR-55 Initial Abstraction, Ia Ia/P	= =	0.128 0.128	in
From Exhibit 4-III in Chapter 4 of TR-55 qu = Unit Peak Discharge	=	650	csm/in
Water Quality Flow (WQF) $WQF = (q_u)(A)(Q)$	=	2.96	cfs

Appendix F Hydrologic Analysis - Existing Conditions

Proposed Multifamily Development


131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

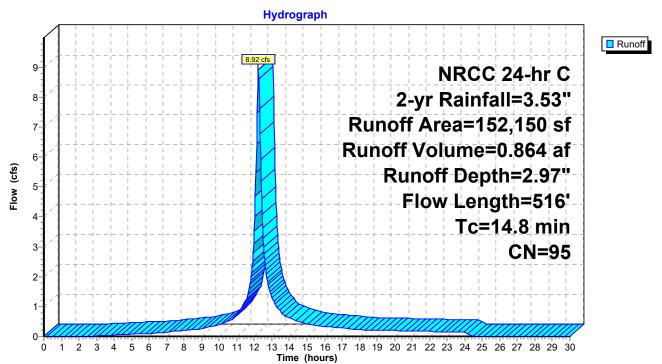
October 23, 2023

Printed 10/18/2023 Page 2

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-yr	NRCC 24-hr	С	Default	24.00	1	3.53	2
2	10-yr	NRCC 24-hr	С	Default	24.00	1	5.39	2
3	25-yr	NRCC 24-hr	С	Default	24.00	1	6.56	2
4	50-yr	NRCC 24-hr	С	Default	24.00	1	7.42	2
5	100-yr	NRCC 24-hr	С	Default	24.00	1	8.35	2

Rainfall Events Listing (selected events)

Existing Conditions


Summary for Subcatchment EX-1: West-Parking & Building

Runoff 8.92 cfs @ 12.22 hrs, Volume= = Routed to Pond AP-1 : Norwalk River

0.864 af, Depth= 2.97"

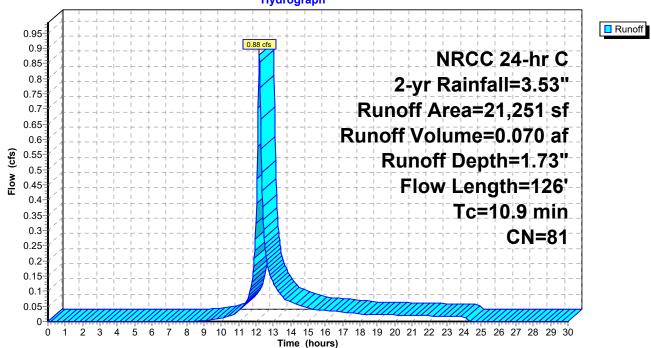
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN E	Description						
		67,673	98 F	aved park	ing, HSG D)				
		18,349	98 F	Paved parking, HSG C						
*		1,675	98 C	Concrete, ⊦	ISG D					
		38,351	98 F	Roofs, HSO	G D					
		17,092				bod, HSG D				
*		144			g., Good, H					
		8,301			od, HSG D					
		565	70 V	Voods, Go	od, HSG C					
		52,150	95 V	Veighted A	verage					
		26,102		-	rvious Area					
	1	26,048	8	2.84% Imp	pervious Ar	ea				
	-	1	0		O and it a	Description				
	Tc	Length	Slope	Velocity		Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)					
		•				Sheet Flow, A-B				
	<u>(min)</u> 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"				
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C				
	<u>(min)</u> 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps				
	<u>(min)</u> 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D				
	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps				
	<u>(min)</u> 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps Shallow Concentrated Flow, D-E				
	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps				

Subcatchment EX-1: West-Parking & Building

NRCC 24-hr C 2-yr Rainfall=3.53" Printed 10/18/2023

Summary for Subcatchment EX-2: Front Lawn


Runoff = 0.88 cfs @ 12.19 hrs, Volume= 0.070 af, Depth= 1.73" Routed to Pond AP-2 : Front Lawn Landscaped Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN	Description		
*		721	98	Concrete, H	ISG D	
		19,154	80	>75% Gras	s cover, Go	bod, HSG D
*		1,376	79	Landscapin	g, Good, H	ISG D
		21,251	81	Weighted A	verage	
		20,530		96.61% Pei	vious Area	
		721		3.39% Impe	а	
	-				0 1	
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	, ,	(cfs)	
	10.5	100	0.0150	0.16		Sheet Flow, A-B
						Grass: Short n= 0.150 P2= 3.53"
	0.4	26	0.0190	0.96		Shallow Concentrated Flow, B-C
_						Short Grass Pasture Kv= 7.0 fps
	10.0	126	Total			

10.9 126 Total

Subcatchment EX-2: Front Lawn

Hydrograph

Runoff = 1.52 cfs @ 12.18 hrs, Volume= Routed to Pond AP-5 : DI#5

Flow (cfs)

0-

Ó

0.122 af, Depth= 2.48"

Runoff Depth=2.48"

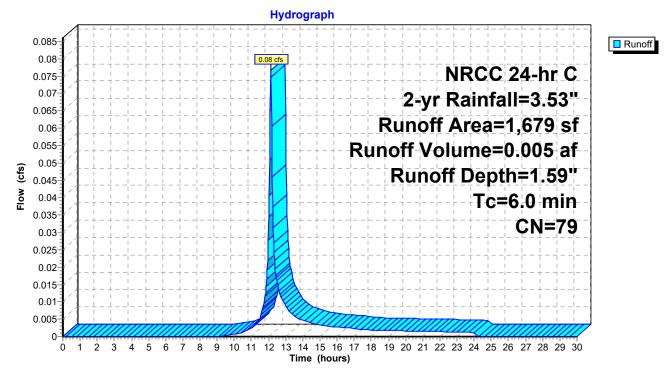
Flow Length=296'

Tc=10.3 min

CN=90

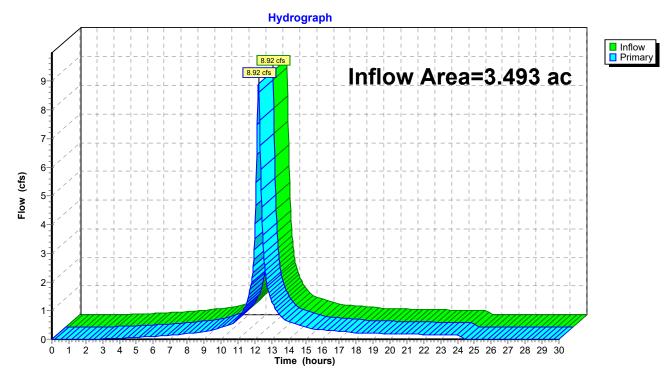
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN D	escription						
		9,910								
*		814								
		3,130		Roofs, HSC						
÷		9,334				ood, HSG D				
		2,594			g, Good, H	SGD				
		25,782		Veighted A						
		11,928			rvious Area					
		13,854	5	5.74% IIII	pervious Ar	ea				
	Тс	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.7	92	0.0200	0.18		Sheet Flow, A-B				
	4.0	004	0 0 4 4 0	0.40		Grass: Short n= 0.150 P2= 3.53"				
	1.6	204	0.0110	2.13		Shallow Concentrated Flow, B-C				
	10.3	296	Total			Paved Kv= 20.3 fps				
	10.5	290	TOLAI							
				Sub	catchmei	nt EX-3: Entrance Drive				
					Hydro	graph				
	-				1 1 1 1 1 1	NRCC 24-hr C 2-yr Rainfall=3.53" Runoff Area=25,782 sf Runoff Volume=0.122 af				


Summary for Subcatchment EX-4: Landscaped Area South of Entrance Drive

Runoff = 0.08 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area 0.005 af, Depth= 1.59"

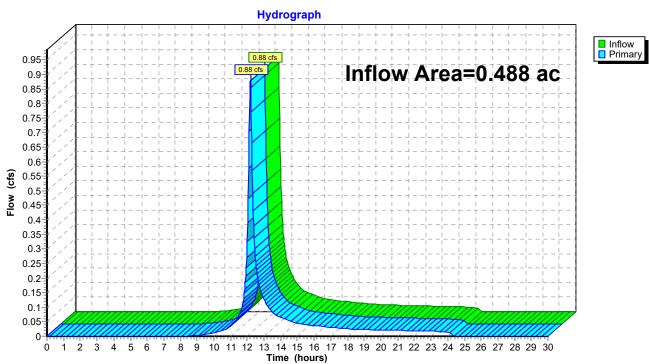
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"


	A	rea (sf)	CN	Description						
		510	80	>75% Grass cover, Good, HSG D						
*		1,169	79	Landscapin	ig, Good, H	ISG D				
		1,679	79	Weighted A	verage					
		1,679		100.00% P	100.00% Pervious Area					
	Тс	Length	Slop	,	Capacity	Description				
	(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)					
	6.0					Direct Entry, Assumed Minimum				
						-				

Subcatchment EX-4: Landscaped Area South of Entrance Drive

Inflow Are	a =	3.493 ac, 82.84% Impervious, Inflow Depth = 2.97" for 2-yr event
Inflow	=	8.92 cfs @ 12.22 hrs, Volume= 0.864 af
Primary	=	8.92 cfs @ 12.22 hrs, Volume= 0.864 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs


Pond AP-1: Norwalk River

Existing Conditions

Printed 10/18/2023

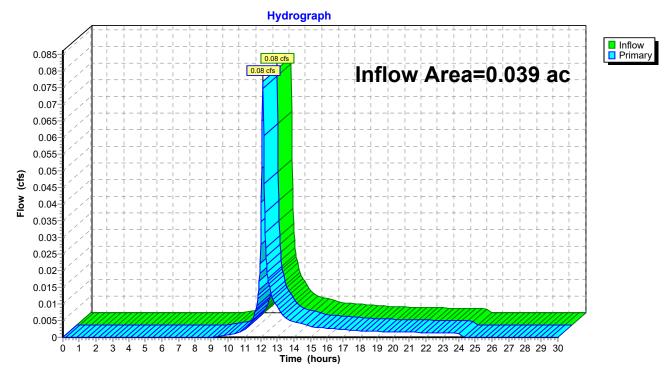
Inflow Area :	=	0.488 ac,	3.39% Imperv	vious, Inflow De	epth = 1.73"	for 2-yr event
Inflow =	=	0.88 cfs @	12.19 hrs, V	olume=	0.070 af	
Primary =	-	0.88 cfs @	12.19 hrs, V	olume=	0.070 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-2: Front Lawn Landscaped Area

Existing Conditions

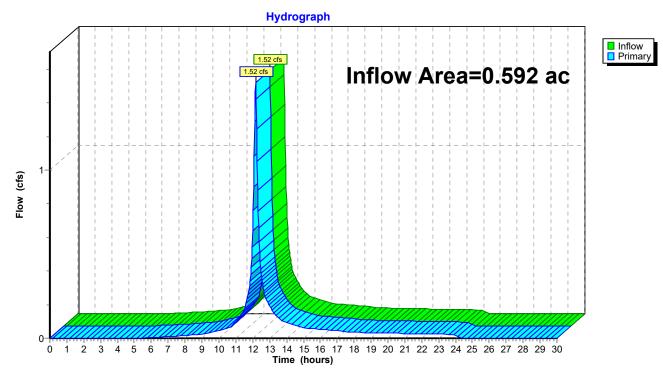
Printed 10/18/2023


Existing Conditions

Printed 10/18/2023

Page 10

Inflow Area =	0.039 ac,	0.00% Impervious, Inf	low Depth = 1.59"	for 2-yr event
Inflow =	0.08 cfs @	12.13 hrs, Volume=	0.005 af	
Primary =	0.08 cfs @	12.13 hrs, Volume=	0.005 af, Atte	en= 0%, Lag= 0.0 min


Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

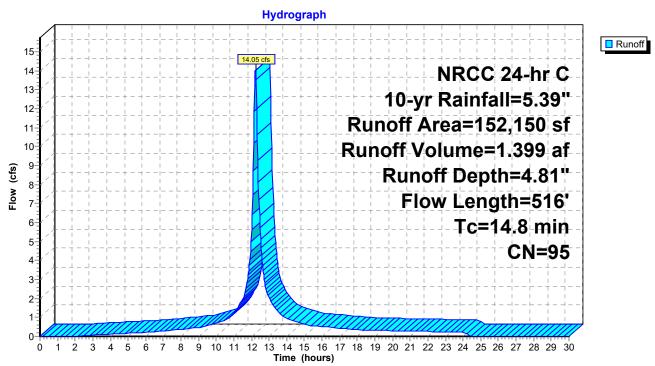
Pond AP-4: Landscaped Area

Inflow Area =	0.592 ac, 53.74% Impervious, Inflow Depth = 2.48" for 2-yr event	
Inflow =	1.52 cfs @ 12.18 hrs, Volume= 0.122 af	
Primary =	1.52 cfs @ 12.18 hrs, Volume= 0.122 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Existing Conditions

Runoff 14.05 cfs @ 12.22 hrs, Volume= = Routed to Pond AP-1 : Norwalk River


1.399 af, Depth= 4.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

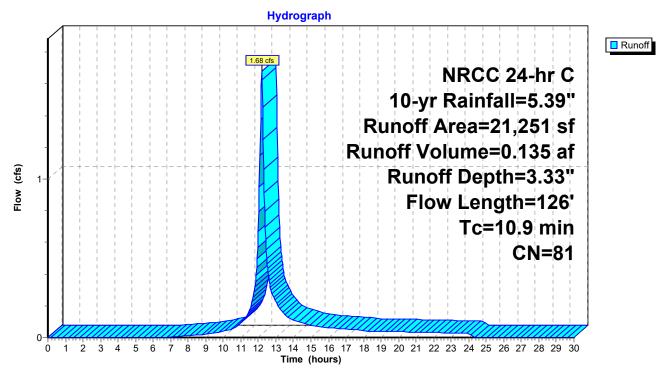
_	A	rea (sf)	CN E	Description					
		67,673	98 F	aved park	ing, HSG D)			
		18,349	98 F	aved park	ing, HSG C				
*		1,675	98 C	Concrete, H	ISG D				
		38,351	98 F						
		17,092			,	bod, HSG D			
*		144			g., Good, H				
		8,301		,	od, HSG D				
_		565	70 V	Voods, Go	od, HSG C				
		52,150		Veighted A	0				
		26,102	-		rvious Area				
	1	26,048	8	2.84% Imp	pervious Ar	ea			
	т.	1	01	\/_l!+	0	Description			
	Tc	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)				
		-			• •	Sheet Flow, A-B			
	(min) 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"			
	(min)	(feet)	(ft/ft)	(ft/sec)	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps			
	(min) 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D			
	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps Shallow Concentrated Flow, D-E			
_	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			

Printed 10/18/2023 Page 12

Existing Conditions

Subcatchment EX-1: West-Parking & Building

Summary for Subcatchment EX-2: Front Lawn

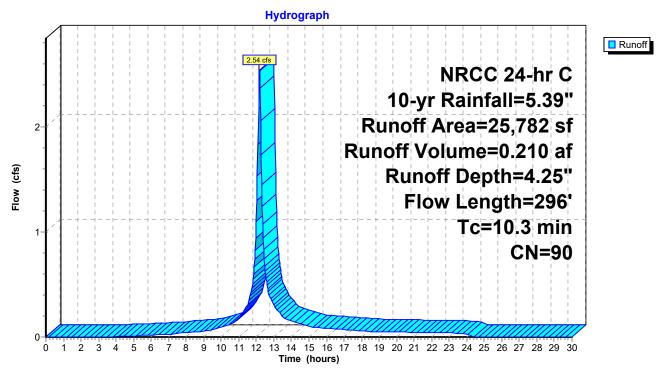

Runoff = 1.68 cfs @ 12.18 hrs, Volume= 0.135 af, Depth= 3.33" Routed to Pond AP-2 : Front Lawn Landscaped Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	A	rea (sf)	CN	Description					
*		721	98	Concrete, HSG D					
		19,154	80	>75% Gras	s cover, Go	bod, HSG D			
*		1,376	79	Landscapin	g, Good, H	ISG D			
		21,251	81	Weighted A	verage				
		20,530		96.61% Pe	rvious Area				
		721		3.39% Impervious Area					
	_								
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.5	100	0.0150	0.16		Sheet Flow, A-B			
						Grass: Short n= 0.150 P2= 3.53"			
	0.4	26	0.0190	0.96		Shallow Concentrated Flow, B-C			
_						Short Grass Pasture Kv= 7.0 fps			
	10.0	106	Total						

10.9 126 Total

Subcatchment EX-2: Front Lawn

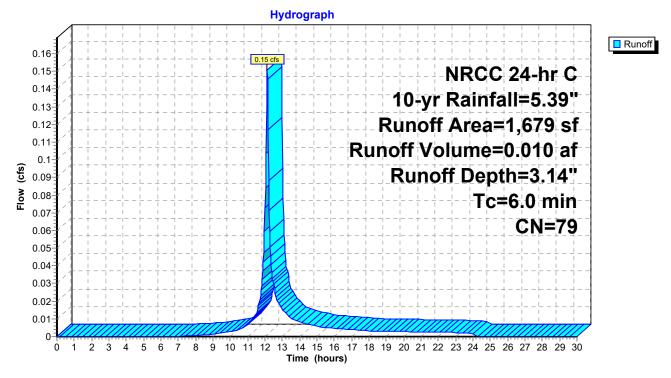

Summary for Subcatchment EX-3: Entrance Drive

2.54 cfs @ 12.17 hrs, Volume= 0.210 af, Depth= 4.25" Runoff = Routed to Pond AP-5 : DI#5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

_	A	rea (sf)	CN I	Description			
		9,910	98 I	[⊃] aved park	ing, HSG D)	
*		814	98 (Concrete, H	ISG D		
		3,130	98 I	Roofs, HSC	G D		
		9,334	80 >	>75% Gras	s cover, Go	bod, HSG D	
*		2,594	79 l	_andscapin	ig, Good, H	ISG D	
		25,782	90 \	Neighted A	verage		
		11,928	4	16.26% Pe	rvious Area	l	
		13,854	Ę	53.74% Imp	pervious Ar	ea	
	_						
	Тс	Length	Slope	,		Description	
	Tc (min)	Length (feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description	
		•		(ft/sec)		Sheet Flow, A-B	
	<u>(min)</u> 8.7	(feet)	(ft/ft) 0.0200	(ft/sec) 0.18		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"	
	(min)	(feet)	(ft/ft)	(ft/sec) 0.18		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C	
_	<u>(min)</u> 8.7	(feet) 92	(ft/ft) 0.0200	(ft/sec) 0.18		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"	
_	<u>(min)</u> 8.7	(feet) 92	(ft/ft) 0.0200	(ft/sec) 0.18		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C	

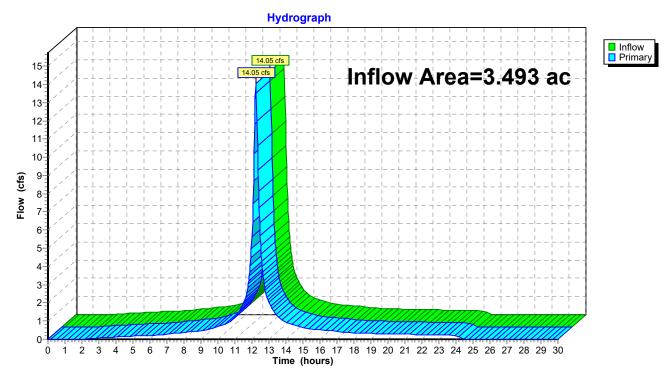
Subcatchment EX-3: Entrance Drive


Summary for Subcatchment EX-4: Landscaped Area South of Entrance Drive

Runoff = 0.15 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area 0.010 af, Depth= 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

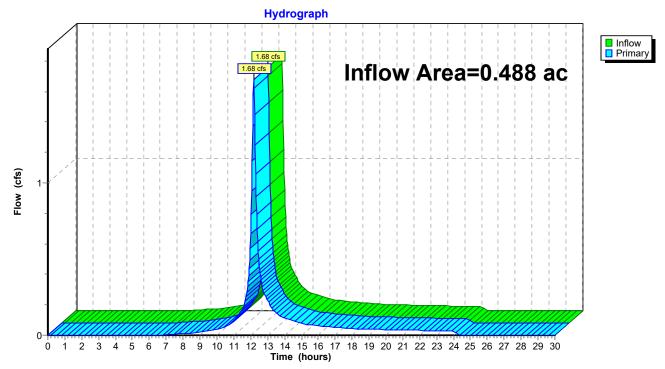
	Area (sf)	CN	Description		
	510	80	>75% Gras	s cover, Go	bod, HSG D
*	1,169	79	Landscapir	ig, Good, H	SG D
	1,679	79	Weighted A	verage	
	1,679		100.00% P	ervious Are	a
Т	c Length	Slop	,	Capacity	Description
(mir	n) (feet)	(ft/ft	:) (ft/sec)	(cfs)	
6.	0				Direct Entry, Assumed Minimum
					-


Subcatchment EX-4: Landscaped Area South of Entrance Drive

Summary for Pond AP-1: Norwalk River

Inflow Are	a =	3.493 ac, 82.84% Impervious, Inflow Depth = 4.81" for 10-yr event
Inflow	=	14.05 cfs @ 12.22 hrs, Volume= 1.399 af
Primary	=	14.05 cfs @ 12.22 hrs, Volume= 1.399 af, Atten= 0%, Lag= 0.0 min

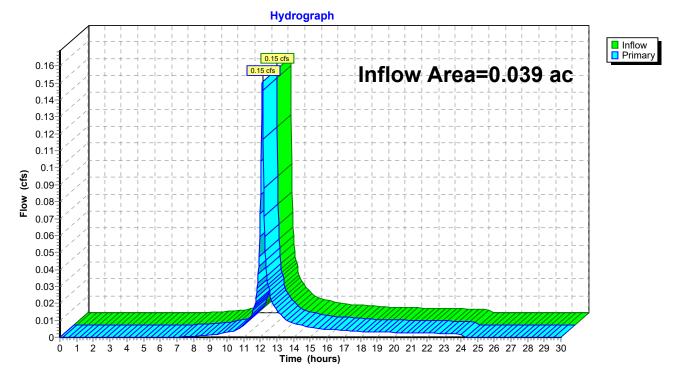
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs


Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Landscaped Area

Inflow Area	a =	0.488 ac,	3.39% Impervious, Inf	flow Depth = 3.33"	for 10-yr event
Inflow	=	1.68 cfs @	12.18 hrs, Volume=	0.135 af	
Primary	=	1.68 cfs @	12.18 hrs, Volume=	0.135 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs


Existing Conditions

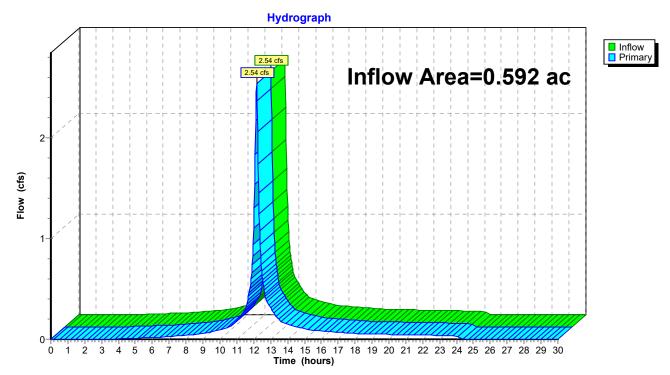
Printed 10/18/2023

Page 19

Inflow Area =	0.039 ac,	0.00% Impervious, Inflow	Depth = 3.14"	for 10-yr event
Inflow =	0.15 cfs @	12.13 hrs, Volume=	0.010 af	
Primary =	0.15 cfs @	12.13 hrs, Volume=	0.010 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area


Existing Conditions

Printed 10/18/2023

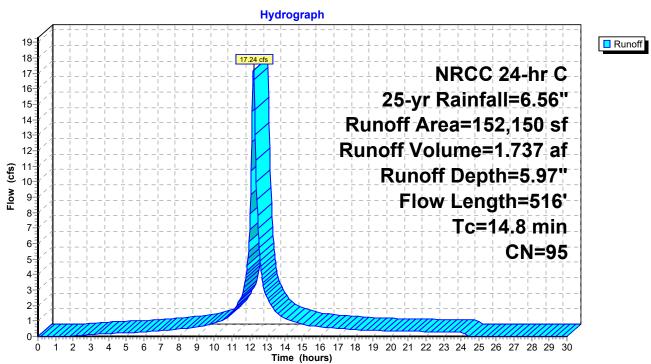
Page 20

Inflow Area =	0.592 ac, 53.74% Impervious, Inflow Depth = 4.25" for 10-yr event
Inflow =	2.54 cfs @ 12.17 hrs, Volume= 0.210 af
Primary =	2.54 cfs @ 12.17 hrs, Volume= 0.210 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-5: DI#5

Existing Conditions


Summary for Subcatchment EX-1: West-Parking & Building

Runoff 17.24 cfs @ 12.22 hrs, Volume= = Routed to Pond AP-1 : Norwalk River

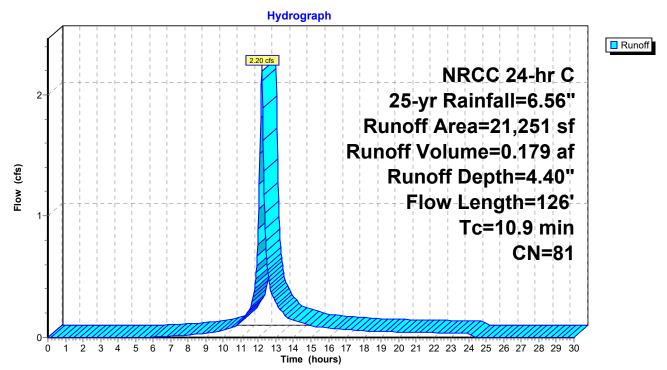
1.737 af, Depth= 5.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

_	A	rea (sf)	CN D	escription					
		67,673	98 P	1 0/					
		18,349	98 P	Paved parking, HSG C					
*		1,675	98 C	Concrete, HSG D					
		38,351	98 F	Roofs, HSG	G D				
		17,092			,	bod, HSG D			
*		144			g., Good, H				
		8,301		,	od, HSG D				
		565	70 V	Voods, Go	od, HSG C				
		52,150		Veighted A	•				
		26,102		-	rvious Area				
	1	26,048	8	2.84% Imp	pervious Ar	ea			
	т.	ما المربع من الم	01	Valasita.	0	Description			
	Tc (min)	Length	Slope	Velocity		Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)				
		-				Sheet Flow, A-B			
	(min) 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"			
	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps			
	(min) 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D			
	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps Shallow Concentrated Flow, D-E			
_	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49		Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			

Subcatchment EX-1: West-Parking & Building

Summary for Subcatchment EX-2: Front Lawn


Runoff = 2.20 cfs @ 12.18 hrs, Volume= 0.179 af, Depth= 4.40" Routed to Pond AP-2 : Front Lawn Landscaped Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

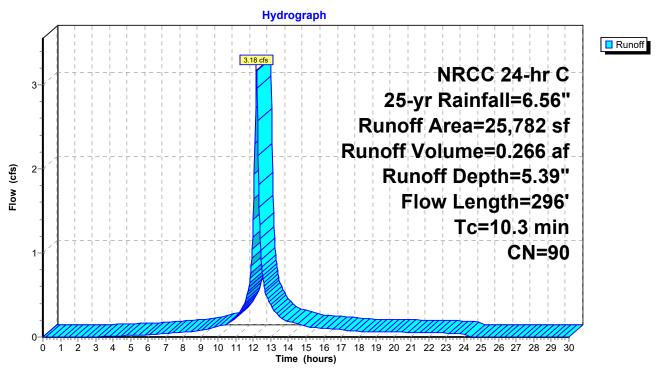
	A	rea (sf)	CN	Description					
*		721	98	Concrete, H	Concrete, HSG D				
		19,154	80	>75% Gras	75% Grass cover, Good, HSG D				
*		1,376	79	Landscapin	g, Good, H	SG D			
		21,251	81	Weighted A	verage				
		20,530		96.61% Pe	rvious Area				
		721		3.39% Impe	ervious Are	а			
	т.	1			0	Description			
	Tc	Length	Slope	•	Capacity	Description			
	(min)	(feet)	(ft/ft)		(cfs)				
	10.5	100	0.0150	0.16		Sheet Flow, A-B			
						Grass: Short n= 0.150 P2= 3.53"			
	0.4	26	0.0190	0.96		Shallow Concentrated Flow, B-C			
_						Short Grass Pasture Kv= 7.0 fps			
	10.0	126	Total						

10.9 126 Total

Subcatchment EX-2: Front Lawn

Summary for Subcatchment EX-3: Entrance Drive

3.18 cfs @ 12.17 hrs, Volume= Runoff = Routed to Pond AP-5 : DI#5

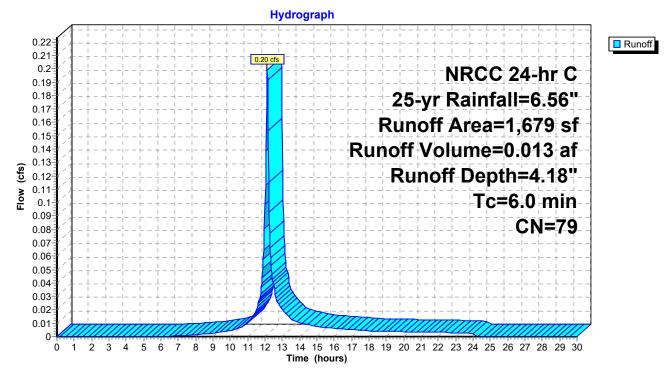

0.266 af, Depth= 5.39"

Page 24

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	А	rea (sf)	CN	Description					
		9,910	98	Paved park	aved parking, HSG D				
*		814	98	Concrete, H	Concrete, HSG D				
		3,130	98	Roofs, HSG	G D				
		9,334	80	>75% Gras	s cover, Go	bod, HSG D			
*		2,594	79	Landscapin	g, Good, H	SG D			
		25,782	90	Weighted A	verage				
		11,928		46.26% Pei	rvious Area				
		13,854		53.74% Imp	pervious Ar	ea			
	Tc	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.7	92	0.0200	0.18		Sheet Flow, A-B			
						Grass: Short n= 0.150 P2= 3.53"			
	1.6	204	0.0110) 2.13		Shallow Concentrated Flow, B-C			
						Paved Kv= 20.3 fps			
	10.3	296	Total						

Subcatchment EX-3: Entrance Drive


Summary for Subcatchment EX-4: Landscaped Area South of Entrance Drive

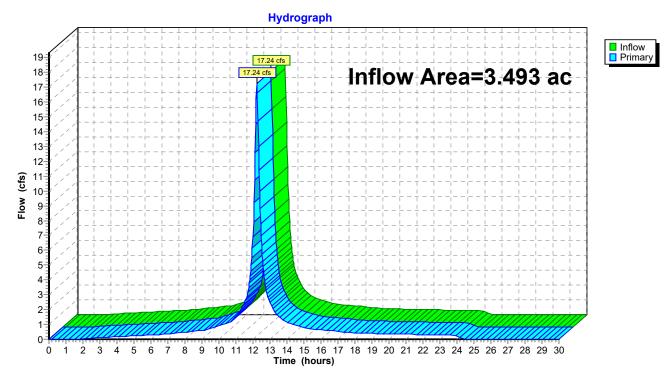
Runoff = 0.20 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area 0.013 af, Depth= 4.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	A	rea (sf)	CN	Description	Description					
		510	80	>75% Gras	•75% Grass cover, Good, HSG D					
*		1,169	79	Landscapin	ig, Good, H	ISG D				
		1,679	79	Weighted A	verage					
		1,679		100.00% P	ervious Are	a				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	6.0					Direct Entry, Assumed Minimum				

Subcatchment EX-4: Landscaped Area South of Entrance Drive

Summary for Pond AP-1: Norwalk River

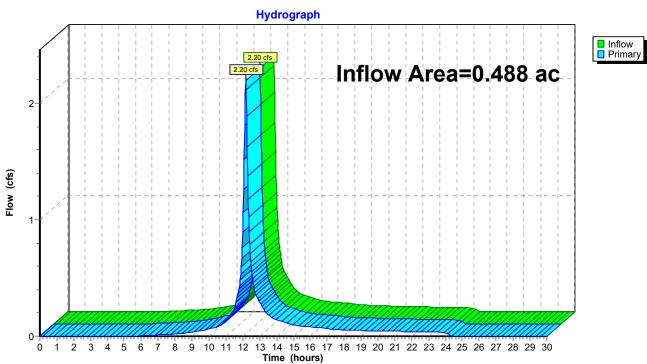

Existing Conditions

Printed 10/18/2023

Page 26

Inflow Are	a =	3.493 ac, 82.84% Impervious, Inflow Depth = 5.97" for 25-yr event
Inflow	=	17.24 cfs @ 12.22 hrs, Volume= 1.737 af
Primary	=	17.24 cfs @ 12.22 hrs, Volume= 1.737 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

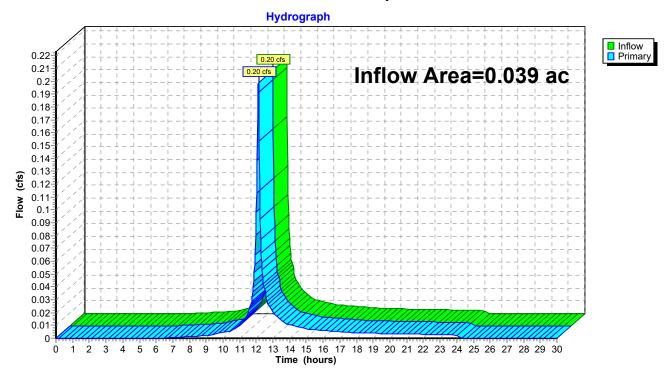


Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Landscaped Area

Inflow Are	a =	0.488 ac,	3.39% Impervious,	Inflow Depth = 4.40"	for 25-yr event
Inflow	=	2.20 cfs @	12.18 hrs, Volume	= 0.179 af	
Primary	=	2.20 cfs @	12.18 hrs, Volume	= 0.179 af, At	ten= 0%, Lag= 0.0 min

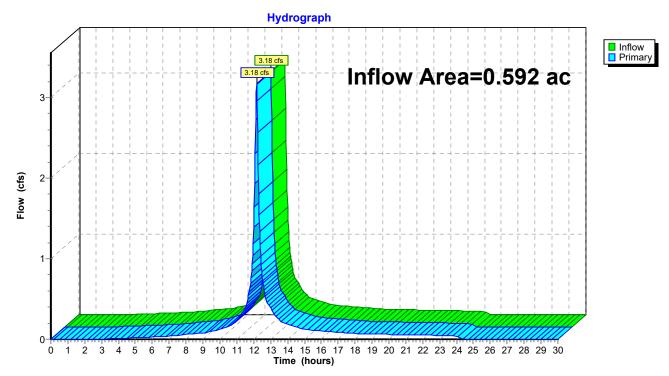
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs


Pond AP-2: Front Lawn Landscaped Area

Existing Conditions

Summary for Pond AP-4: Landscaped Area

Inflow Are	a =	0.039 ac,	0.00% Impervious, In	flow Depth = 4.18"	for 25-yr event
Inflow	=	0.20 cfs @	12.13 hrs, Volume=	0.013 af	-
Primary	=	0.20 cfs @	12.13 hrs, Volume=	0.013 af, Atte	en= 0%, Lag= 0.0 min

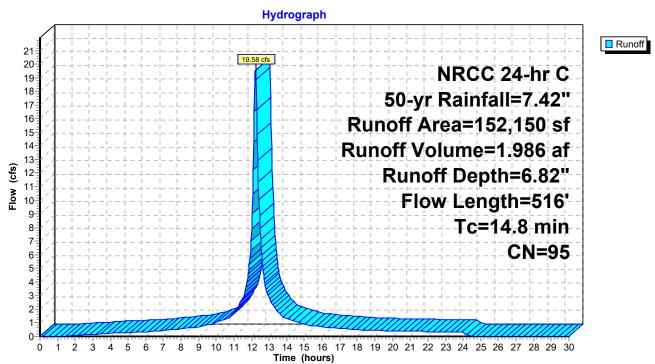

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

Inflow Area	a =	0.592 ac, 53.74% Impervious, Inflow Depth = 5.39" for 25-yr event
Inflow	=	3.18 cfs @ 12.17 hrs, Volume= 0.266 af
Primary	=	3.18 cfs @ 12.17 hrs, Volume= 0.266 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Existing Conditions


Page 29

Summary for Subcatchment EX-1: West-Parking & Building

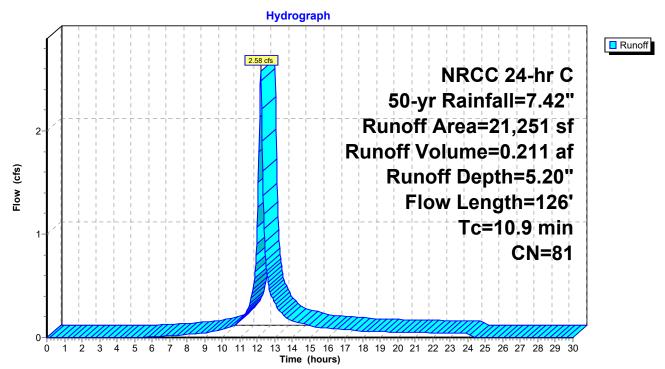
Runoff = 19.58 cfs @ 12.22 hrs, Volume= Routed to Pond AP-1 : Norwalk River 1.986 af, Depth= 6.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

_	A	rea (sf)	CN E	Description					
		67,673	98 F	1 07					
		18,349	98 F	Paved parking, HSG C					
*		1,675	98 C	Concrete, H	ISG D				
		38,351	98 F	Roofs, HSG	G D				
		17,092			,	bod, HSG D			
*		144			g., Good, H				
		8,301		,	od, HSG D				
_		565	70 V	Voods, Go	od, HSG C				
		52,150		Veighted A	0				
		26,102	-		rvious Area				
	1	26,048	8	2.84% Imp	pervious Ar	ea			
	т.	1	01	\/_l!+	0	Description			
	Tc	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)				
		-			• •	Sheet Flow, A-B			
	<u>(min)</u> 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53"			
	(min)	(feet)	(ft/ft)	(ft/sec)	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps			
	<u>(min)</u> 8.3	(feet) 100	(ft/ft) 0.0270	(ft/sec) 0.20	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D			
	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			
	(min) 8.3 5.5	(feet) 100 275	(ft/ft) 0.0270 0.0140	(ft/sec) 0.20 0.83	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps Shallow Concentrated Flow, D-E			
_	(min) 8.3 5.5 0.8	(feet) 100 275 119	(ft/ft) 0.0270 0.0140 0.0150	(ft/sec) 0.20 0.83 2.49	• •	Sheet Flow, A-B Grass: Short n= 0.150 P2= 3.53" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps			

Subcatchment EX-1: West-Parking & Building

Summary for Subcatchment EX-2: Front Lawn


Runoff = 2.58 cfs @ 12.18 hrs, Volume= 0.211 af, Depth= 5.20" Routed to Pond AP-2 : Front Lawn Landscaped Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

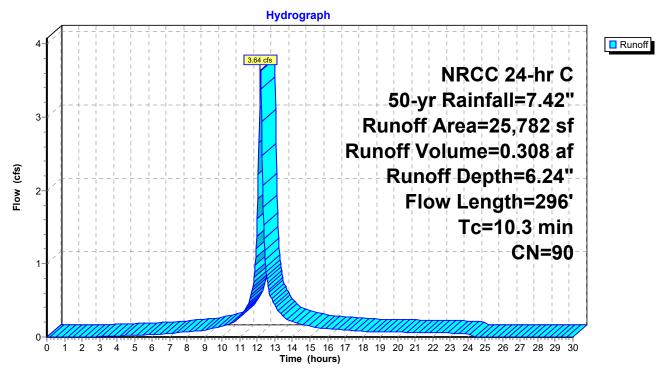
	A	rea (sf)	CN	Description					
*		721	98	Concrete, H	Concrete, HSG D				
		19,154	80	>75% Gras	75% Grass cover, Good, HSG D				
*		1,376	79	Landscapin	g, Good, H	SG D			
		21,251	81	Weighted A	verage				
		20,530		96.61% Pe	rvious Area				
		721		3.39% Impe	ervious Are	а			
	т.	1			0	Description			
	Tc	Length	Slope	•	Capacity	Description			
	(min)	(feet)	(ft/ft)		(cfs)				
	10.5	100	0.0150	0.16		Sheet Flow, A-B			
						Grass: Short n= 0.150 P2= 3.53"			
	0.4	26	0.0190	0.96		Shallow Concentrated Flow, B-C			
_						Short Grass Pasture Kv= 7.0 fps			
	10.0	126	Total						

10.9 126 Total

Subcatchment EX-2: Front Lawn

Summary for Subcatchment EX-3: Entrance Drive

3.64 cfs @ 12.17 hrs, Volume= Runoff = Routed to Pond AP-5 : DI#5

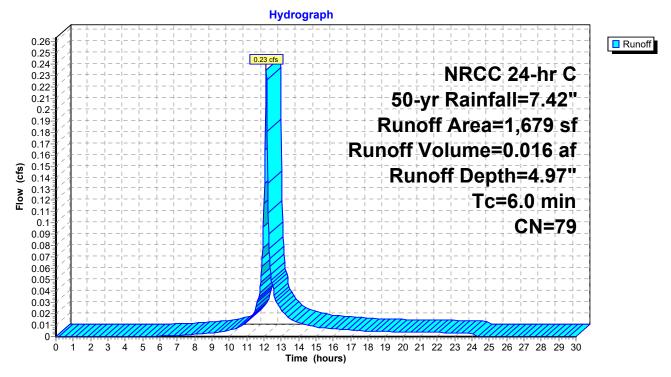

0.308 af, Depth= 6.24"

Page 33

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

_	А	rea (sf)	CN I	Description					
		9,910	98	Paved parking, HSG D					
*		814	98	Concrete, H	Concrete, HSG D				
		3,130	98	Roofs, HSC	G D				
		9,334	80 ;	>75% Gras	s cover, Go	bod, HSG D			
*		2,594	79	_andscapin	g, Good, H	ISG D			
		25,782	90	Neighted A	verage				
		11,928	4	16.26% Pei	rvious Area	1			
		13,854	!	53.74% Imp	pervious Ar	ea			
	Тс	Length	Slope			Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.7	92	0.0200	0.18		Sheet Flow, A-B			
						Grass: Short n= 0.150 P2= 3.53"			
	1.6	204	0.0110	2.13		Shallow Concentrated Flow, B-C			
_						Paved Kv= 20.3 fps			
	10.3	296	Total						

Subcatchment EX-3: Entrance Drive

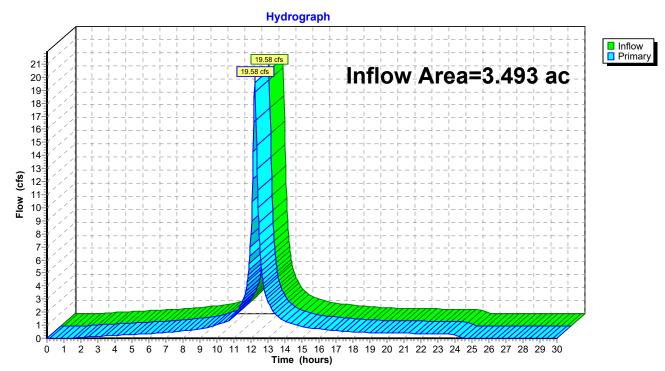

Summary for Subcatchment EX-4: Landscaped Area South of Entrance Drive

Runoff = 0.23 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area 0.016 af, Depth= 4.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Area (sf)	CN	Description					
	510	80	>75% Gras	>75% Grass cover, Good, HSG D				
*	1,169	79	Landscapir	ig, Good, H	ISG D			
	1,679	79	Weighted A	verage				
	1,679		100.00% P	ervious Are	a			
-	Tc Length	Slop	e Velocity	Capacity	Description			
(mi	n) (feet)	(ft/f	i) (ft/sec)	(cfs)				
6	.0				Direct Entry, Assumed Minimum			
					-			

Subcatchment EX-4: Landscaped Area South of Entrance Drive

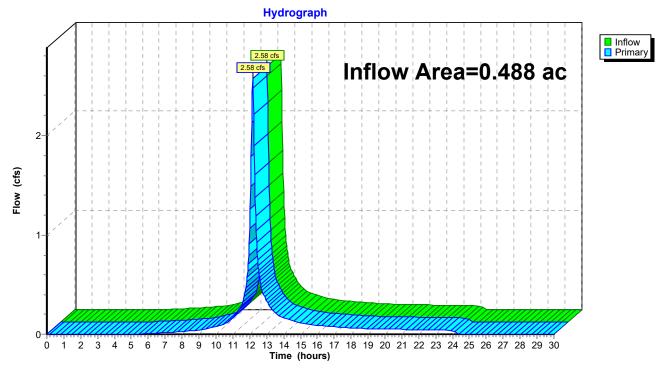

Existing Conditions

Printed 10/18/2023

Page 35

Inflow Are	a =	3.493 ac, 82.84% Impervious, Inflow Depth = 6.82" for 50-yr event
Inflow	=	19.58 cfs @ 12.22 hrs, Volume= 1.986 af
Primary	=	19.58 cfs @ 12.22 hrs, Volume= 1.986 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

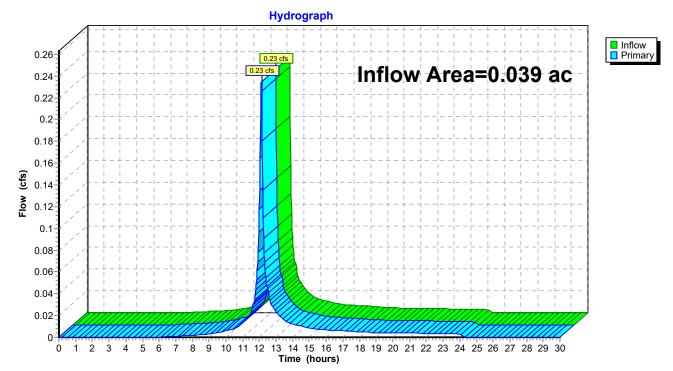

Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Landscaped Area

Inflow Area	a =	0.488 ac,	3.39% Impervious, Inflo	w Depth = 5.20"	for 50-yr event
Inflow	=	2.58 cfs @	12.18 hrs, Volume=	0.211 af	
Primary	=	2.58 cfs @	12.18 hrs, Volume=	0.211 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Summary for Pond AP-4: Landscaped Area


Existing Conditions

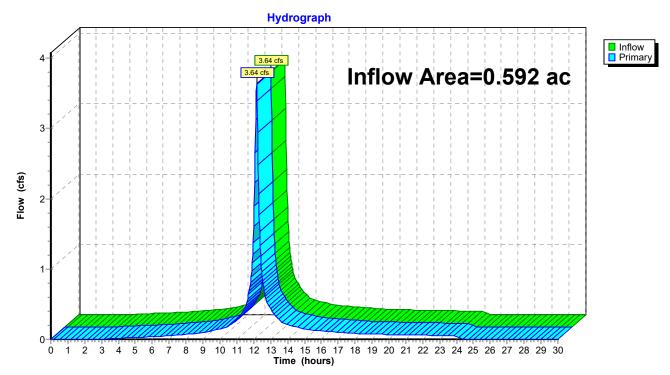
Printed 10/18/2023

Page 37

Inflow Area	a =	0.039 ac,	0.00% Impervious,	Inflow Depth =	4.97"	for 50-yr event
Inflow	=	0.23 cfs @	12.13 hrs, Volume	e= 0.016	af	
Primary	=	0.23 cfs @	12.13 hrs, Volume	e= 0.016	af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area


Existing Conditions

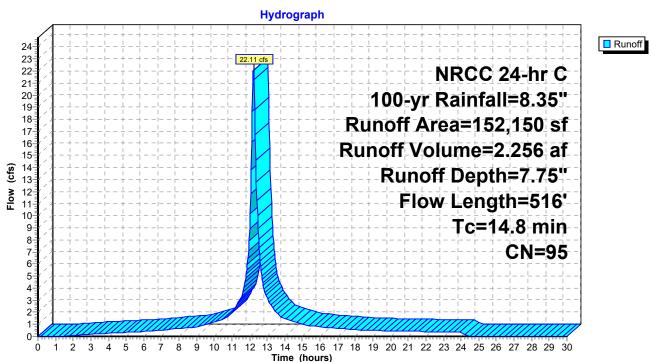
Printed 10/18/2023

Page 38

Inflow Area =	0.592 ac, 53.74% Impervious, Inflow Depth = 6.24" for 50-yr event	
Inflow =	3.64 cfs @ 12.17 hrs, Volume= 0.308 af	
Primary =	3.64 cfs @ 12.17 hrs, Volume= 0.308 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-5: DI#5


Runoff 22.11 cfs @ 12.22 hrs, Volume= = Routed to Pond AP-1 : Norwalk River

2.256 af, Depth= 7.75"

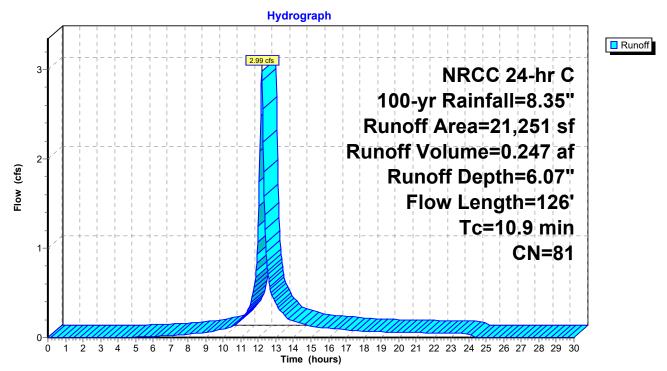
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area (sf	F)	CN D	escription		
	67,67	3	98 P	aved park	ing, HSG D)
	18,349	9	98 P	aved park	ing, HSG C	
*	1,67	5	98 C	oncrete, H	ISG D	
	38,35	1	98 R	oofs, HSC	6 D	
	17,092				,	ood, HSG D
*	144	4			g., Good, H	
	8,30			,	od, HSG D	
	56	5	70 V	/oods, Go	od, HSG C	
	152,15			Veighted A		
	26,10			-	rvious Area	
	126,04	8	8	2.84% Imp	pervious Ar	ea
	Ta lang	*6	Clana	Valacity	Consoitu	Description
	Tc Leng		Slope	Velocity		Description
<u>(mi</u>		- /	(ft/ft)	(ft/sec)	(cfs)	
8	3.3 10	00	0.0270	0.20		Sheet Flow, A-B
-		75	0 04 40	0.00		Grass: Short n= 0.150 P2= 3.53"
5	5.5 27	75	0.0140	0.83		Shallow Concentrated Flow, B-C
c).8 1 ²	10	0.0150	2.40		Short Grass Pasture Kv= 7.0 fps
U	J.O I	19	0.0150	2.49		Shallow Concentrated Flow, C-D Paved Kv= 20.3 fps
ſ).2 2	າງ	0.2270	2.38		Shallow Concentrated Flow, D-E
U		~~	0.2210	2.30		Woodland Kv= 5.0 fps
	8 5	16	Total			

14.8 516 Lotal Existing Conditions

Subcatchment EX-1: West-Parking & Building

Summary for Subcatchment EX-2: Front Lawn


0.247 af, Depth= 6.07" Runoff 2.99 cfs @ 12.18 hrs, Volume= = Routed to Pond AP-2 : Front Lawn Landscaped Area

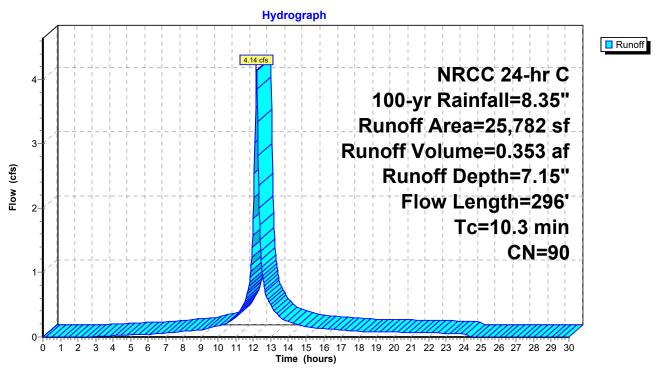
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

_	A	rea (sf)	CN	Description		
*		721	98	Concrete, H	ISG D	
		19,154	80	>75% Gras	s cover, Go	bod, HSG D
*		1,376	79	Landscapin	g, Good, H	ISG D
		21,251	81	Weighted A	verage	
		20,530		96.61% Pe	rvious Area	
		721		3.39% Impe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.5	100	0.0150	0.16		Sheet Flow, A-B
						Grass: Short
	0.4	26	0.0190	0.96		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
	10.0	126	Total			

10.9 126 Total

Subcatchment EX-2: Front Lawn

Summary for Subcatchment EX-3: Entrance Drive


Runoff = 4.14 cfs @ 12.17 hrs, Volume= 0.3 Routed to Pond AP-5 : DI#5

0.353 af, Depth= 7.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

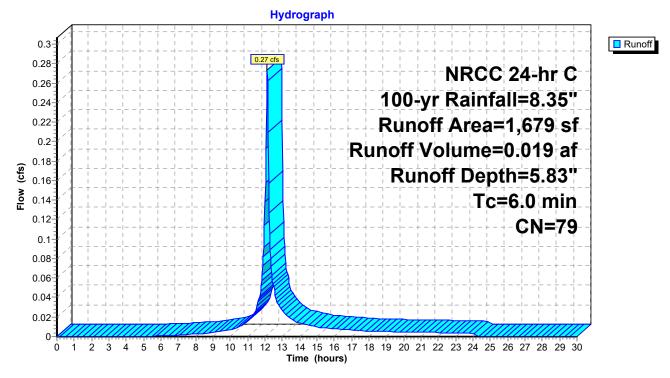
	А	rea (sf)	CN	Description		
		9,910	98	Paved park	ing, HSG D)
*		814	98	Concrete, ⊦	ISG D	
		3,130	98	Roofs, HSC	G D	
		9,334	80	>75% Gras	s cover, Go	bod, HSG D
*		2,594	79	Landscapin	g, Good, H	ISG D
		25,782	90	Weighted A	verage	
		11,928		46.26% Pei	rvious Area	l
		13,854		53.74% Imp	pervious Ar	ea
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.7	92	0.0200	0.18		Sheet Flow, A-B
						Grass: Short n= 0.150 P2= 3.53"
	1.6	204	0.0110	2.13		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	10.3	296	Total			

Subcatchment EX-3: Entrance Drive

Page 42

Existing Conditions

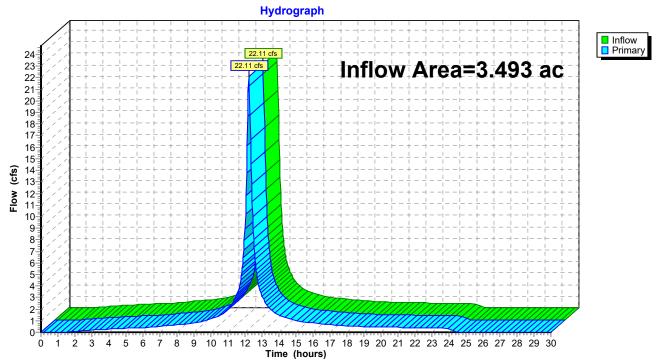
Summary for Subcatchment EX-4: Landscaped Area South of Entrance Drive


Runoff = 0.27 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area

0.019 af, Depth= 5.83"

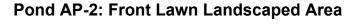
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

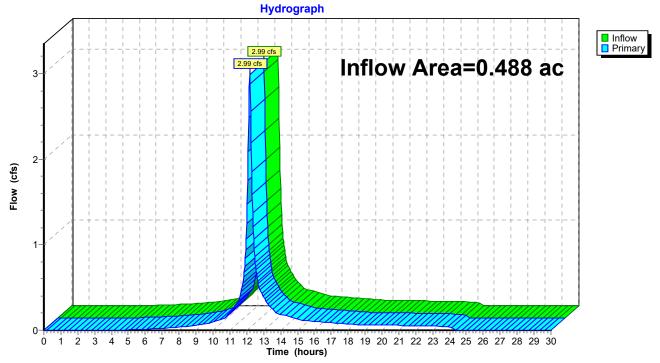
A	rea (sf)	CN	Description		
	510	80	>75% Gras	s cover, Go	bod, HSG D
*	1,169	79	Landscapin	g, Good, H	ISG D
	1,679	79	Weighted A	verage	
	1,679		100.00% P	ervious Are	a
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
6.0					Direct Entry, Assumed Minimum


Subcatchment EX-4: Landscaped Area South of Entrance Drive

Inflow Are	ea =	3.493 ac, 82.84% Impervious, Inflow Depth = 7.75" for 100-yr event
Inflow	=	22.11 cfs @ 12.22 hrs, Volume= 2.256 af
Primary	=	22.11 cfs @ 12.22 hrs, Volume= 2.256 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

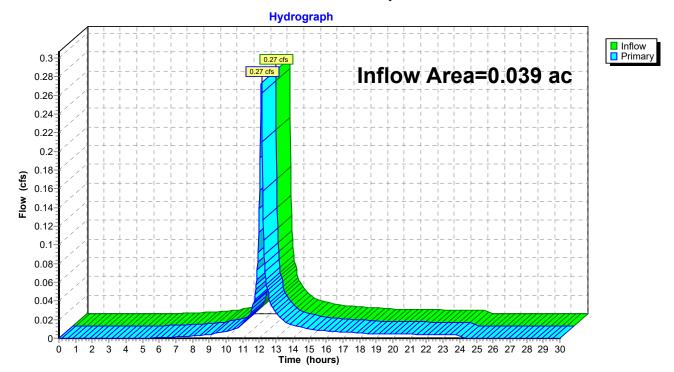



Existing Conditions

Summary for Pond AP-2: Front Lawn Landscaped Area

Inflow Area	a =	0.488 ac,	3.39% Impervious, Inflow	/ Depth = 6.07"	for 100-yr event
Inflow	=	2.99 cfs @	12.18 hrs, Volume=	0.247 af	
Primary	=	2.99 cfs @	12.18 hrs, Volume=	0.247 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs


Existing Conditions

Printed 10/18/2023

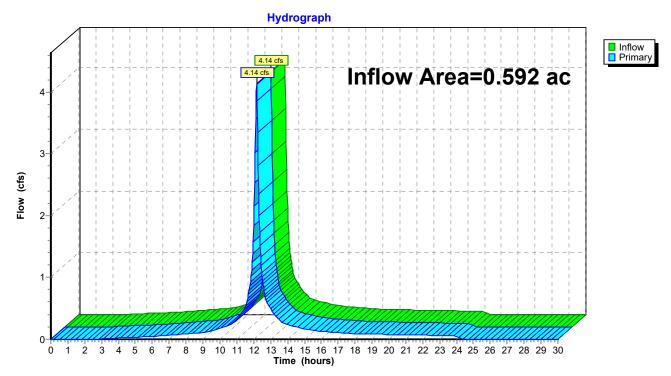
Page 46

Inflow Area =	0.039 ac,	0.00% Impervious, I	Inflow Depth = 5.83"	for 100-yr event
Inflow =	0.27 cfs @	12.13 hrs, Volume=	= 0.019 af	
Primary =	0.27 cfs @	12.13 hrs, Volume=	= 0.019 af, Att	en= 0%, Lag= 0.0 min

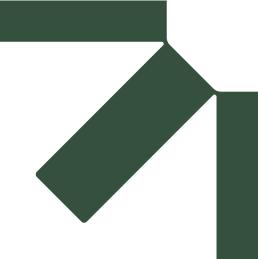
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

Summary for Pond AP-5: DI#5


Existing Conditions

Printed 10/18/2023


Page 47

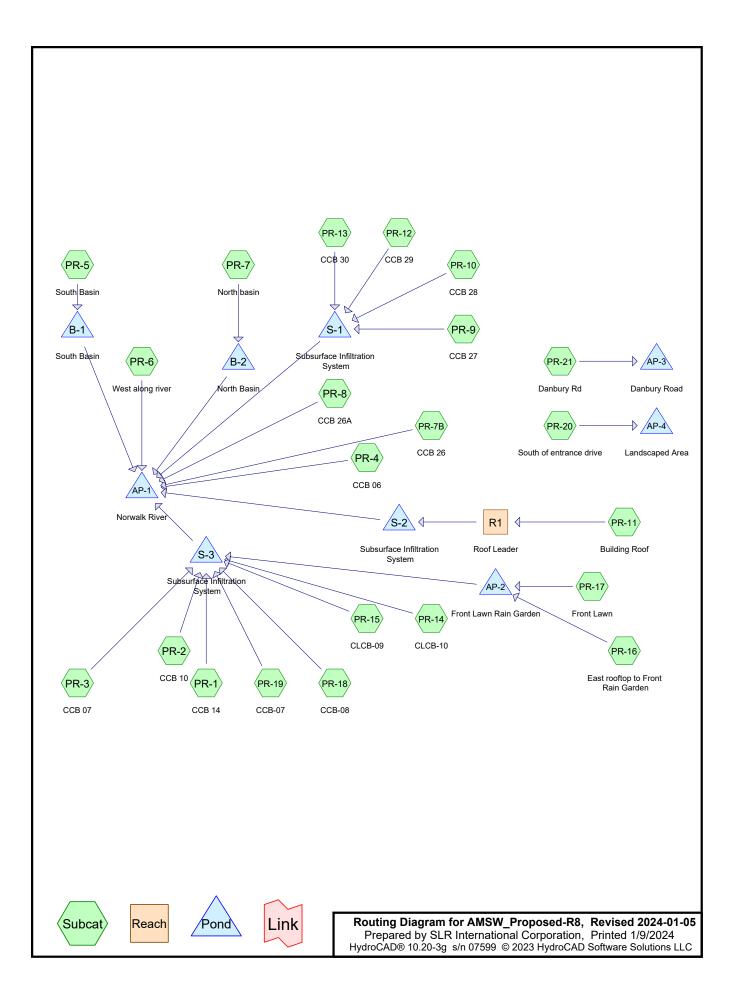
Inflow Area =	= 0.592 ac,	53.74% Impervious,	Inflow Depth = 7	7.15" for 100-yr event
Inflow =	4.14 cfs @) 12.17 hrs, Volume	e= 0.353 at	f
Primary =	4.14 cfs @) 12.17 hrs, Volume	e 0.353 at	f, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-5: DI#5

Appendix G Hydrologic Analysis - Proposed Conditions

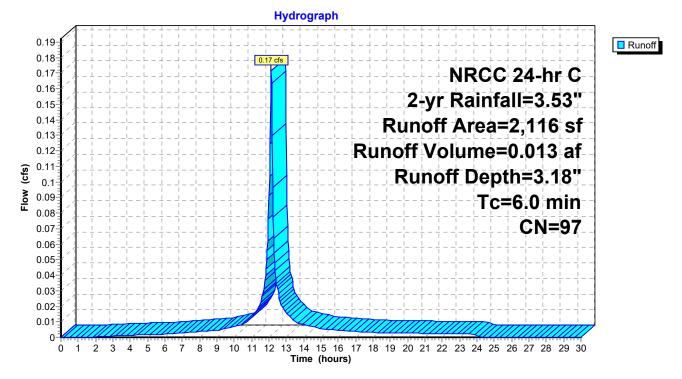
Proposed Multifamily Development


131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023


Summary for Subcatchment PR-1: CCB 14

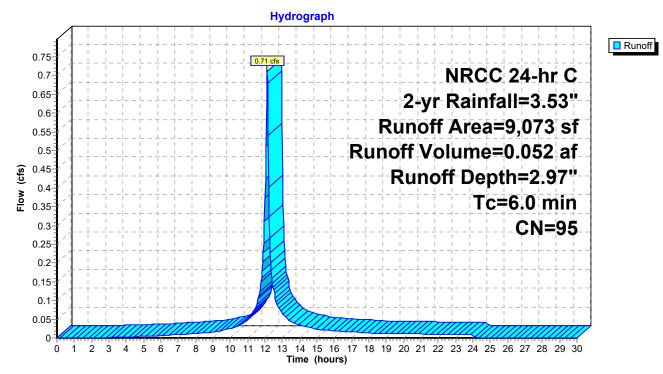
Runoff = 0.17 cfs @ 12.13 hrs, Volume= 0.013 af, Depth= 3.18" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Area (sf)	CN	Description		
	2,045	98	Paved parking, HSG D		
*	71	79	Landscaping, Good, HSG D		
	2,116	97	Weighted Average		
	71		3.36% Pervious Area		
	2,045		96.64% Impervious Area		
	C Length	Slop	,	Capacity	Description
(mi	n) (feet)	(ft/f) (ft/sec)	(cfs)	
6	.0				Direct Entry, Assumed minimum

Subcatchment PR-1: CCB 14

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 s LLC Page 2


Summary for Subcatchment PR-10: CCB 28

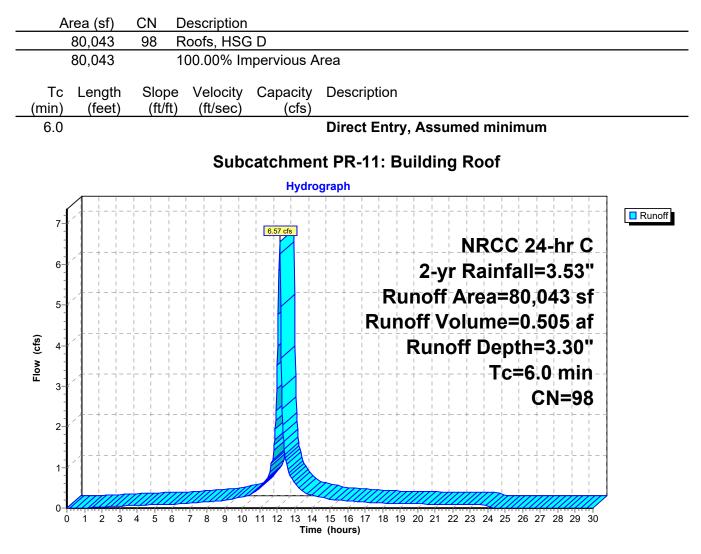
0.052 af, Depth= 2.97" Runoff 0.71 cfs @ 12.13 hrs, Volume= = Routed to Pond S-1 : Subsurface Infiltration System

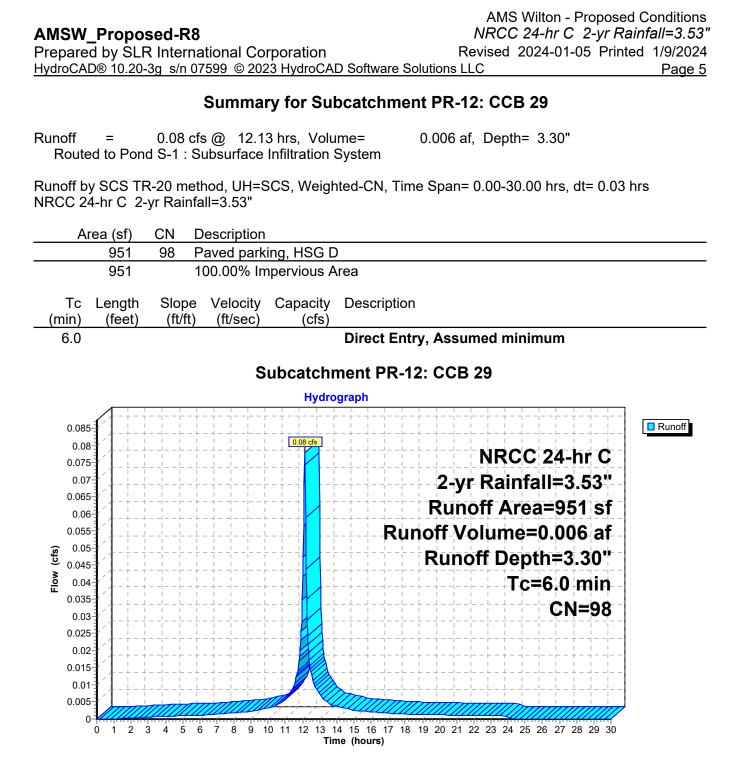
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

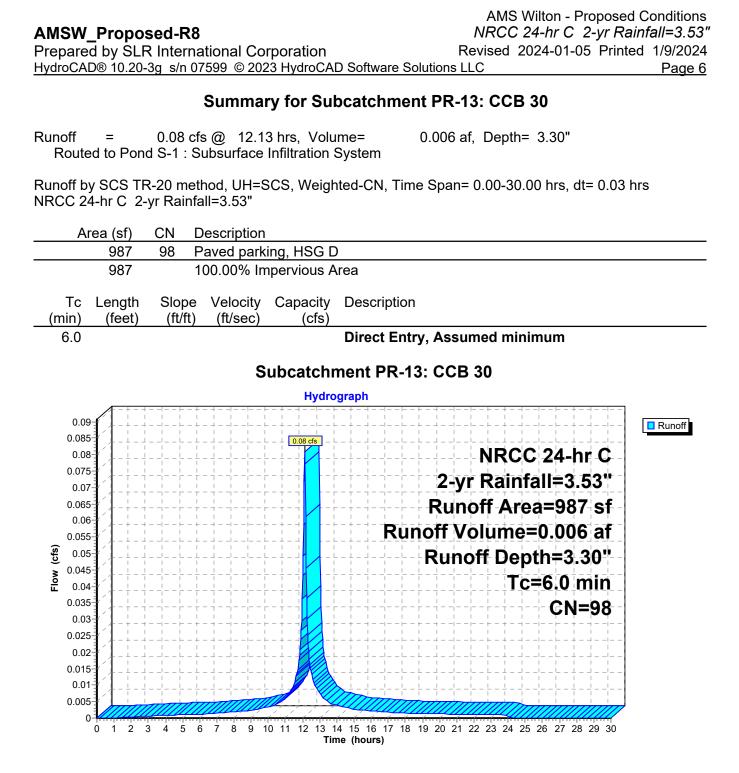
A	rea (sf)	CN	Description		
	7,450	98	Paved parking, HSG D		
	440	80	>75% Grass cover, Good, HSG D		
*	1,183	79	Landscaping, Good, HSG D		
	9,073	95	Weighted Average		
	1,623		17.89% Pervious Area		
	7,450		82.11% Impervious Area		
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, Assumed minimum

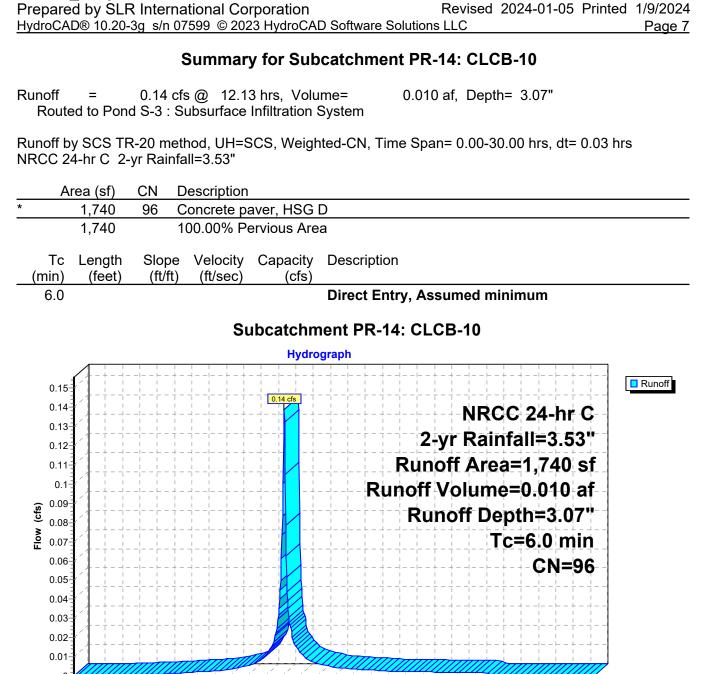
Subcatchment PR-10: CCB 28

Page 3

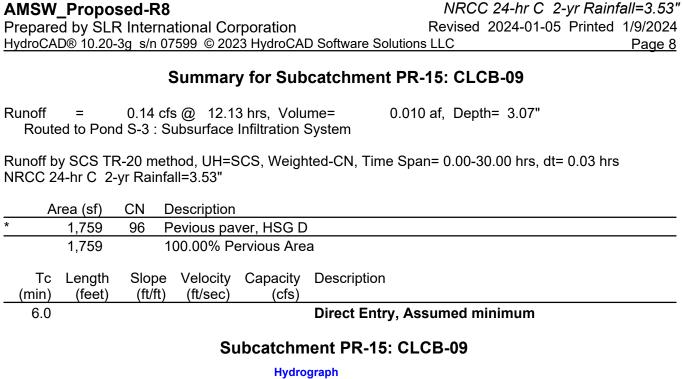

Summary for Subcatchment PR-11: Building Roof


6.57 cfs @ 12.13 hrs, Volume= Runoff = Routed to Reach R1 : Roof Leader

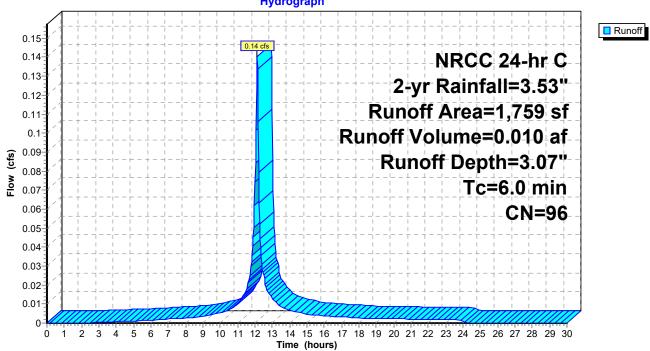

0.505 af, Depth= 3.30"


Page 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

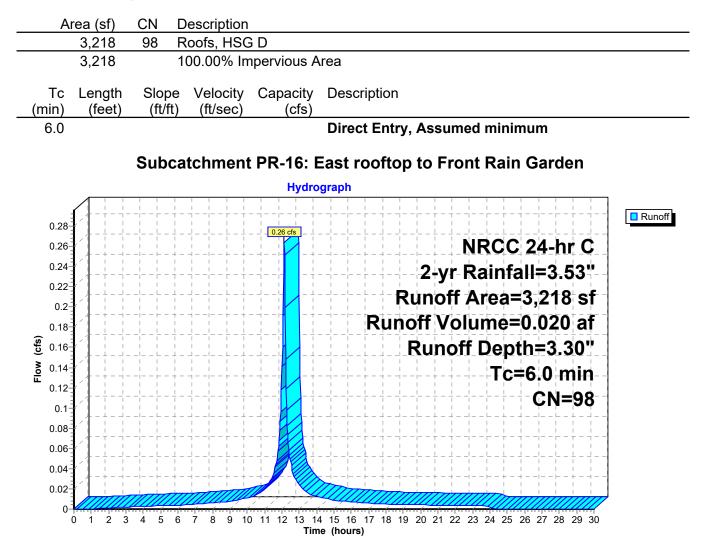


AMSW Proposed-R8


Ó

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53"

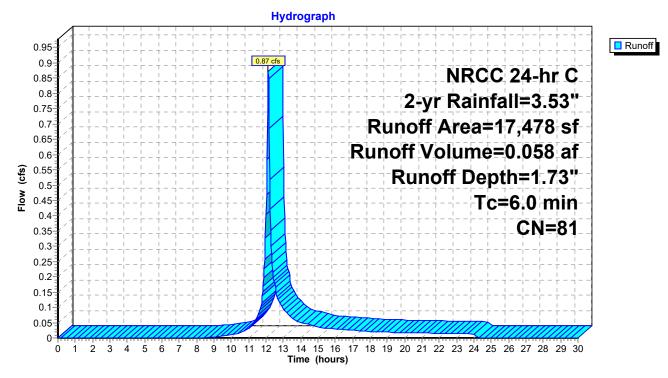
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)


AMS Wilton - Proposed Conditions

Summary for Subcatchment PR-16: East rooftop to Front Rain Garden

Runoff = 0.26 cfs @ 12.13 hrs, Volume= Routed to Pond AP-2 : Front Lawn Rain Garden 0.020 af, Depth= 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

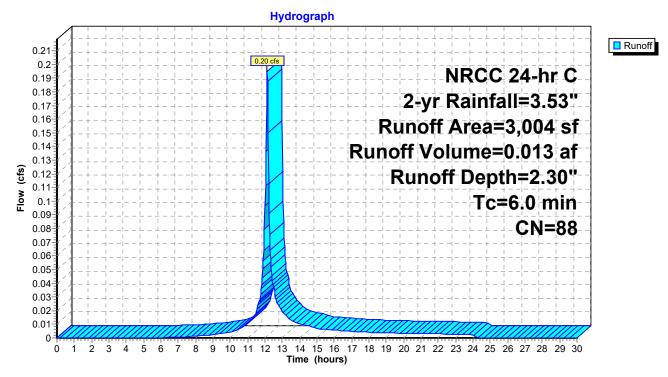

Summary for Subcatchment PR-17: Front Lawn

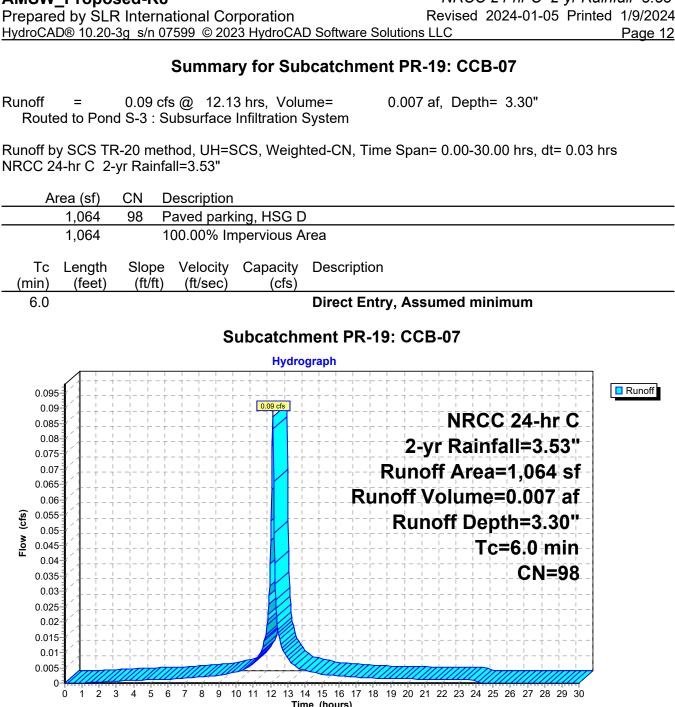
0.87 cfs @ 12.13 hrs, Volume= 0.058 af, Depth= 1.73" Runoff = Routed to Pond AP-2 : Front Lawn Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Are	ea (sf)	CN	Description						
		1,883	98	Paved parking, HSG D						
		6,950	80	>75% Grass cover, Good, HSG D						
*		8,645	79	Landscaping, Good, HSG D						
	1	7,478	81	Weighted Average						
	1	5,595		89.23% Pervious Area						
		1,883		10.77% Impervious Area						
	Тс	Length	Slop	e Velocity	Capacity	Description				
(m	in)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
6	6.0					Direct Entry, Assumed minimum				

Subcatchment PR-17: Front Lawn


Summary for Subcatchment PR-18: CCB-08

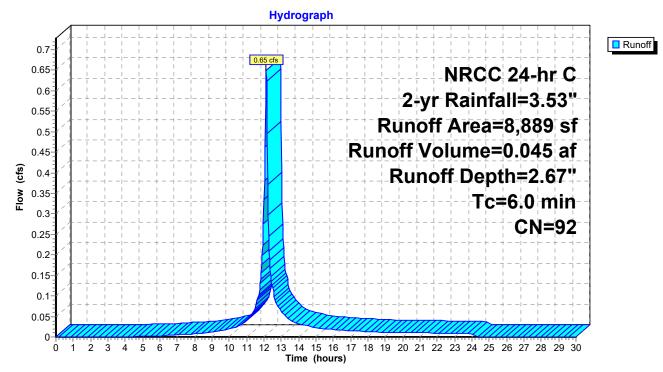

Runoff = 0.20 cfs @ 12.13 hrs, Volume= 0.013 af, Depth= 2.30" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

A	rea (sf)	CN	Description					
	1,482	98	Paved parking, HSG D					
	192	80	>75% Grass cover, Good, HSG D					
*	1,330	79	Landscaping, Good, HSG D					
	3,004	88	Weighted Average					
	1,522		50.67% Pervious Area					
	1,482		49.33% Impervious Area					
Тс	Length	Slope	e Velocitv	Capacity	Description			
(min)	(feet)	(ft/ft		(cfs)	Description			
6.0	(1901)	(10/10	, ((010)	Direct Entry, Assumed minimum			
0.0					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Subcatchment PR-18: CCB-08

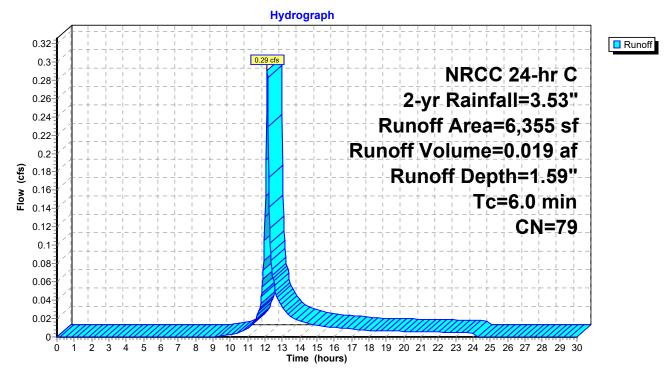
NRCC 24-hr C 2-yr Rainfall=3.53"


Summary for Subcatchment PR-2: CCB 10

Runoff = 0.65 cfs @ 12.13 hrs, Volume= 0.045 af, Depth= 2.67" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Area (sf)	CN	Description						
*	6,733	98	Paved parking, HSG C						
*	1,772	72	Landscapir	Landscaping, Good, HSG C					
	384	74	>75% Gras	>75% Grass cover, Good, HSG C					
	8,889	92	Weighted Average						
	2,156		24.25% Pervious Area						
	6,733		75.75% lm	pervious Ar	ea				
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)		(ft/f	,	(cfs)	Description				
	. ,	(101	(10300)	(013)	Direct Entry Accuracy minimum				
6.0					Direct Entry, Assumed minimum				


Summary for Subcatchment PR-20: South of entrance drive

0.29 cfs @ 12.13 hrs, Volume= 0.019 af, Depth= 1.59" Runoff = Routed to Pond AP-4 : Landscaped Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

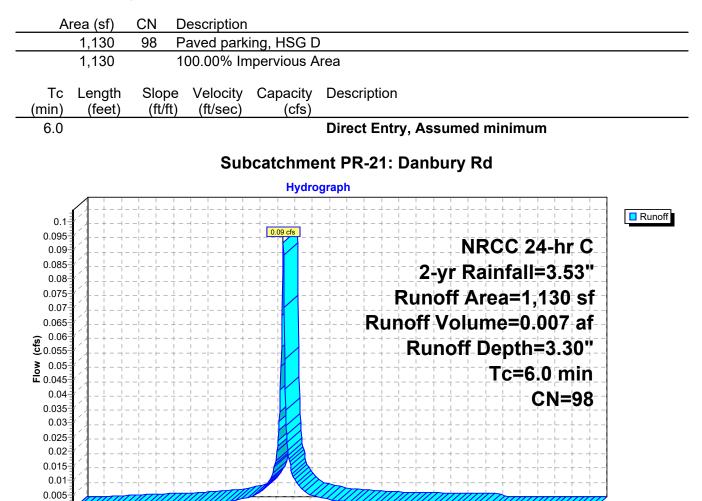
Α	rea (sf)	CN	Description						
	93	98	Paved park	Paved parking, HSG D					
	755	80	>75% Grass cover, Good, HSG D						
*	5,507	79	Landscaping, Good, HSG D						
	6,355	79	Weighted Average						
	6,262		98.54% Pervious Area						
	93		1.46% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry, Assumed minimum				

Subcatchment PR-20: South of entrance drive

Summary for Subcatchment PR-21: Danbury Rd

Runoff = 0.09 cfs @ 12.13 hrs, Volume= Routed to Pond AP-3 : Danbury Road

ż


3 4

5 6

0 1

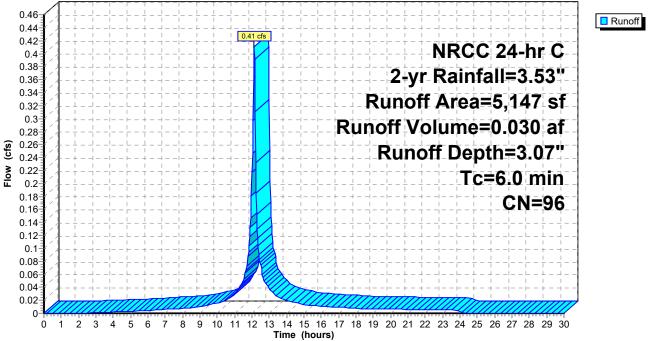
0.007 af, Depth= 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (hours)

Summary for Subcatchment PR-3: CCB 07

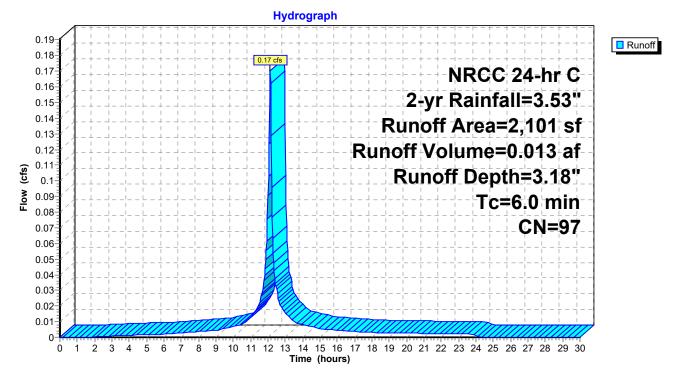

0.030 af, Depth= 3.07" Runoff 0.41 cfs @ 12.13 hrs, Volume= Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN	Description					
*		4,715	98	Paved parking, HSG C					
*		432	72	Landscaping, Good, HSG C					
		5,147 432 4,715	96	Weighted A 8.39% Perv 91.61% Imp	vious Area	ea			
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-3: CCB 07

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024


Summary for Subcatchment PR-4: CCB 06

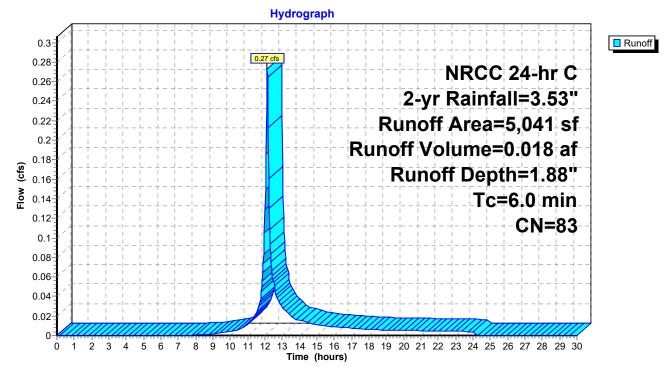
Runoff = 0.17 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.013 af, Depth= 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN	Description						
		2,026	98	Paved park	Paved parking, HSG D					
*		75	79	Landscaping, Good, HSG D						
		2,101	97	Weighted A	verage					
		75		3.57% Pervious Area						
		2,026		96.43% Im	pervious Ar	ea				
(Tc min)	Length (feet)	Slop (ft/fl	,	Capacity (cfs)	Description				
	6.0					Direct Entry, Assigned minimum				

Subcatchment PR-4: CCB 06

Summary for Subcatchment PR-5: South Basin

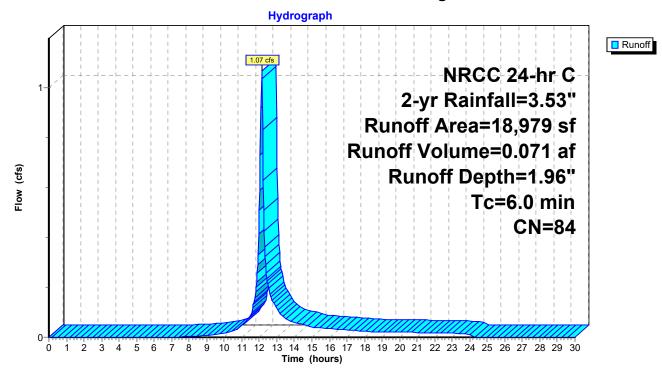

Runoff = 0.27 cfs @ 12.13 hrs, Volume= Routed to Pond B-1 : South Basin

0.018 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Α	rea (sf)	CN	Description						
*		595	96	Permable Paver, HSG C						
*		366	96	Gravel surfa	Gravel surface, HSG C					
*		2,205	72	Landscapin	g, Good, H	ISG C				
*		890	98	Paved park	ing, HSG C					
		985	80	>75% Gras	>75% Grass cover, Good, HSG D					
		5,041	83 Weighted Average							
		4,151		82.34% Pervious Area						
		890		17.66% Imp	pervious Ar	ea				
	Тс	Length	Slop	e Velocity	Capacity	Description				
((min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	6.0					Direct Entry, Assumed minimum				

Subcatchment PR-5: South Basin


Summary for Subcatchment PR-6: West along river

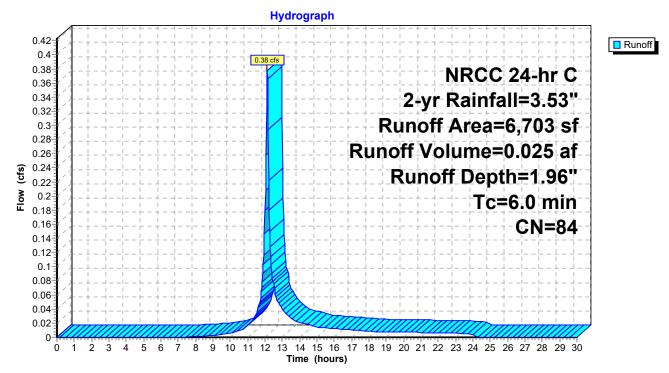
1.07 cfs @ 12.13 hrs, Volume= 0.071 af, Depth= 1.96" Runoff = Routed to Pond AP-1 : Norwalk River

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Ar	rea (sf)	CN	Description					
*		4,195	96	Permeable	paver, HSC	G D			
		461	96	Gravel surfa	ace, HSG D)			
		911	98	Paved parking, HSG D					
		2,775	80	>75% Gras	•75% Grass cover, Good, HSG D				
*		6,489	79	Landscapin	andscaping, Good, HSG D				
		4,148	77	Woods, Go	od, HSG D				
		18,979	84	Weighted A	verage				
		18,068		95.20% Pe	vious Area	L			
		911		4.80% Impe	ervious Are	a			
	Тс	Length	Slop		Capacity	Description			
(m	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
(6.0					Direct Entry, Assumed minimum			

Subcatchment PR-6: West along river

Summary for Subcatchment PR-7: North basin

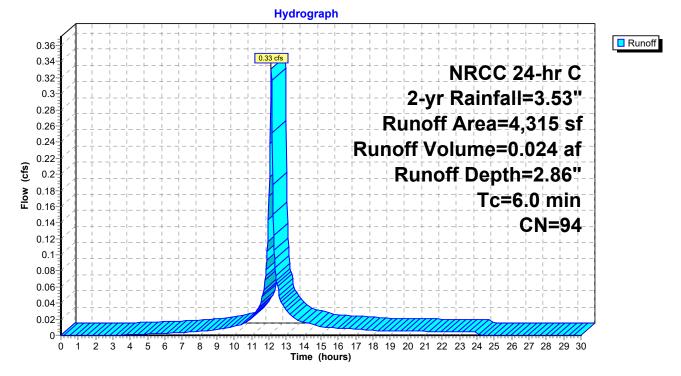

0.38 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 1.96" Runoff = Routed to Pond B-2 : North Basin

NRCC 24-hr C 2-yr Rainfall=3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

	Are	ea (sf)	CN	Description					
		453	96	Gravel surfa	Gravel surface, HSG D				
*		1,031	96	Permeable	paver, HSC	G D			
		445	80	>75% Gras	>75% Grass cover, Good, HSG D				
*		3,601	79	Landscapin	g, Good, H	ISG D			
		692	77	Woods, Go	Woods, Good, HSG D				
		481	98	Paved parking, HSG D					
		6,703	84	Weighted Average					
		6,222		92.82% Pe	vious Area	L			
		481		7.18% Impe	ervious Are	а			
	Тс	Length	Slop		Capacity	Description			
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-7: North basin


Summary for Subcatchment PR-7B: CCB 26

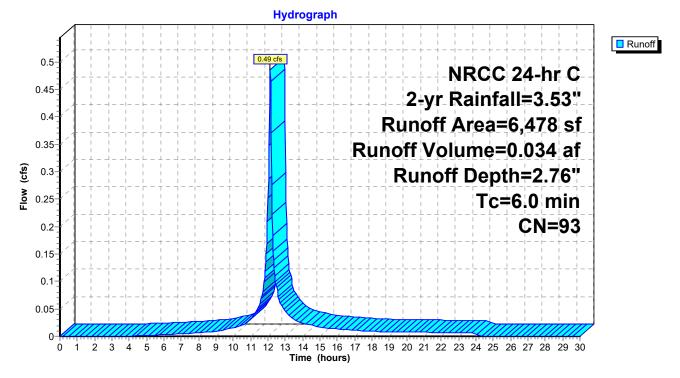
Runoff = 0.33 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.024 af, Depth= 2.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	A	rea (sf)	CN	Description					
		3,518	98	Paved parking, HSG D					
*		797	79	Landscaping, Good, HSG D					
		4,315	94	Weighted A	Average				
		797		18.47% Pervious Area					
		3,518		81.53% Im	pervious Ar	ea			
	т.	1	Class	• \/_l!	0	Description			
	Tc	Length	Slop			Description			
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-7B: CCB 26

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 LLC Page 21


Summary for Subcatchment PR-8: CCB 26A

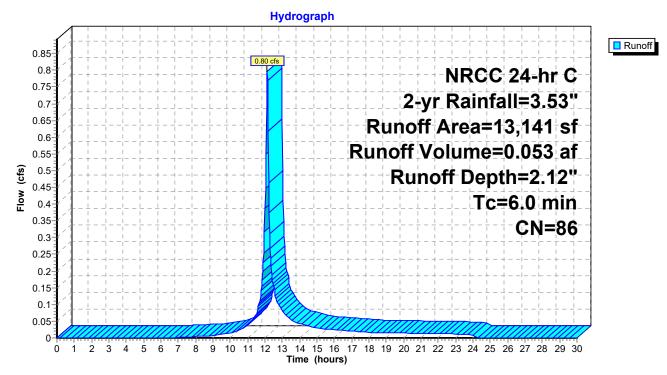
Runoff = 0.49 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.034 af, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Α	rea (sf)	CN	Description						
		4,737	98	Paved park	Paved parking, HSG D					
*		1,741	79	_andscaping, Good, HSG D						
		6,478	93	Weighted A	verage					
		1,741		26.88% Pervious Area						
		4,737		73.12% Im	ea					
	Tc (min)	Length (feet)	Slop (ft/fl	,	Capacity (cfs)	Description				
	6.0		<u> </u>	//_		Direct Entry, Assumed minimum				

Subcatchment PR-8: CCB 26A

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 IS LLC Page 22


Summary for Subcatchment PR-9: CCB 27

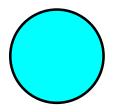
Runoff = 0.80 cfs @ 12.13 hrs, Volume= 0.053 af, Depth= 2.12" Routed to Pond S-1 : Subsurface Infiltration System

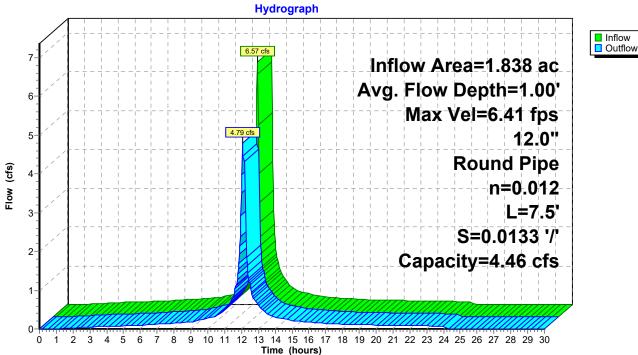
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 2-yr Rainfall=3.53"

	Area (sf)	CN	Description						
	4,730	98	Paved park	Paved parking, HSG D					
	817	80	>75% Grass cover, Good, HSG D						
*	7,594	79	Landscapin	Landscaping, Good, HSG D					
	13,141	86	Weighted Average						
	8,411		64.01% Pervious Area						
	4,730		35.99% lm	pervious Ar	ea				
To (min)	5	Slop (ft/f		Capacity (cfs)	Description				
6.0)		· · · · · ·		Direct Entry, Assumed minimum				

Subcatchment PR-9: CCB 27

AMSW Proposed-R8 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC


Summary for Reach R1: Roof Leader


Inflow Area = 1.838 ac,100.00% Impervious, Inflow Depth = 3.30" for 2-yr event 6.57 cfs @ 12.13 hrs, Volume= Inflow = 0.505 af 4.79 cfs @ 12.07 hrs, Volume= Outflow = 0.505 af, Atten= 27%, Lag= 0.0 min Routed to Pond S-2 : Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Max. Velocity= 6.41 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.64 fps, Avg. Travel Time= 0.0 min

Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.46 cfs

12.0" Round Pipe n= 0.012 Length= 7.5' Slope= 0.0133 '/' Inlet Invert= 142.20', Outlet Invert= 142.10'

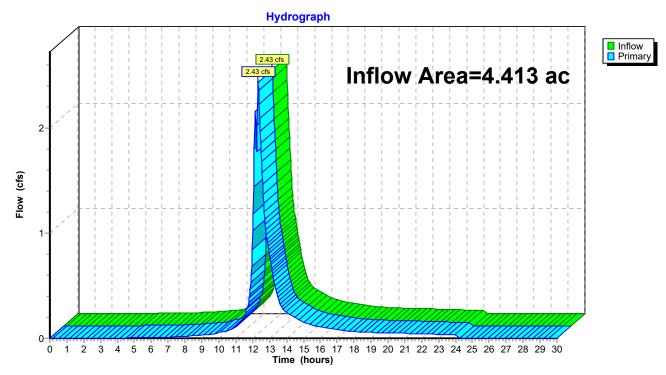
Reach R1: Roof Leader

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53"

Revised 2024-01-05 Printed 1/9/2024 Page 24

AMSW_Proposed-R8

Stage-Discharge 1 Primary Depth (feet) 0-2 3 4 1 0 Discharge (cfs) **Reach R1: Roof Leader** Stage-Storage Storage Depth (feet) 0-2 4 1 ż 5 Ó


Storage (cubic-feet)

Reach R1: Roof Leader

Summary for Pond AP-1: Norwalk River

Inflow Area	a =	4.413 ac, 66.52% Impervious, Inflow Depth = 0.72" for 2-yr event
Inflow	=	2.43 cfs @ 12.33 hrs, Volume= 0.265 af
Primary	=	2.43 cfs @ 12.33 hrs, Volume= 0.265 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Summary for Pond AP-2: Front Lawn Rain Garden

AMS Wilton - Proposed Conditions

Page 27

Inflow Area =	0.475 ac, 24.65% Impervious, Inflow De	epth = 1.98" for 2-yr event
Inflow =	1.14 cfs @ 12.13 hrs, Volume=	0.078 af
Outflow =	0.28 cfs @ 12.38 hrs, Volume=	0.078 af, Atten= 75%, Lag= 15.2 min
Discarded =	0.28 cfs @ 12.38 hrs, Volume=	0.078 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Pond	d S-3 : Subsurface Infiltration System	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 148.30' @ 12.38 hrs Surf.Area= 2,241 sf Storage= 638 cf

Plug-Flow detention time= 12.9 min calculated for 0.078 af (100% of inflow) Center-of-Mass det. time= 12.9 min (835.0 - 822.1)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	148.00'	6,53	6 cf Custom	Stage Data (Prismatic)Listed below (F	Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
148.0	1	1.985	0	0	
149.0	-	2,833	2,409	2,409	
150.0	00	5,420	4,127	6,536	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	145.90'	15.0" Round		
			Inlet / Outlet I	P, square edge headwall, Ke= 0.500 nvert= 145.90' / 145.55' S= 0.0101 '/' ow Area= 1.23 sf	Cc= 0.900
#2	Device 1	149.00'		oriz. Yard Drain X 4.00 columns	
				0.600 in 18.0" Grate (71% open area) ir flow at low heads	
#3	Discarded	148.00'		xfiltration over Surface area	

Discarded OutFlow Max=0.28 cfs @ 12.38 hrs HW=148.30' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 7.18 cfs potential flow) **2=Yard Drain** (Controls 0.00 cfs)

AMSW_Proposed-R8 Prepared by SLR International Corporation

148-

Ó

2

3

Discharge (cfs)

5

6

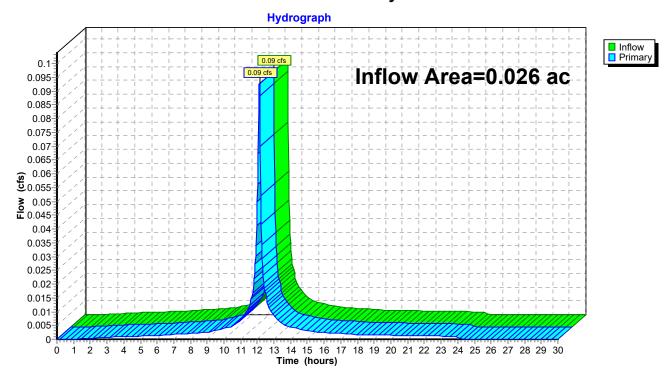
1

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 28

Hydrograph Inflow
Outflow 1.14 cfs Inflow Area=0.475 ac Discarded Primary Peak Elev=148.30' Storage=638 cf 1 Flow (cfs) 0.28 cfs 0.28 cfs 0.00 0-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) Ò Pond AP-2: Front Lawn Rain Garden Stage-Discharge Total Discarded 150 Primary min Elevation (feet) Yard Drain 149 Exfiltration

Pond AP-2: Front Lawn Rain Garden

Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 2,000 2,500 3,000 3,500 1,000 1,500 4,000 SurfaceStorage 0 500 4,500 5,000 150 Elevation (feet) 149 Custom Stage Data 148-) 3,000 3,500 4 Storage (cubic-feet) 500 1,000 1,500 2,000 2,500 4,000 4,500 5,000 5,500 6,000 6,500 0

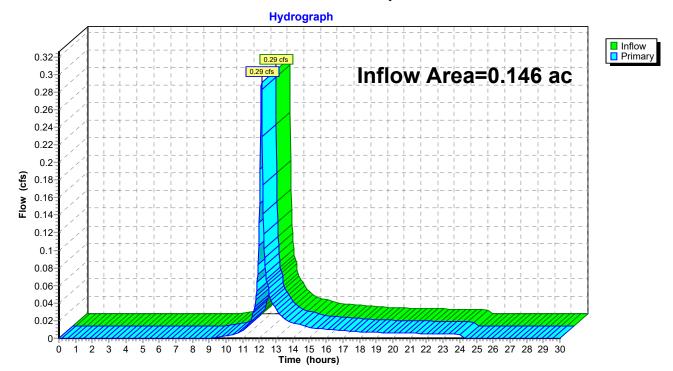

Pond AP-2: Front Lawn Rain Garden

AMSW_Proposed-R8AMS Wilton - Proposed Conditions
NRCC 24-hr C 2-yr Rainfall=3.53"Prepared by SLR International CorporationRevised 2024-01-05 Printed 1/9/2024HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLCPage 30

Summary for Pond AP-3: Danbury Road

Inflow Are	a =	0.026 ac,100.00% Impervious, Inflow Depth = 3.30" for 2-yr event
Inflow	=	0.09 cfs @ 12.13 hrs, Volume= 0.007 af
Primary	=	0.09 cfs @ 12.13 hrs, Volume= 0.007 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs



Pond AP-3: Danbury Road

Summary for Pond AP-4: Landscaped Area

Inflow Are	a =	0.146 ac,	1.46% Impervious, Inflow I	Depth = 1.59" for 2-yr event
Inflow	=	0.29 cfs @	12.13 hrs, Volume=	0.019 af
Primary	=	0.29 cfs @	12.13 hrs, Volume=	0.019 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

AMSW Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 32

Summary for Pond B-1: South Basin

Inflow Area =	0.116 ac, 17.66% Impervious, Inflow D	epth = 1.88" for 2-yr event		
Inflow =	0.27 cfs @ 12.13 hrs, Volume=	0.018 af		
Outflow =	0.06 cfs @ 12.45 hrs, Volume=	0.013 af, Atten= 79%, Lag= 19.2 min		
Discarded =	0.00 cfs @ 12.45 hrs, Volume=	0.007 af		
Primary =	0.05 cfs @ 12.45 hrs, Volume=	0.005 af		
Routed to Pond AP-1 : Norwalk River				

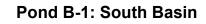
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.92' @ 12.45 hrs Surf.Area= 515 sf Storage= 343 cf

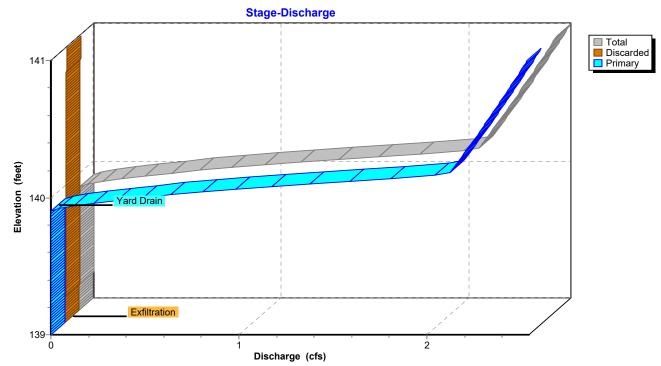
Plug-Flow detention time= 315.8 min calculated for 0.013 af (70% of inflow) Center-of-Mass det. time= 211.2 min (1,049.4 - 838.2)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	139.00)' 1,1 <i>°</i>	18 cf Custom	Stage Data (Prismatic)	_isted below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
139.0	00	228	0	0	
140.0	00	539	384	384	
141.0	00	929	734	1,118	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	138.00'	8.0" Round	Culvert	
			Inlet / Outlet I		Ke= 0.500 S= 0.0100 '/' Cc= 0.900
			,	w Area= 0.35 sf	
#2	Device 1	139.90'		oriz. Yard Drain X 4.00 o	
				0.600 in 18.0" Grate (71	% open area)
		400.001		r flow at low heads	
#3	Discarded	139.00'	0.400 in/hr E	xfiltration over Surface	area

Discarded OutFlow Max=0.00 cfs @ 12.45 hrs HW=139.92' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.00 cfs)

Primary OutFlow Max=0.05 cfs @ 12.45 hrs HW=139.92' (Free Discharge) -1=Culvert (Passes 0.05 cfs of 1.97 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.05 cfs @ 0.49 fps)

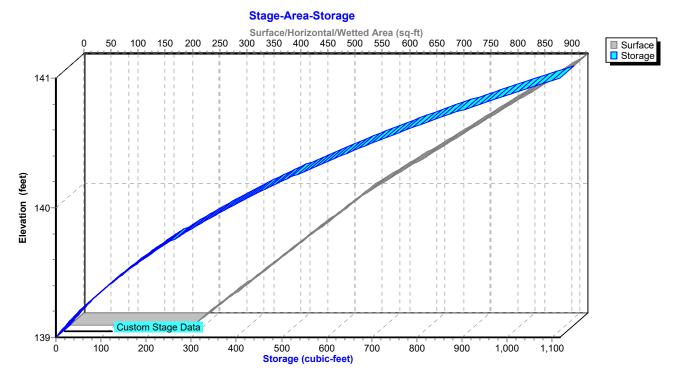

AMSW_Proposed-R8


Prepared by SLR International Corporation Revis HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 LLC Page 33

Hydrograph Inflow
Outflow 0.27 cfs Inflow Area=0.116 ac Discarded Primary 0.3 Peak Elev=139.92' 0.28 0.26 Storage=343 cf 0.24 0.22 0.2 0.18 Flow (cfs) 0.16 0.14 0.12 0.1 0.06 cfs 0.08 0.06 0.04 0.02 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 <u>0</u> 1

Pond B-1: South Basin



AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024

Page 34

Pond B-1: South Basin

AMSW Proposed-R8

Prepared by SLR International Corporation

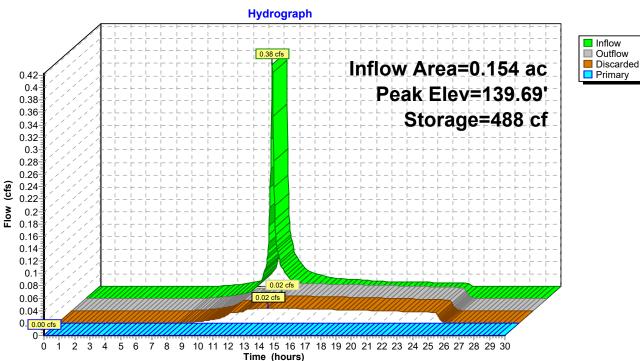
AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 35

Summary for Pond B-2: North Basin

Inflow Area =	0.154 ac,	7.18% Impervious, Inflow D	epth = 1.96" for 2-yr event	
Inflow =	0.38 cfs @	12.13 hrs, Volume=	0.025 af	
Outflow =	0.02 cfs @	13.64 hrs, Volume=	0.025 af, Atten= 94%, Lag= 90.3 min	
Discarded =	0.02 cfs @	13.64 hrs, Volume=	0.025 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.69' @ 13.64 hrs Surf.Area= 824 sf Storage= 488 cf

Plug-Flow detention time= 207.5 min calculated for 0.025 af (100% of inflow) Center-of-Mass det. time= 207.3 min (1,041.9 - 834.6)

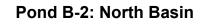

Volume	Inver	Avail.Sto	rage Storage	Description	
#1	139.00	' 1,88	38 cf Custom	Stage Data (Pris	matic)Listed below (Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	,	(sq-ft)	(cubic-feet)	(cubic-feet)	
139.0	00	589	0	0	
140.0	00	930	760	760	
141.0	00	1,327	1,129	1,888	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	138.00'	10.0" Round	Culvert	
	,		L= 200.0' CF	P. square edge he	eadwall, Ke= 0.500
				ý 1 U	57.00' S= 0.0050 '/' Cc= 0.900
				w Area= 0.55 sf	
#2	Device 1	139.80'	'	oriz. Yard Drain X	4 00 columns
#2	Device I	159.00	••••		
					ate (71% open area)
	D	400.001		r flow at low heads	-
#3	Discarded	139.00'	1.250 in/hr Ex	xfiltration over Su	urtace area

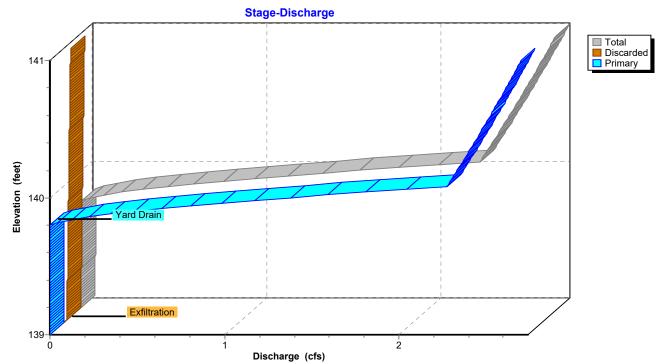
Discarded OutFlow Max=0.02 cfs @ 13.64 hrs HW=139.69' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 1.77 cfs potential flow) **2=Yard Drain** (Controls 0.00 cfs)

AMSW_Proposed-R8

Prepared by SLR International Corporation Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

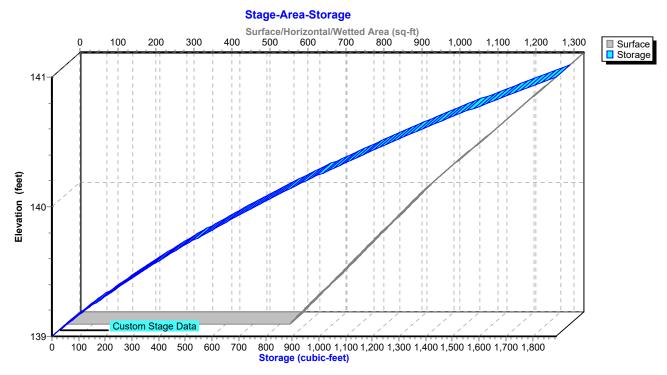



Pond B-2: North Basin

AMS Wilton - Proposed Conditions

Page 36

NRCC 24-hr C 2-yr Rainfall=3.53"



AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 Itions LLC Page 37

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin

Summary for Pond S-1: Subsurface Infiltration System

AMS Wilton - Proposed Conditions

Page 38

Inflow Area =	0.554 ac, 5	8.45% Impervious, Ir	nflow Depth = 2.54" for 2-yr event	
Inflow =	1.67 cfs @	12.13 hrs, Volume=	0.117 af	
Outflow =	0.73 cfs @	12.25 hrs, Volume=	0.087 af, Atten= 56%, Lag= 7.4 min	
Discarded =	0.02 cfs @	7.83 hrs, Volume=	0.031 af	
Primary =	0.71 cfs @	12.25 hrs, Volume=	0.055 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 143.81' @ 12.25 hrs Surf.Area= 0.039 ac Storage= 0.046 af

Plug-Flow detention time= 229.5 min calculated for 0.087 af (74% of inflow) Center-of-Mass det. time= 133.0 min (932.9 - 799.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	142.00'	0.036 af	11.00'W x 153.14'L x 3.50'H Field A
			0.135 af Overall - 0.044 af Embedded = 0.091 af x 40.0% Voids
#2A	142.50'	0.044 af	ADS_StormTech SC-740 +Cap x 42 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			42 Chambers in 2 Rows
		0.081 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	143.35'	12.0" Round Culvert
		L= 114.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 143.35' / 142.21' S= 0.0100 '/' Cc= 0.900
		n= 0.012, Flow Area= 0.79 sf
Device 1	143.50'	6.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
Discarded	142.00'	0.400 in/hr Exfiltration over Surface area
	Primary Device 1 Device 1	Primary 143.35' Device 1 143.50' Device 1 144.90'

Discarded OutFlow Max=0.02 cfs @ 7.83 hrs HW=142.04' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.70 cfs @ 12.25 hrs HW=143.80' (Free Discharge)

1=Culvert (Passes 0.70 cfs of 0.80 cfs potential flow)

-2=Orifice (Orifice Controls 0.70 cfs @ 1.88 fps)

-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-1: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

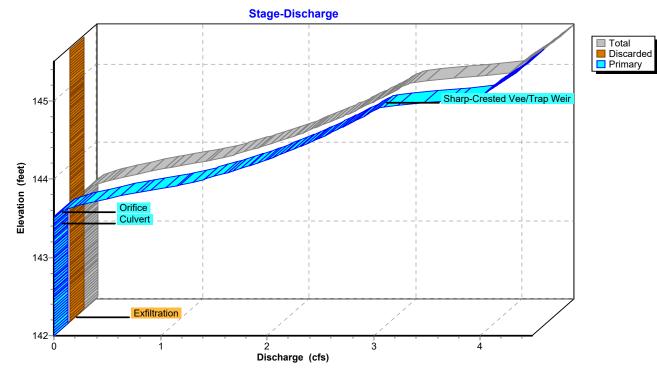
21 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 151.14' Row Length +12.0" End Stone x 2 = 153.14' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

42 Chambers x 45.9 cf = 1,929.5 cf Chamber Storage

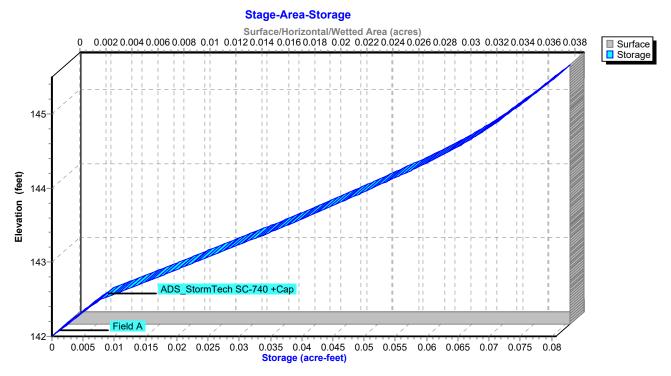
5,895.8 cf Field - 1,929.5 cf Chambers = 3,966.3 cf Stone x 40.0% Voids = 1,586.5 cf Stone Storage

Chamber Storage + Stone Storage = 3,516.0 cf = 0.081 af Overall Storage Efficiency = 59.6% Overall System Size = 153.14' x 11.00' x 3.50'

42 Chambers 218.4 cy Field 146.9 cy Stone


AMSW_Proposed-R8 Prepared by SLR International Corporation

AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 40


Hydrograph Inflow
Outflow 1.67 cfs Inflow Area=0.554 ac Discarded Primary Peak Elev=143.81 Storage=0.046 af Flow (cfs) 0.73 cfs 0.71 cfs 0.02 cfs 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 0 1 2 3 4

Pond S-1: Subsurface Infiltration System

Summary for Pond S-2: Subsurface Infiltration System

Page 42

Inflow Area =	1.838 ac,100.00% Impervious, Inflow D	Depth = 3.30" for 2-yr event		
Inflow =	4.79 cfs @ 12.07 hrs, Volume=	0.505 af		
Outflow =	1.71 cfs @ 12.35 hrs, Volume=	0.505 af, Atten= 64%, Lag= 17.0 min		
Discarded =	0.50 cfs @ 11.04 hrs, Volume=	0.452 af		
Primary =	1.21 cfs @ 12.35 hrs, Volume=	0.052 af		
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.03' @ 12.35 hrs Surf.Area= 0.091 ac Storage= 0.145 af

Plug-Flow detention time= 65.8 min calculated for 0.504 af (100% of inflow) Center-of-Mass det. time= 65.7 min (822.2 - 756.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	141.50'	0.100 af	30.00'W x 131.78'L x 4.00'H Field A
			0.363 af Overall - 0.114 af Embedded = 0.249 af x 40.0% Voids
#2A	142.50'	0.114 af	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 6 Rows
		0.214 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices	
Primary	143.15'	15.0" Round Culvert	
		L= 75.0' CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= 143.15' / 142.69' S= 0.0061 '/' Cc= 0.900	
		n= 0.012, Flow Area= 1.23 sf	
Device 1	143.64'	7.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads	
Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)	
Discarded	141.50'	5.450 in/hr Exfiltration over Surface area	
	Primary Device 1 Device 1	Primary 143.15' Device 1 143.64' Device 1 144.90'	

Discarded OutFlow Max=0.50 cfs @ 11.04 hrs HW=141.54' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=1.21 cfs @ 12.35 hrs HW=144.03' (Free Discharge)

1=Culvert (Passes 1.21 cfs of 2.54 cfs potential flow)

-2=Orifice (Orifice Controls 1.21 cfs @ 2.13 fps)

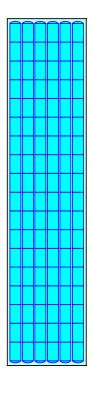
-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Pond S-2: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

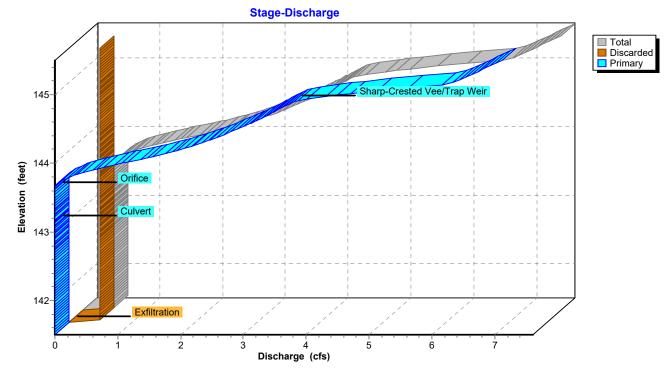

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 12.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

108 Chambers x 45.9 cf = 4,961.5 cf Chamber Storage

15,813.2 cf Field - 4,961.5 cf Chambers = 10,851.7 cf Stone x 40.0% Voids = 4,340.7 cf Stone Storage

Chamber Storage + Stone Storage = 9,302.2 cf = 0.214 af Overall Storage Efficiency = 58.8% Overall System Size = 131.78' x 30.00' x 4.00'

108 Chambers 585.7 cy Field 401.9 cy Stone



AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 44

Hydrograph Inflow
Outflow 4.79 cfs Inflow Area=1.838 ac Primary 5 Peak Elev=144.03* Storage=0.145 af 4 Flow (cfs) 3 1.71 cfs 2 1.21 cf 1 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 1 2 3 4 8 5 6 Ż 0

Discarded

Stage-Area-Storage
 Surface/Horizontal/Wetted Area (acres)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.035
 0.04
 0.045
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09
 SurfaceStorage 145 144 Elevation (feet) 143 ADS_StormTech SC-740 +Cap 142 Field A 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Ó Storage (acre-feet)

Pond S-2: Subsurface Infiltration System

Summary for Pond S-3: Subsurface Infiltration System

Page 46

Inflow Area =	1.020 ac, 4	7.60% Impervious, Inflow	Depth = 1.52" for 2-yr event					
Inflow =	1.79 cfs @	12.13 hrs, Volume=	0.129 af					
Outflow =	0.13 cfs @	13.34 hrs, Volume=	0.112 af, Atten= 93%, Lag= 72.5 min					
Discarded =	0.05 cfs @	9.90 hrs, Volume=	0.102 af					
Primary =	0.08 cfs @	13.34 hrs, Volume=	0.010 af					
Routed to Pond AP-1 : Norwalk River								

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 142.21' @ 13.34 hrs Surf.Area= 0.052 ac Storage= 0.063 af

Plug-Flow detention time= 370.9 min calculated for 0.112 af (87% of inflow) Center-of-Mass det. time= 306.3 min (1,092.8 - 786.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	140.40' 0.047 af 30.0		30.00'W x 74.82'L x 3.50'H Field A
			0.180 af Overall - 0.063 af Embedded = 0.117 af x 40.0% Voids
#2A	140.90'	0.063 af	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.110 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	141.84'	12.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 141.84' / 141.19' S= 0.0087 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	142.10'	7.0" Vert. Orifice X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	143.30'	5.0' long Weir Wall Cv= 2.62 (C= 3.28)
#4	Discarded	140.40'	1.050 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 9.90 hrs HW=140.44' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.07 cfs @ 13.34 hrs HW=142.21' (Free Discharge)

1=Culvert (Passes 0.07 cfs of 0.53 cfs potential flow)

-2=Orifice (Orifice Controls 0.07 cfs @ 1.11 fps)

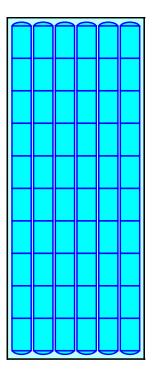
-3=Weir Wall (Controls 0.00 cfs)

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-3: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

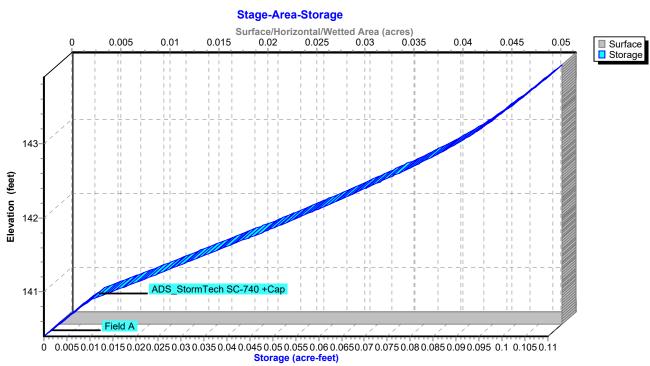
7,855.8 cf Field - 2,756.4 cf Chambers = 5,099.3 cf Stone x 40.0% Voids = 2,039.7 cf Stone Storage

Chamber Storage + Stone Storage = 4,796.1 cf = 0.110 afOverall Storage Efficiency = 61.1%Overall System Size = $74.82' \times 30.00' \times 3.50'$

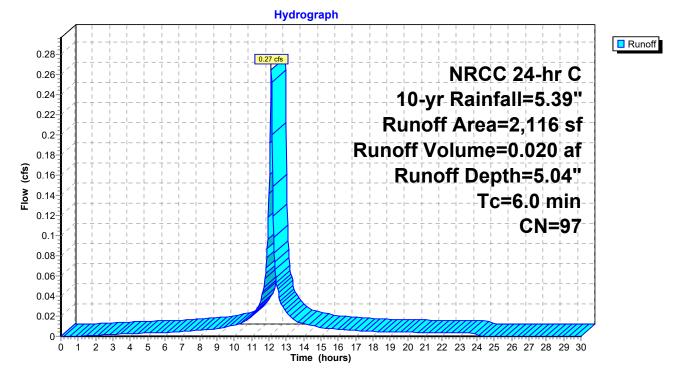
60 Chambers 291.0 cy Field 188.9 cy Stone

AMSW_Proposed-R8 Prepared by SLR International Corporation


AMS Wilton - Proposed Conditions NRCC 24-hr C 2-yr Rainfall=3.53" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 48


Hydrograph Inflow
Outflow 1.79 cfs Inflow Area=1.020 ac Discarded Primary 2 Peak Elev=142.21 Storage=0.063 af Flow (cfs) 0.13 cfs 0.05 cfs 0.08 cfs 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 0 1 2 3 4 567

Pond S-3: Subsurface Infiltration System


Summary for Subcatchment PR-1: CCB 14

Runoff = 0.27 cfs @ 12.13 hrs, Volume= 0.020 af, Depth= 5.04" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

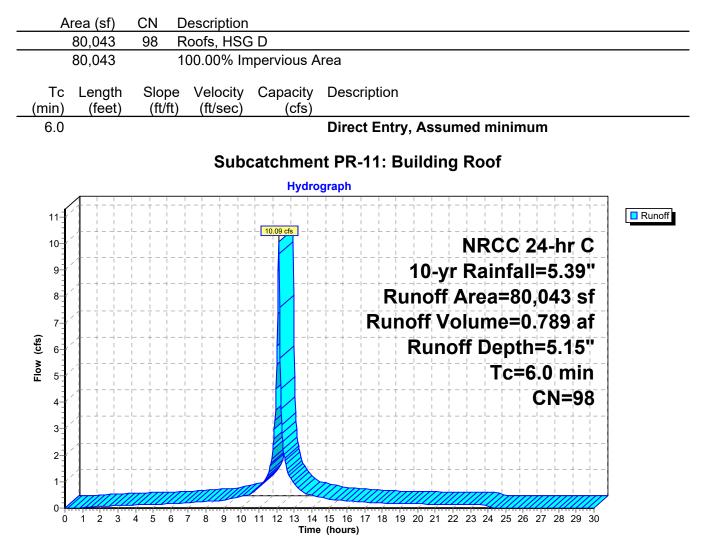
A	rea (sf)	CN	Description					
	2,045	98	Paved park	ing, HSG D				
*	71	79	Landscapin	Landscaping, Good, HSG D				
	2,116	97	Weighted A	Weighted Average				
	71		3.36% Pervious Area					
	2,045		96.64% Imp	pervious Ar	ea			
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0					Direct Entry, Assumed minimum			

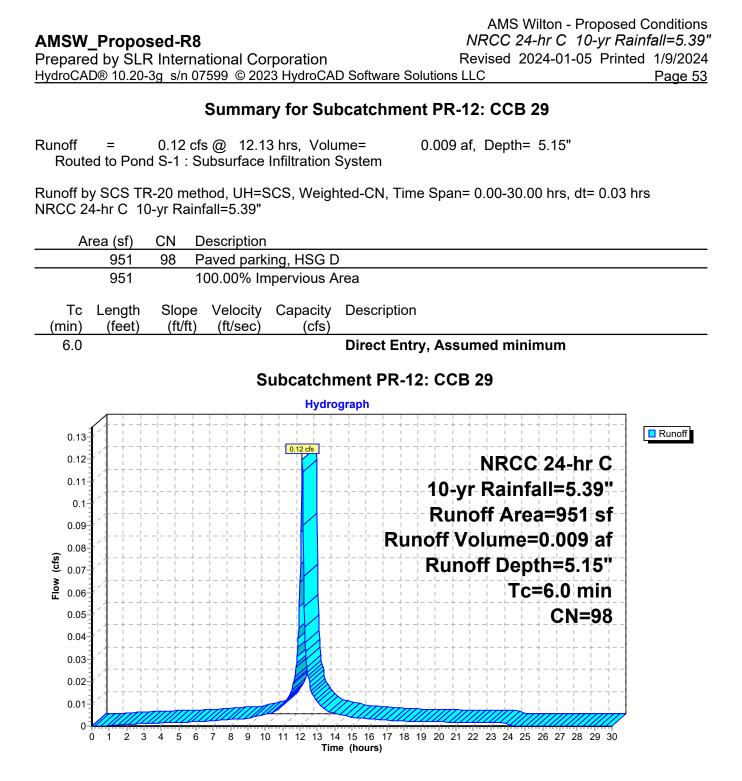
Subcatchment PR-1: CCB 14

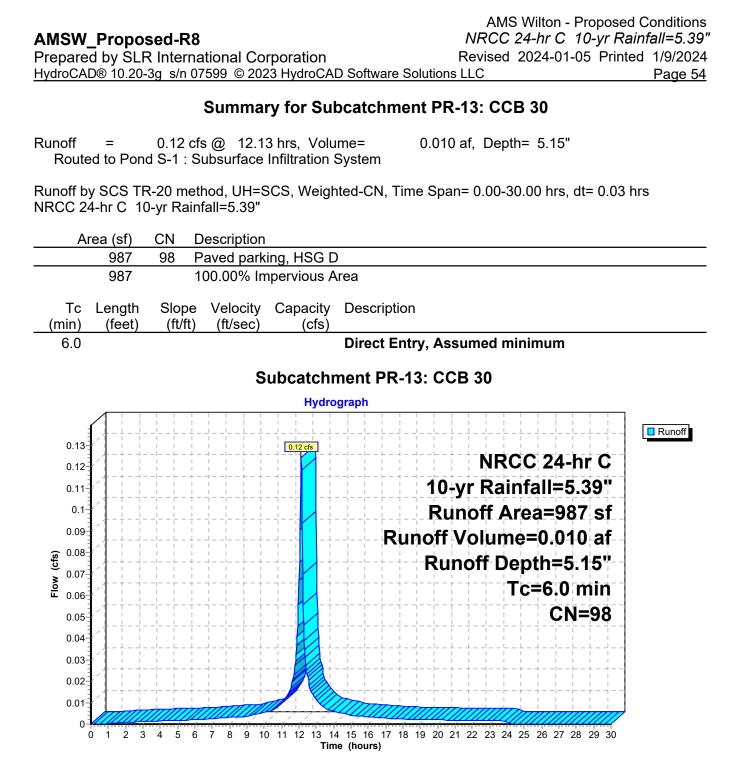
AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 ms LLC Page 50

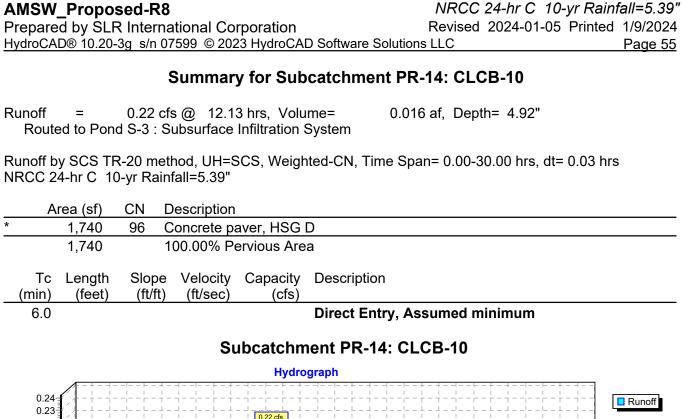
Summary for Subcatchment PR-10: CCB 28

Runoff = 1.12 cfs @ 12.13 hrs, Volume= 0.083 af, Depth= 4.81" Routed to Pond S-1 : Subsurface Infiltration System

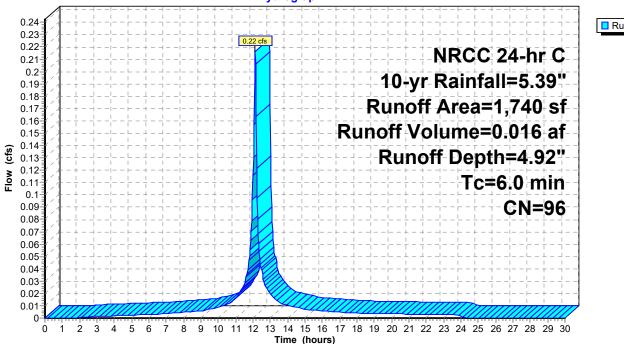

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

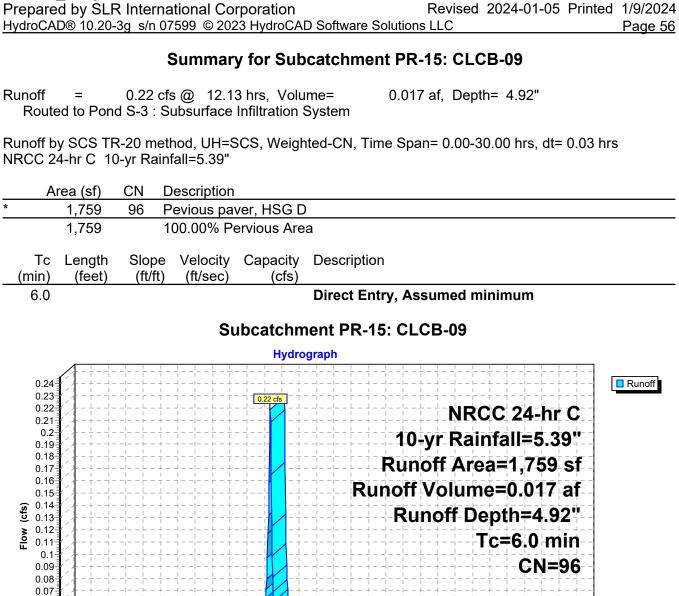

Area (sf) 7,450 440 * 1,183 9,073 1,623	CNDescription98Paved parking, HSG D80>75% Grass cover, Good, HSG D79Landscaping, Good, HSG D95Weighted Average 17.89% Pervious Area
7,450 Tc Length (min) (feet) 6.0	82.11% Impervious Area Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Assumed minimum
	Subcatchment PR-10: CCB 28
	Hydrograph
	A 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


Summary for Subcatchment PR-11: Building Roof


Runoff = 10.09 cfs @ 12.13 hrs, Volume= Routed to Reach R1 : Roof Leader 0.789 af, Depth= 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"





AMS Wilton - Proposed Conditions

AMS Wilton - Proposed Conditions

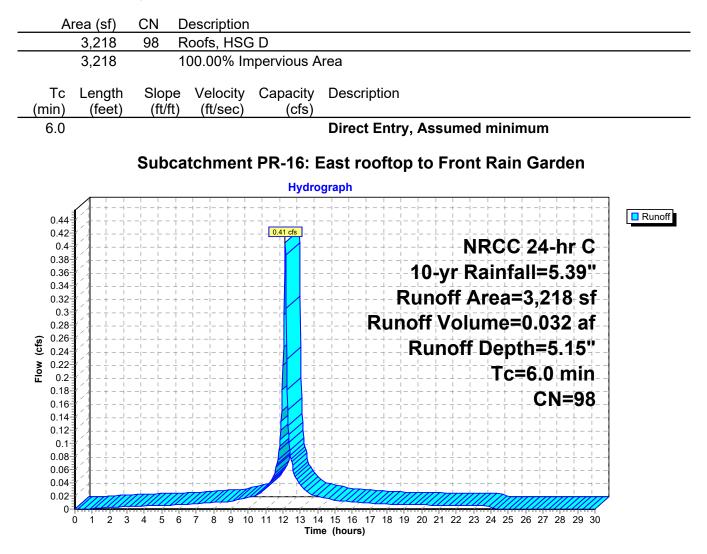
Time (hours)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.06 0.05 0.04 0.03 0.02 0.01

> Ó 1

ż

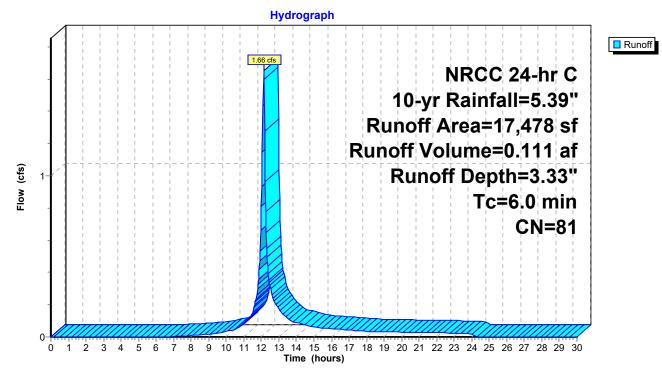

3 4

5 6 7

Summary for Subcatchment PR-16: East rooftop to Front Rain Garden

Runoff = 0.41 cfs @ 12.13 hrs, Volume= Routed to Pond AP-2 : Front Lawn Rain Garden 0.032 af, Depth= 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"


Summary for Subcatchment PR-17: Front Lawn

1.66 cfs @ 12.13 hrs, Volume= 0.111 af, Depth= 3.33" Runoff = Routed to Pond AP-2 : Front Lawn Rain Garden

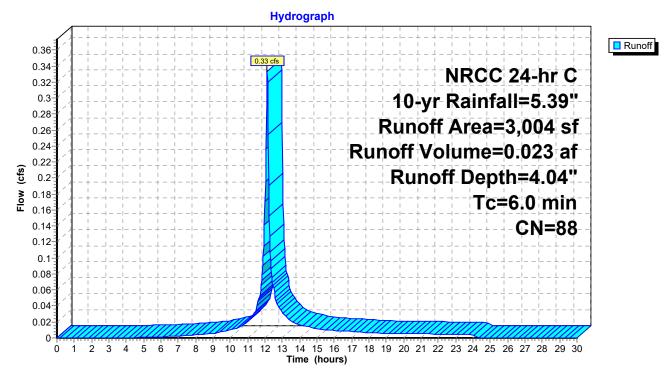
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

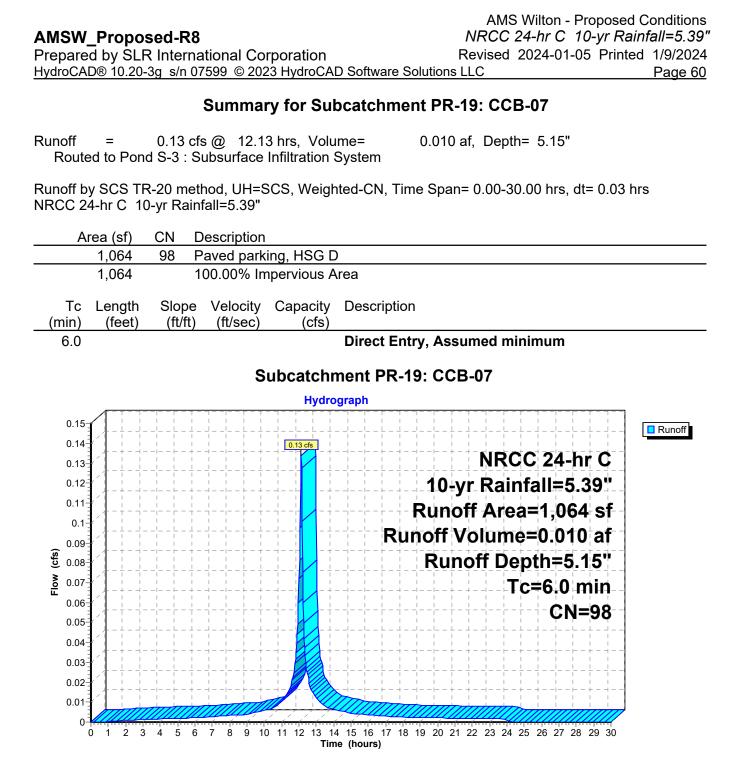
	Area ((sf) C	N E	Description					
	1,8	83 9	98 F	Paved park	ing, HSG D	D			
	6,9	50 8	80 >	>75% Grass cover, Good, HSG D					
*	8,6	645	79 L	Landscaping, Good, HSG D					
	17,4	78 8	81 V	Weighted Average					
	15,5	595	8	89.23% Pervious Area					
	1,8	83	1	10.77% Impervious Area					
(r		ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-17: Front Lawn

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024

Page 58


Summary for Subcatchment PR-18: CCB-08


Runoff = 0.33 cfs @ 12.13 hrs, Volume= 0.023 af, Depth= 4.04" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

6.0)				Direct Entry, Assumed minimum				
(min) (feet)	(ft/ft) (ft/sec)	(cfs)					
То	c Length	Slop	e Velocity	Capacity	Description				
	3,004 1,522 1,482	88	Weighted A 50.67% Pe 49.33% Imp	rvious Area					
*	1,330	79	Landscapin	Landscaping, Good, HSG D					
	192	80		>75% Grass cover, Good, HSG D					
	1,482	98	Paved park	ing, HSG D)				
	Area (sf)	CN	Description						

Subcatchment PR-18: CCB-08

Summary for Subcatchment PR-2: CCB 10

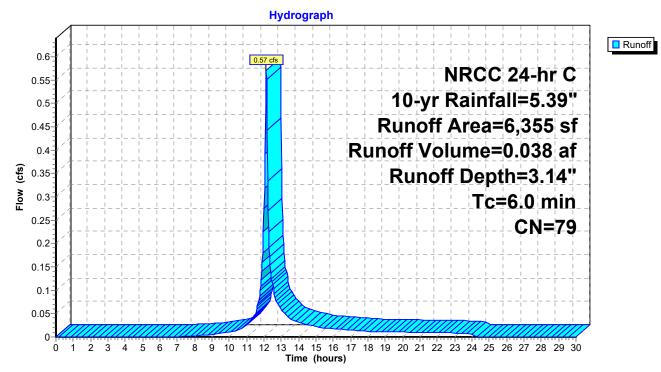
Runoff 1.06 cfs @ 12.13 hrs, Volume= 0.076 af, Depth= 4.47" = Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

A *	rea (sf) 6,733 1,772 384 8,889 2,156 6,733	98 Pa 72 La 74 >7 92 Wa 24	ndscapin <u>5% Gras</u> eighted A .25% Per		SG C bod, HSG C		
Tc (min) 6.0	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description	y, Assumed minimum	
			S	ubcatch	ment PR-2:	: CCB 10	
				Hydro	graph		
-−1 - - - - - - - - - - - - - - - - - -				1 1 1 1 1 1 <th>Run</th> <th>NRCC 24-hr C 10-yr Rainfall=5.39 Runoff Area=8,889 s off Volume=0.076 a Runoff Depth=4.47 Tc=6.0 min CN=92</th> <th>• f f 2</th>	Run	NRCC 24-hr C 10-yr Rainfall=5.39 Runoff Area=8,889 s off Volume=0.076 a Runoff Depth=4.47 Tc=6.0 min CN=92	• f f 2
0	123	4 5 6 7	8 9 10		15 16 17 18 19 e (hours)	9 20 21 22 23 24 25 26 27 28 29 3	30

Summary for Subcatchment PR-20: South of entrance drive

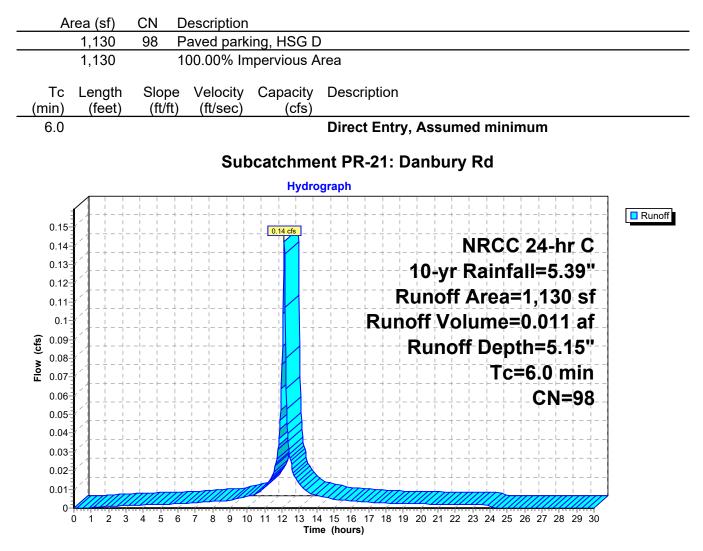
0.57 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-4 : Landscaped Area


0.038 af, Depth= 3.14"

Page 62

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

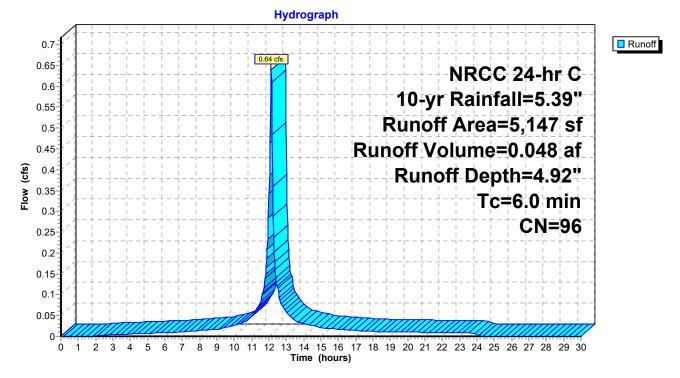
A	rea (sf)	CN	Description						
	93	98	Paved park						
	755	80	>75% Gras	>75% Grass cover, Good, HSG D					
*	5,507	79	Landscapin	Landscaping, Good, HSG D					
	6,355	79	Weighted Average						
	6,262		98.54% Pervious Area						
	93		1.46% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description				
6.0					Direct Entry, Assumed minimum				


Subcatchment PR-20: South of entrance drive

Summary for Subcatchment PR-21: Danbury Rd

Runoff = 0.14 cfs @ 12.13 hrs, Volume= Routed to Pond AP-3 : Danbury Road 0.011 af, Depth= 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"


Summary for Subcatchment PR-3: CCB 07

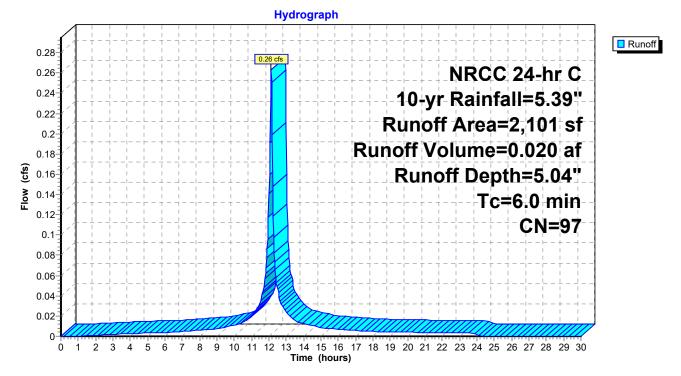
Runoff = 0.64 cfs @ 12.13 hrs, Volume= 0.048 af, Depth= 4.92" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

_	A	rea (sf)	CN	Description					
*		4,715	98	Paved park	ing, HSG C				
*		432	72	Landscaping, Good, HSG C					
_		5,147 432 4,715	96	Weighted A 8.39% Perv 91.61% Imp	ious Area	ea			
_	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-3: CCB 07

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 is LLC Page 64


Summary for Subcatchment PR-4: CCB 06

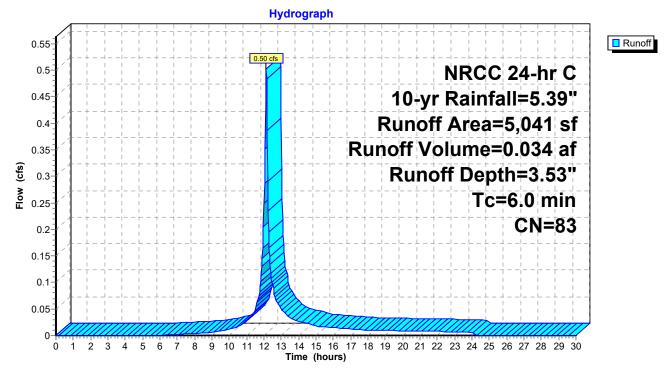
Runoff = 0.26 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.020 af, Depth= 5.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	Area (sf)	CN	Description						
	2,026	98	Paved park	Paved parking, HSG D					
*	75	79	Landscaping, Good, HSG D						
	2,101	97	Weighted A	verage					
	75		3.57% Perv	vious Area					
	2,026		96.43% Im	pervious Ar	ea				
т	c Length	Slop	e Velocity	Capacity	Description				
(mir	•	(ft/f	,	(cfs)	· · · P · ·				
6.	0				Direct Entry, Assigned minimum				

Subcatchment PR-4: CCB 06

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 ns LLC Page 65


Summary for Subcatchment PR-5: South Basin

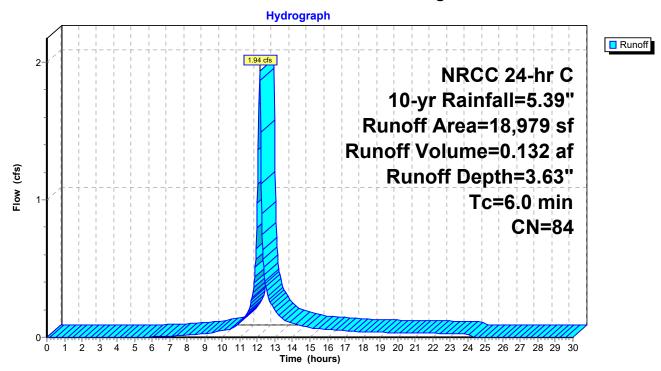
Runoff = 0.50 cfs @ 12.13 hrs, Volume= Routed to Pond B-1 : South Basin 0.034 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

_	А	rea (sf)	CN	Description						
*		595	96	Permable F	aver, HSG	С				
*		366	96	Gravel surfa	ace, HSG C					
*		2,205	72	Landscapin	g, Good, H	SG C				
*		890	98	Paved park	ing, HSG C					
_		985	80	>75% Gras	>75% Grass cover, Good, HSG D					
		5,041	83	Weighted A	verage					
		4,151		82.34% Per	rvious Area					
		890		17.66% Imp	pervious Ar	ea				
	Тс	Length	Slop	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)					
	6.0					Direct Entry, Assumed minimum				
						-				

Subcatchment PR-5: South Basin

Summary for Subcatchment PR-6: West along river


Runoff = 1.94 cfs @ 12.13 hrs, Volume= 0. Routed to Pond AP-1 : Norwalk River

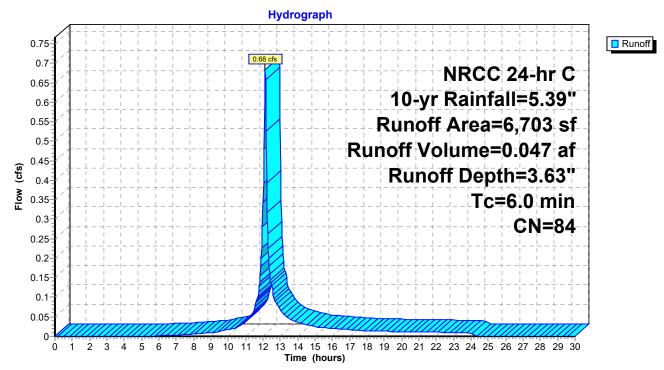
0.132 af, Depth= 3.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	Area (sf)	CN	Description			
*	4,195	96	Permeable	Permeable paver, HSG D		
	461	96	Gravel surf	ace, HSG D)	
	911	98	Paved park	ing, HSG D		
	2,775	80	>75% Gras	s cover, Go	bod, HSG D	
*	6,489	79	Landscapin	ig, Good, H	SG D	
	4,148	77	Woods, Go	od, HSG D		
	18,979	84	Weighted A	verage		
	18,068		95.20% Pe	rvious Area		
	911		4.80% Impe	ervious Area	а	
T	c Length	Slop		Capacity	Description	
(mi	n) (feet)	(ft/1	ft) (ft/sec)	(cfs)		
6	.0				Direct Entry, Assumed minimum	

Subcatchment PR-6: West along river

Summary for Subcatchment PR-7: North basin


Runoff = 0.68 cfs @ 12.13 hrs, Volume= Routed to Pond B-2 : North Basin

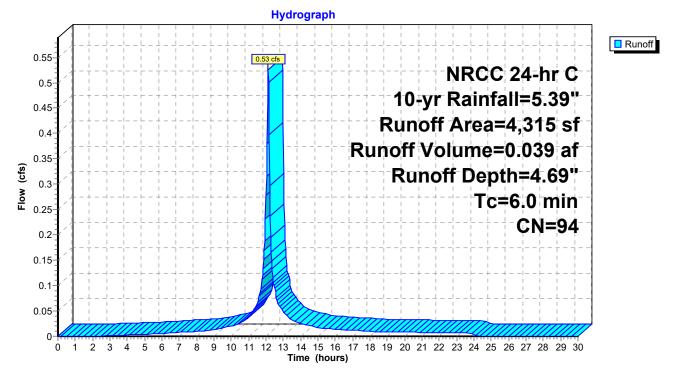
0.047 af, Depth= 3.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	Ai	rea (sf)	CN	Description				
		453	96	Gravel surfa	Gravel surface, HSG D			
*		1,031	96	Permeable	paver, HSC	G D		
		445	80	>75% Gras	s cover, Go	bod, HSG D		
*		3,601	79	Landscapin	g, Good, H	SG D		
		692	77	Woods, Go	Woods, Good, HSG D			
		481	98	Paved park	ing, HSG D			
		6,703	84	Weighted A	verage			
		6,222		92.82% Pe	rvious Area			
		481		7.18% Impe	ervious Area	a		
	Тс	Length	Slop	,	Capacity	Description		
(n	nin)	(feet)	(ft/f) (ft/sec)	(cfs)			
	6.0					Direct Entry, Assumed minimum		

Subcatchment PR-7: North basin

AMS Wilton - Proposed Conditions

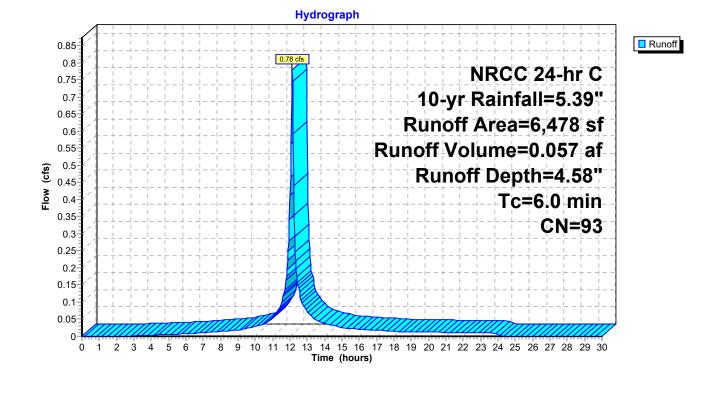

Summary for Subcatchment PR-7B: CCB 26

Runoff = 0.53 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.039 af, Depth= 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	Area (sf)	CN	Description			
	3,518	98	Paved park	ing, HSG D)	
*	797	79	Landscapin	ig, Good, H	SG D	
	4,315	94	Weighted Average			
	797		18.47% Pervious Area			
	3,518		81.53% Imp	pervious Ar	ea	
Та	Longth	Clan	o Volocity	Canaaitu	Description	
To	5	Slop		Capacity	Description	
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)		
6.0)				Direct Entry, Assumed minimum	

Subcatchment PR-7B: CCB 26


Summary for Subcatchment PR-8: CCB 26A

Runoff = 0.78 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.057 af, Depth= 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

	A	rea (sf)	CN	Description		
		4,737	98	Paved park	ing, HSG D)
*		1,741	79	Landscapir	ng, Good, H	SG D
		6,478	93	Weighted A	verage	
		1,741		26.88% Pervious Area		
		4,737		73.12% Impervious Area		
	ŢĊ	Length	Slop	,	Capacity	Description
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
	6.0					Direct Entry, Assumed minimum

Subcatchment PR-8: CCB 26A

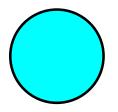
Summary for Subcatchment PR-9: CCB 27

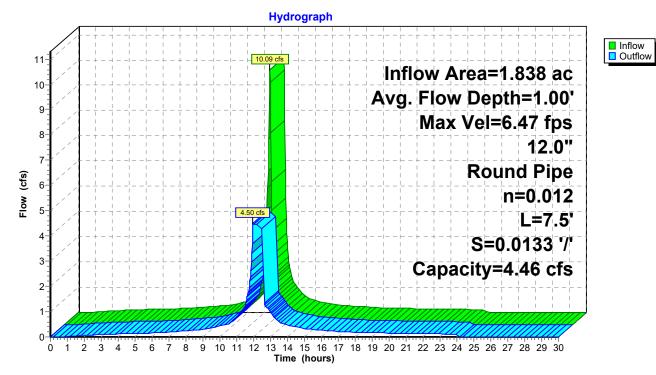
Runoff = 1.40 cfs @ 12.13 hrs, Volume= 0.096 af, Depth= 3.83" Routed to Pond S-1 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 10-yr Rainfall=5.39"

Area (sf)	CN Description				
4,730	98 Paved parking, HSG D				
817	80 >75% Grass cover, Good, HSG D				
<u>* 7,594</u> 13,141	79 Landscaping, Good, HSG D 86 Weighted Average				
8,411	64.01% Pervious Area				
4,730	35.99% Impervious Area				
Tc Length	Slope Velocity Capacity Description				
(min) (feet)	(ft/ft) (ft/sec) (cfs)				
6.0	Direct Entry, Assumed minimum				
	Subcatchment PR-9: CCB 27				
10-yr Rainfall=5.39"					
Runoff Area=13,141 sf					
1	Runoff Volume=0.096 af				
(cfs)	Runoff Depth=3.83"				
Flow (cfs)	Tc=6.0 min				
	CN=86				
- 1 1					
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30				
	Time (hours)				

AMSW_Proposed-R8AMS Wilton - Proposed Conditions
NRCC 24-hr C 10-yr Rainfall=5.39"Prepared by SLR International CorporationRevised 2024-01-05 Printed 1/9/2024HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLCPage 72

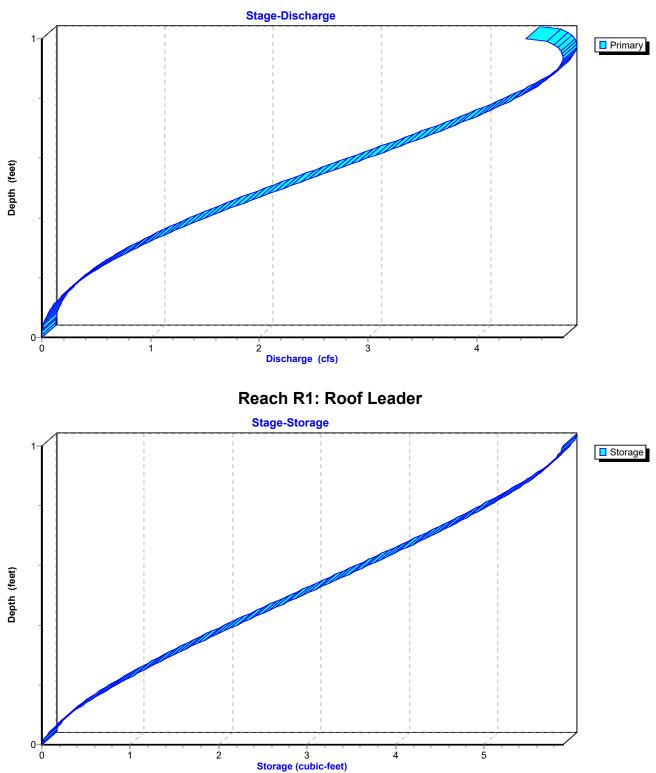

Summary for Reach R1: Roof Leader


Inflow Area =1.838 ac,100.00% Impervious, Inflow Depth =5.15" for 10-yr eventInflow =10.09 cfs @12.13 hrs, Volume=0.789 afOutflow =4.50 cfs @11.97 hrs, Volume=0.789 af, Atten= 55%, Lag= 0.0 minRouted to Pond S-2 : Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Max. Velocity= 6.47 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 6 cf @ 12.00 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.46 cfs

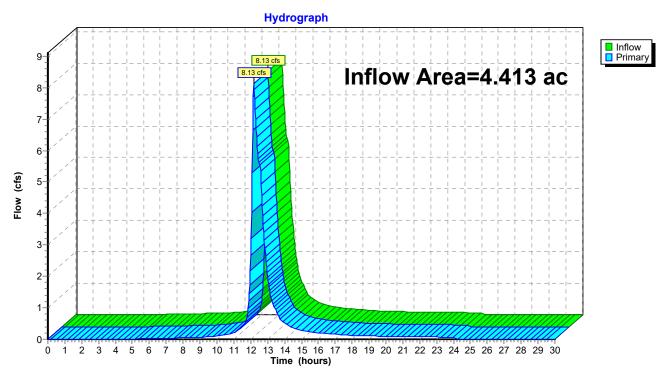
12.0" Round Pipe n= 0.012 Length= 7.5' Slope= 0.0133 '/' Inlet Invert= 142.20', Outlet Invert= 142.10'



Reach R1: Roof Leader

AMSW_Proposed-R8

Prepared by SLR International Corporation Revised 2024-0 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC



Reach R1: Roof Leader

Summary for Pond AP-1: Norwalk River

Inflow Area =		4.413 ac, 66.52% Impervious, Inflow Depth = 1.90" for 10-yr event
Inflow	=	8.13 cfs @ 12.19 hrs, Volume= 0.697 af
Primary	=	8.13 cfs @ 12.19 hrs, Volume= 0.697 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Rain Garden

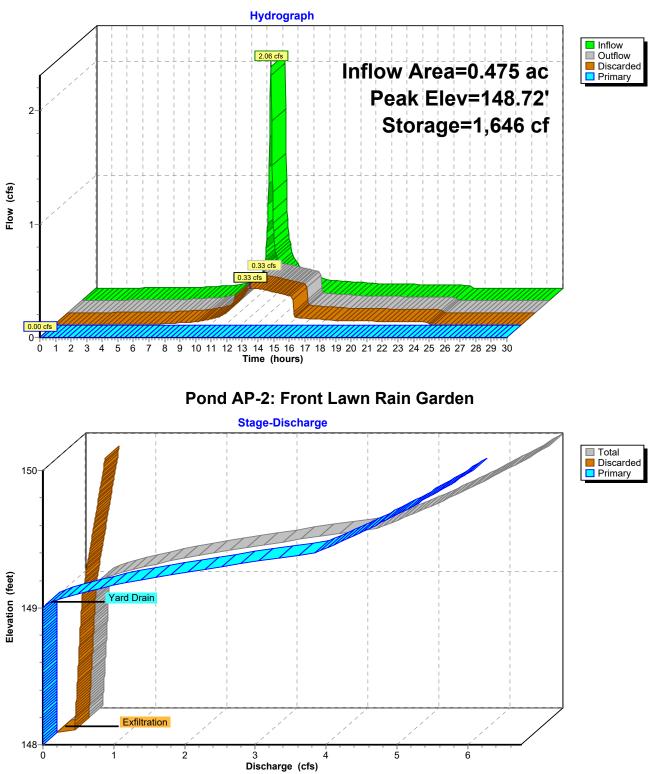
Page 75

Inflow Area =	0.475 ac, 24.65% Impervious, Inflow D	epth = 3.62" for 10-yr event			
Inflow =	2.06 cfs @ 12.13 hrs, Volume=	0.143 af			
Outflow =	0.33 cfs @ 12.59 hrs, Volume=	0.143 af, Atten= 84%, Lag= 28.0 min			
Discarded =	0.33 cfs @ 12.59 hrs, Volume=	0.143 af			
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af			
Routed to Pond S-3 : Subsurface Infiltration System					

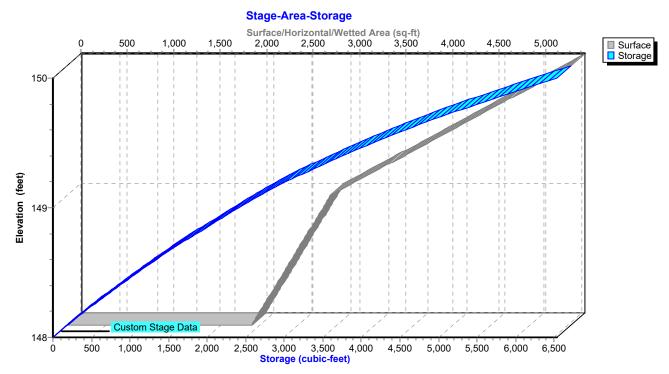
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 148.72' @ 12.59 hrs Surf.Area= 2,595 sf Storage= 1,646 cf

Plug-Flow detention time= 33.7 min calculated for 0.143 af (100% of inflow) Center-of-Mass det. time= 33.6 min (841.1 - 807.5)

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	148.00'	6,53	36 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee 148.0 149.0 150.0	t) 00 00	urf.Area (sq-ft) 1,985 2,833 5,420	Inc.Store (cubic-feet) 0 2,409 4,127	Cum.Store (cubic-feet) 0 2,409 6,536	
Device	Routing	Invert	Outlet Device		
#1	Primary	145.90'	Inlet / Outlet I	d Culvert P, square edge headwall, Ke= 0.500 Invert= 145.90' / 145.55' S= 0.0101 '/' Cc= 0.900 ow Area= 1.23 sf)
#2	Device 1	149.00'	3.6" x 0.9" H X 14 rows C=	loriz. Yard Drain X 4.00 columns = 0.600 in 18.0" Grate (71% open area) eir flow at low heads	
#3	Discarded	148.00'		Exfiltration over Surface area	


Discarded OutFlow Max=0.33 cfs @ 12.59 hrs HW=148.72' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.33 cfs)

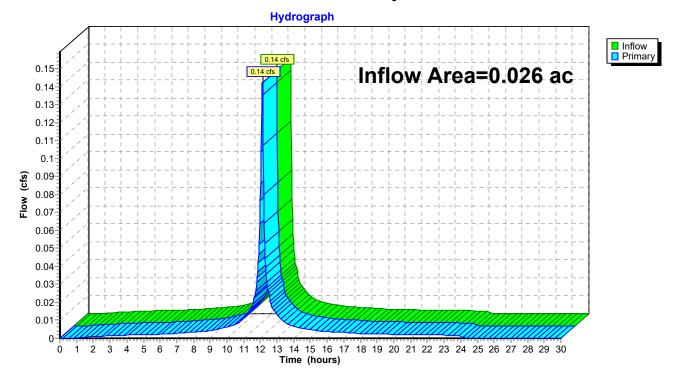
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 7.18 cfs potential flow) **2=Yard Drain** (Controls 0.00 cfs)


AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 ons LLC Page 76

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond AP-2: Front Lawn Rain Garden

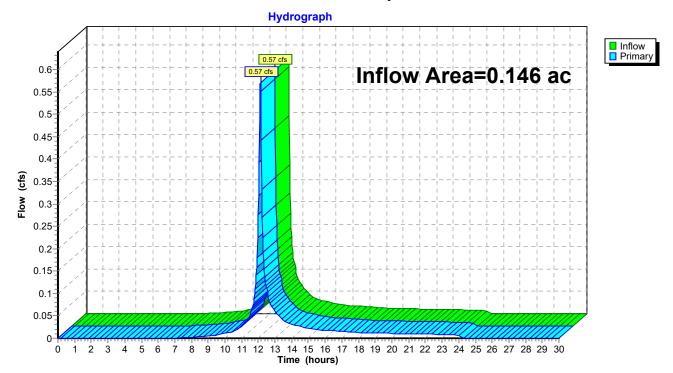


Pond AP-2: Front Lawn Rain Garden

Summary for Pond AP-3: Danbury Road

Inflow Are	a =	0.026 ac,100.00% Impervious, Inflow Depth = 5.15" for 10-yr event
Inflow	=	0.14 cfs @ 12.13 hrs, Volume= 0.011 af
Primary	=	0.14 cfs @ 12.13 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs



Pond AP-3: Danbury Road

Summary for Pond AP-4: Landscaped Area

Inflow Area =		0.146 ac,	1.46% Impervious, Inflow I	Depth = 3.14" for 10-yr event
Inflow	=	0.57 cfs @	12.13 hrs, Volume=	0.038 af
Primary	=	0.57 cfs @	12.13 hrs, Volume=	0.038 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

AMSW_Proposed-R8NRPrepared by SLR International CorporationRevisHydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Summary for Pond B-1: South Basin

Inflow Area =	0.116 ac, 17.66% Impervious, Inflow D	Depth = 3.53" for 10-yr event		
Inflow =	0.50 cfs @ 12.13 hrs, Volume=	0.034 af		
Outflow =	0.48 cfs @ 12.15 hrs, Volume=	0.029 af, Atten= 4%, Lag= 1.2 min		
Discarded =	0.00 cfs @ 12.15 hrs, Volume=	0.008 af		
Primary =	0.48 cfs @ 12.15 hrs, Volume=	0.021 af		
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 140.00' @ 12.15 hrs Surf.Area= 539 sf Storage= 383 cf

Plug-Flow detention time= 173.8 min calculated for 0.029 af (84% of inflow) Center-of-Mass det. time= 101.4 min (919.7 - 818.3)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	139.00)' 1,1 <i>°</i>	18 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
	1		1 1		
139.0 140.0	-	228 539	0 384	0 384	
141.0	00	929	734	1,118	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	138.00'	8.0" Round	Culvert	
			Inlet / Outlet I	PP, square edge headwall, Ke= 0.500 Invert= 138.00' / 137.60' S= 0.0100 '/' Cc= 0.900 ow Area= 0.35 sf	
#2	Device 1	139.90'	,	loriz. Yard Drain X 4.00 columns	
				= 0.600 in 18.0" Grate (71% open area) eir flow at low heads	
#3	Discarded	139.00'	0.400 in/hr E	Exfiltration over Surface area	

Discarded OutFlow Max=0.00 cfs @ 12.15 hrs HW=140.00' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.00 cfs)

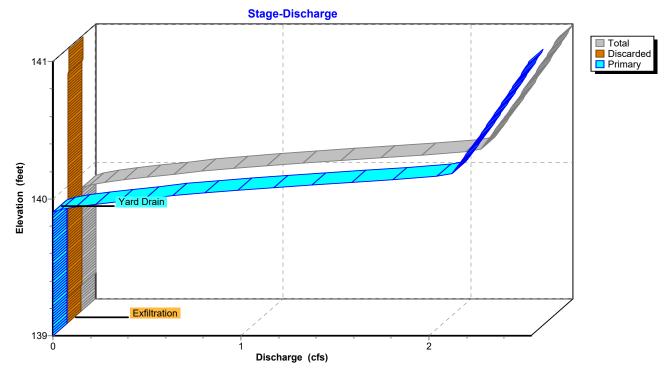
Primary OutFlow Max=0.48 cfs @ 12.15 hrs HW=140.00' (Free Discharge) 1=Culvert (Passes 0.48 cfs of 2.02 cfs potential flow) 2=Yard Drain (Weir Controls 0.48 cfs @ 1.03 fps)

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024

Page 80

AMSW_Proposed-R8

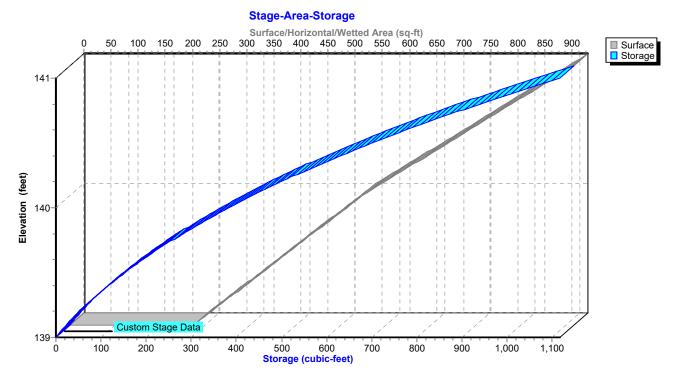
NRCC 24-hr C 10-yr Rainfall=5.39" Prepared by SLR International Corporation Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC


Hydrograph Inflow
Outflow 0.50 cfs Inflow Area=0.116 ac Discarded Primary 0.55 Peak Elev=140.00' 0.5 0.48 cfs Storage=383 cf 0.45 0.4 0.35 Flow (cfs) 0.3 0.25 0.2 0.15 0.1 0.05 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 Ò 1

Pond B-1: South Basin

AMS Wilton - Proposed Conditions

Page 81



AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024

Page 82

Pond B-1: South Basin

AMSW Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 83

Summary for Pond B-2: North Basin

Inflow Area = 0.154 ac, 7.18% Impervious, Inflow Depth = 3.63" for 10-yr event 0.68 cfs @ 12.13 hrs, Volume= Inflow = 0.047 af Outflow = 0.37 cfs @ 12.22 hrs, Volume= 0.047 af, Atten= 45%, Lag= 5.7 min Discarded = 0.035 af 0.03 cfs @ 12.22 hrs, Volume= Primary = 0.35 cfs @ 12.22 hrs, Volume= 0.012 af Routed to Pond AP-1 : Norwalk River

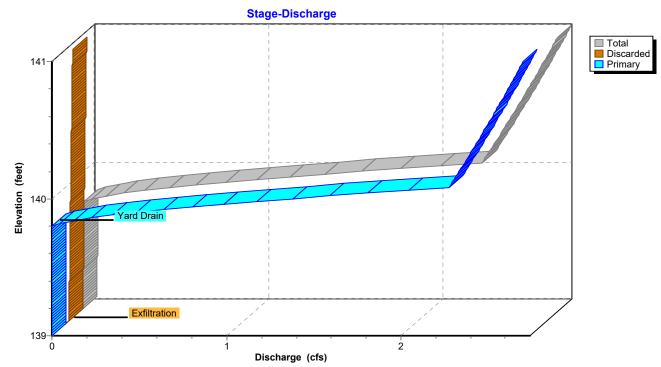
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.88' @ 12.22 hrs Surf.Area= 889 sf Storage= 650 cf

Plug-Flow detention time= 191.0 min calculated for 0.047 af (100% of inflow) Center-of-Mass det. time= 191.0 min (1,006.1 - 815.1)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	139.00)' 1,88	38 cf Custom	Stage Data (Pris	matic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
139.0		589	0	0	
140.0	00	930	760	760	
141.0	00	1,327	1,129	1,888	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	138.00'	10.0" Round	l Culvert	
			Inlet / Outlet I		eadwall, Ke= 0.500 7.00' S= 0.0050 '/' Cc= 0.900
#2	Device 1	139.80'		oriz. Yard Drain X	
					ate (71% open area)
#2	Discorded	120.00		ir flow at low heads	-
#3	Discarded	139.00'	1.250 IN/NF EX	xfiltration over Su	urface area

Discarded OutFlow Max=0.03 cfs @ 12.22 hrs HW=139.88' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.33 cfs @ 12.22 hrs HW=139.88' (Free Discharge) -1=Culvert (Passes 0.33 cfs of 2.17 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.33 cfs @ 0.91 fps)

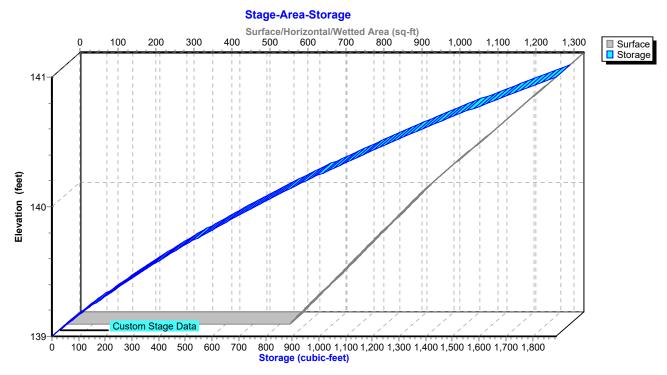

AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 Page 84

Hydrograph Inflow
Outflow 0.68 cfs Inflow Area=0.154 ac Discarded Primary 0.75 Peak Elev=139.88' 0.7 0.65 Storage=650 cf 0.6 0.55 0.5 0.37 cfs 0.45 Flow (cfs) 0.4 0.35 cfs 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 <u>0</u> 1

Pond B-2: North Basin



Pond B-2: North Basin

AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 Solutions LLC Page 85

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin

Summary for Pond S-1: Subsurface Infiltration System

Page 86

Inflow Area =	0.554 ac, 58	8.45% Impervious	, Inflow Depth = 4	4.30" for 10-yr event
Inflow =	2.76 cfs @	12.13 hrs, Volum	e= 0.199 a	f
Outflow =	2.02 cfs @	12.19 hrs, Volume	e= 0.168 a	f, Atten= 27%, Lag= 3.5 min
Discarded =	0.02 cfs @	5.58 hrs, Volum	e= 0.034 a	f
Primary =	2.00 cfs @	12.19 hrs, Volume	e= 0.134 a	f
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.25' @ 12.19 hrs Surf.Area= 0.039 ac Storage= 0.058 af

Plug-Flow detention time= 155.1 min calculated for 0.168 af (84% of inflow) Center-of-Mass det. time= 83.7 min (869.9 - 786.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	142.00'	0.036 af	11.00'W x 153.14'L x 3.50'H Field A
			0.135 af Overall - 0.044 af Embedded = 0.091 af x 40.0% Voids
#2A	142.50'	0.044 af	ADS_StormTech SC-740 +Cap x 42 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			42 Chambers in 2 Rows
		0.081 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	143.35'	12.0" Round Culvert
			L= 114.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 143.35' / 142.21' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	143.50'	6.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#4	Discarded	142.00'	0.400 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 5.58 hrs HW=142.04' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=1.99 cfs @ 12.19 hrs HW=144.24' (Free Discharge)

1=Culvert (Passes 1.99 cfs of 2.38 cfs potential flow)

-2=Orifice (Orifice Controls 1.99 cfs @ 3.38 fps)

-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-1: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

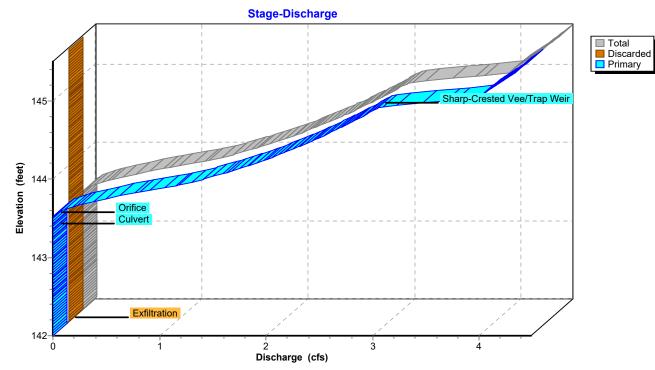
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

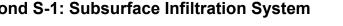
21 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 151.14' Row Length +12.0" End Stone x 2 = 153.14' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

42 Chambers x 45.9 cf = 1,929.5 cf Chamber Storage

5,895.8 cf Field - 1,929.5 cf Chambers = 3,966.3 cf Stone x 40.0% Voids = 1,586.5 cf Stone Storage

Chamber Storage + Stone Storage = 3,516.0 cf = 0.081 af Overall Storage Efficiency = 59.6% Overall System Size = 153.14' x 11.00' x 3.50'


42 Chambers 218.4 cy Field 146.9 cy Stone


AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 88

Hydrograph Inflow
Outflow 2.76 cfs Inflow Area=0.554 ac Discarded Primary 3 Peak Elev=144.25' Storage=0.058 af 2.02 cf 2.00 cfs 2 Flow (cfs) 0.02 cfs 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 Ò 1 5 6 7

Stage-Area-Storage Surface/Horizontal/Wetted Area (acres) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 Surface Storage 145 Elevation (feet) 144 143 ADS_StormTech SC-740 +Cap Field A 142 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0 Storage (acre-feet)

Pond S-1: Subsurface Infiltration System

Summary for Pond S-2: Subsurface Infiltration System

Page 90

Inflow Area =	1.838 ac,100.00% Impervious, Inflow [Depth = 5.15" for 10-yr event		
Inflow =	4.50 cfs @ 11.97 hrs, Volume=	0.789 af		
Outflow =	4.03 cfs @ 12.57 hrs, Volume=	0.789 af, Atten= 11%, Lag= 36.1 min		
Discarded =	0.50 cfs @10.44 hrs, Volume=	0.580 af		
Primary =	3.53 cfs @ 12.57 hrs, Volume=	0.209 af		
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.77' @ 12.57 hrs Surf.Area= 0.091 ac Storage= 0.186 af

Plug-Flow detention time= 58.6 min calculated for 0.788 af (100% of inflow) Center-of-Mass det. time= 58.5 min (808.2 - 749.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	141.50'	0.100 af	30.00'W x 131.78'L x 4.00'H Field A
			0.363 af Overall - 0.114 af Embedded = 0.249 af x 40.0% Voids
#2A	142.50'	0.114 af	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 6 Rows
		0.214 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	143.15'	15.0" Round Culvert
		L= 75.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 143.15' / 142.69' S= 0.0061 '/' Cc= 0.900
		n= 0.012, Flow Area= 1.23 sf
Device 1	143.64'	7.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
Discarded	141.50'	5.450 in/hr Exfiltration over Surface area
	Primary Device 1 Device 1	Primary 143.15' Device 1 143.64' Device 1 144.90'

Discarded OutFlow Max=0.50 cfs @ 10.44 hrs HW=141.54' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=3.52 cfs @ 12.57 hrs HW=144.77' (Free Discharge)

1=Culvert (Passes 3.52 cfs of 5.43 cfs potential flow)

-2=Orifice (Orifice Controls 3.52 cfs @ 4.40 fps)

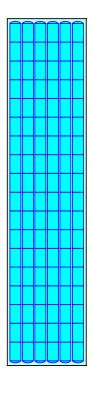
-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Pond S-2: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

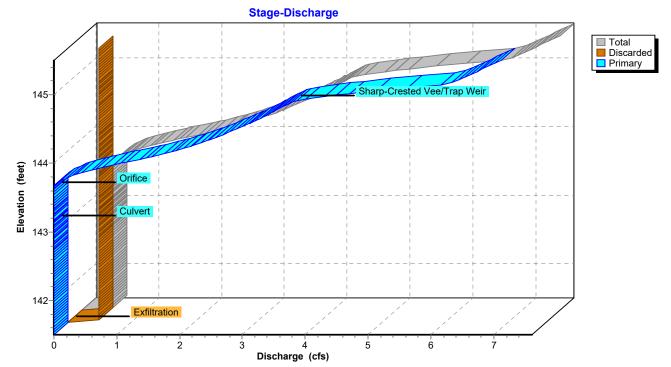

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 12.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

108 Chambers x 45.9 cf = 4,961.5 cf Chamber Storage

15,813.2 cf Field - 4,961.5 cf Chambers = 10,851.7 cf Stone x 40.0% Voids = 4,340.7 cf Stone Storage

Chamber Storage + Stone Storage = 9,302.2 cf = 0.214 af Overall Storage Efficiency = 58.8% Overall System Size = 131.78' x 30.00' x 4.00'

108 Chambers 585.7 cy Field 401.9 cy Stone



AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 92

Hydrograph Inflow
Outflow 4.50 cfs Inflow Area=1.838 ac Discarded Primary 5 4.03 Peak Elev=144.77' Storage=0.186 af 4 3.53 cfs 3 Flow (cfs) 2 1 0.50 ٥ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 1 2 3 4 5 6 Ż 8 0

Stage-Area-Storage
 Surface/Horizontal/Wetted Area (acres)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.035
 0.04
 0.045
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09
 SurfaceStorage 145 144 Elevation (feet) 143 ADS_StormTech SC-740 +Cap 142 Field A 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Ó

Storage (acre-feet)

Pond S-2: Subsurface Infiltration System

Summary for Pond S-3: Subsurface Infiltration System

Page 94

Inflow Area =	1.020 ac, 4	7.60% Impervious, Ir	flow Depth = 2.49" for 10-yr event	
Inflow =	2.86 cfs @	12.13 hrs, Volume=	0.212 af	
Outflow =	1.24 cfs @	12.25 hrs, Volume=	0.185 af, Atten= 57%, Lag= 7.4 min	
Discarded =	0.05 cfs @	8.19 hrs, Volume=	0.111 af	
Primary =	1.19 cfs @	12.25 hrs, Volume=	0.074 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 142.60' @ 12.25 hrs Surf.Area= 0.052 ac Storage= 0.077 af

Plug-Flow detention time= 239.4 min calculated for 0.184 af (87% of inflow) Center-of-Mass det. time= 177.3 min (951.0 - 773.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	140.40'	0.047 af	30.00'W x 74.82'L x 3.50'H Field A
			0.180 af Overall - 0.063 af Embedded = 0.117 af x 40.0% Voids
#2A	140.90'	0.063 af	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.110 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	141.84'	12.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 141.84' / 141.19' S= 0.0087 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	142.10'	7.0" Vert. Orifice X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	143.30'	5.0' long Weir Wall Cv= 2.62 (C= 3.28)
#4	Discarded	140.40'	1.050 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 8.19 hrs HW=140.44' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.18 cfs @ 12.25 hrs HW=142.60' (Free Discharge)

1=Culvert (Passes 1.18 cfs of 1.88 cfs potential flow)

-2=Orifice (Orifice Controls 1.18 cfs @ 2.41 fps)

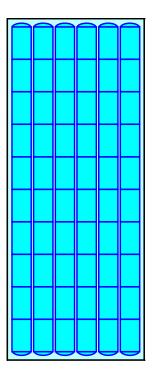
-3=Weir Wall (Controls 0.00 cfs)

Pond S-3: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

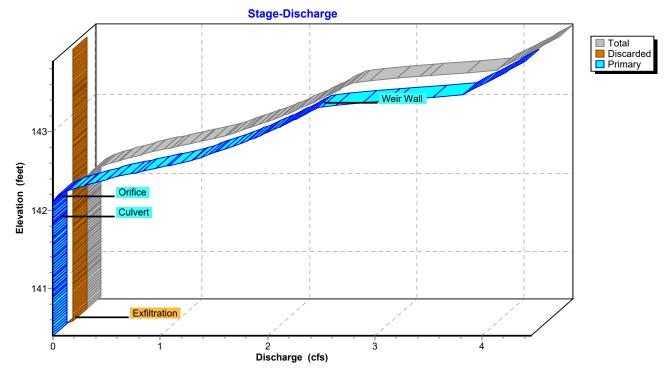

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' **Base Length** 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

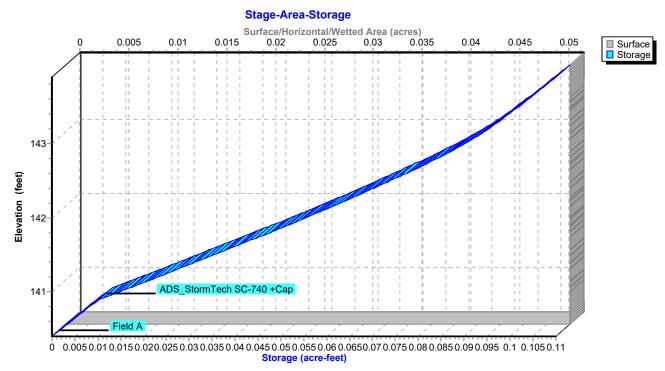
7,855.8 cf Field - 2,756.4 cf Chambers = 5,099.3 cf Stone x 40.0% Voids = 2,039.7 cf Stone Storage

Chamber Storage + Stone Storage = 4,796.1 cf = 0.110 af Overall Storage Efficiency = 61.1% Overall System Size = 74.82' x 30.00' x 3.50'

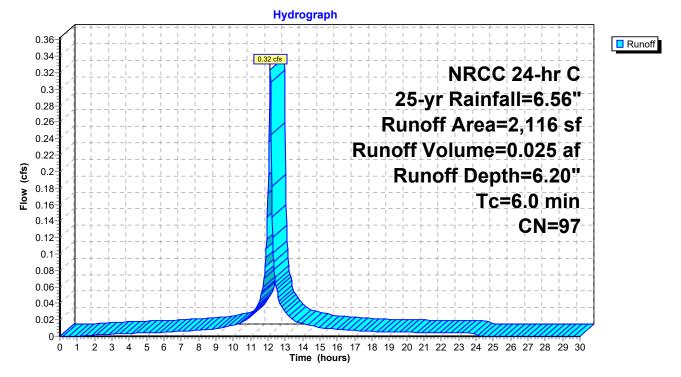
60 Chambers 291.0 cy Field 188.9 cy Stone



AMS Wilton - Proposed Conditions NRCC 24-hr C 10-yr Rainfall=5.39" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 96


Hydrograph Inflow
Outflow 2.86 cfs Inflow Area=1.020 ac Primary 3-Peak Elev=142.60' Storage=0.077 af 2 Flow (cfs) 1.24 cf 1.19 cfs 0.05 cfs 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 1 2 3 4 Ò

Pond S-3: Subsurface Infiltration System


Summary for Subcatchment PR-1: CCB 14

Runoff = 0.32 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 6.20" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	Area (sf)	CN	Description							
	2,045	98	Paved park	Paved parking, HSG D						
*	71	79	Landscaping, Good, HSG D							
	2,116	97	Weighted Average							
	71		3.36% Pervious Area							
	2,045		96.64% Im	pervious Ar	ea					
٦ miı)	c Length n) (feet)	Slop (ft/fl	,	Capacity (cfs)	Description					
6	.0		//		Direct Entry, Assumed minimum					

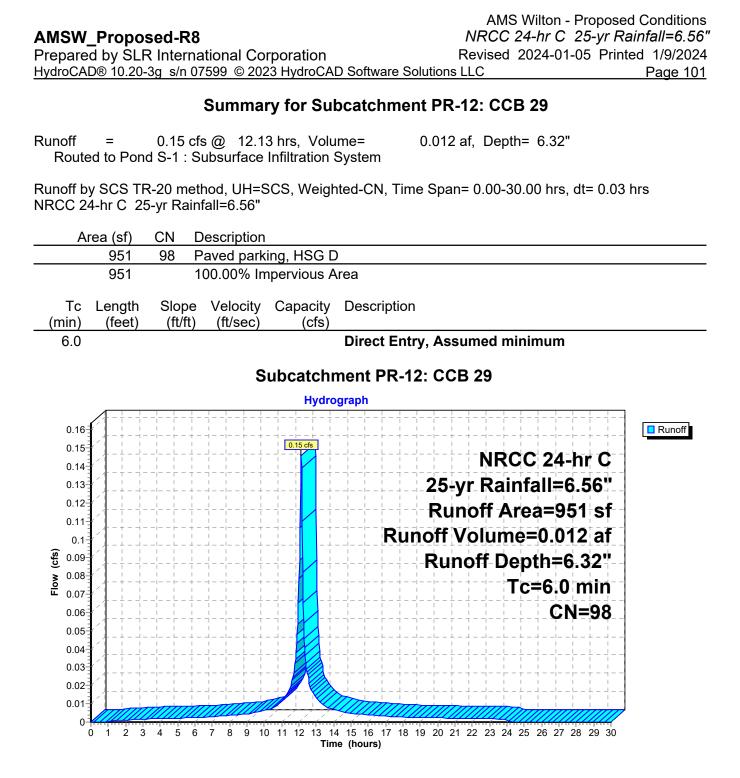
Subcatchment PR-1: CCB 14

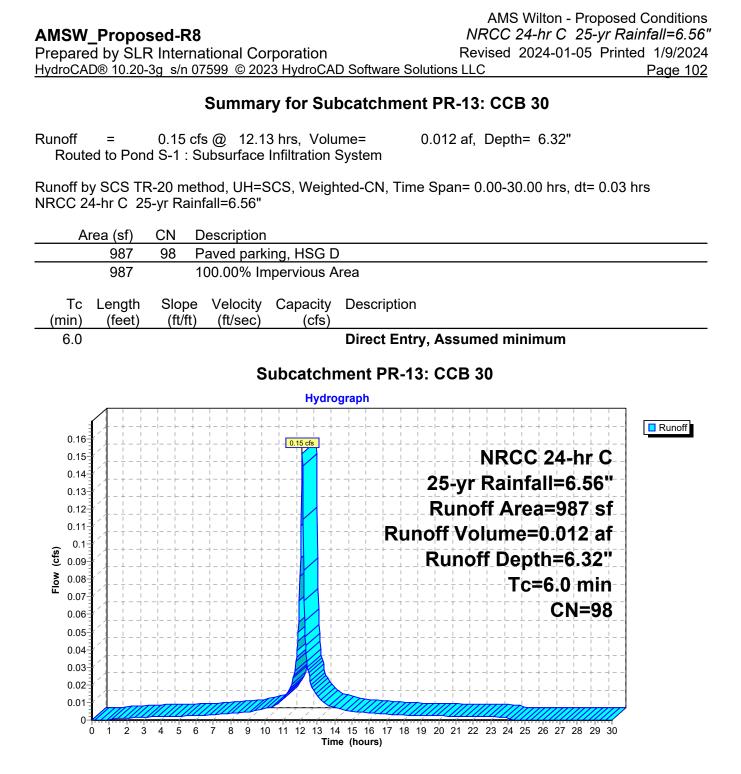
AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 ons LLC Page 98

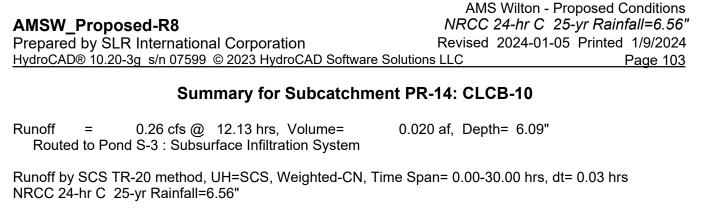
Summary for Subcatchment PR-10: CCB 28

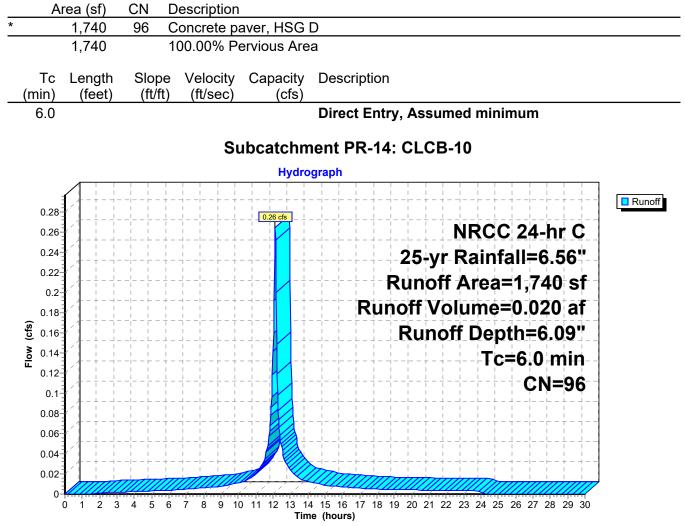
Runoff = 1.37 cfs @ 12.13 hrs, Volume= 0.104 af, Depth= 5.97" Routed to Pond S-1 : Subsurface Infiltration System

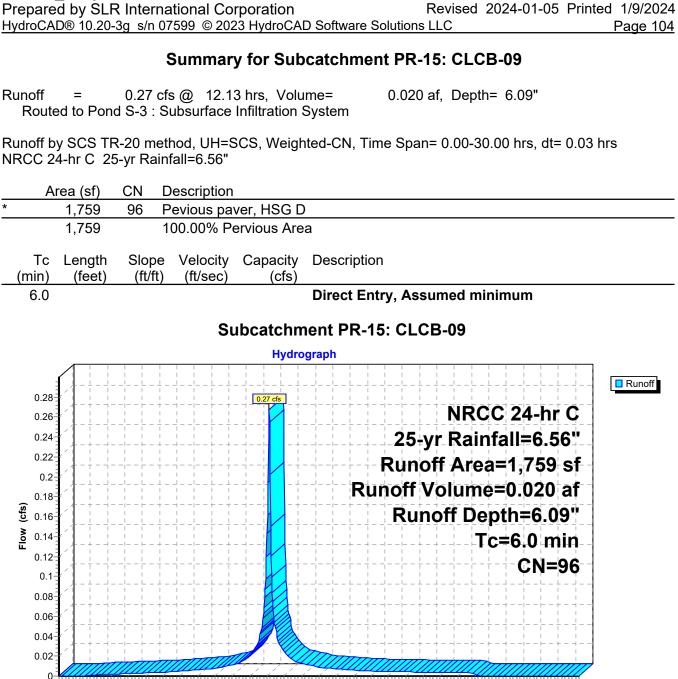

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"


А	rea (sf)	CN E	escription						
	7,450			ing, HSG D					
*	440		 80 >75% Grass cover, Good, HSG D 79 Landscaping, Good, HSG D 						
<u>~</u>	1,183				ISG D				
	9,073 1,623		Veighted A 7 89% Pei	verage vious Area					
	7,450			pervious Ar					
_									
Tc (min)	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry, Assumed minimum				
0.0					Direct Littiy, Assumed initiation				
			S	ubcatchr	ment PR-10: CCB 28				
				Hydro	ograph				
 Elow (cts) - - - - - - - - - - - - - - - - -			7 8 9 10		NRCC 24-hr C 25-yr Rainfall=6.56" Runoff Area=9,073 sf Runoff Volume=0.104 af Runoff Depth=5.97" Tc=6.0 min CN=95				


Summary for Subcatchment PR-11: Building Roof


Runoff = 12.29 cfs @ 12.13 hrs, Volume= Routed to Reach R1 : Roof Leader 0.968 af, Depth= 6.32"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

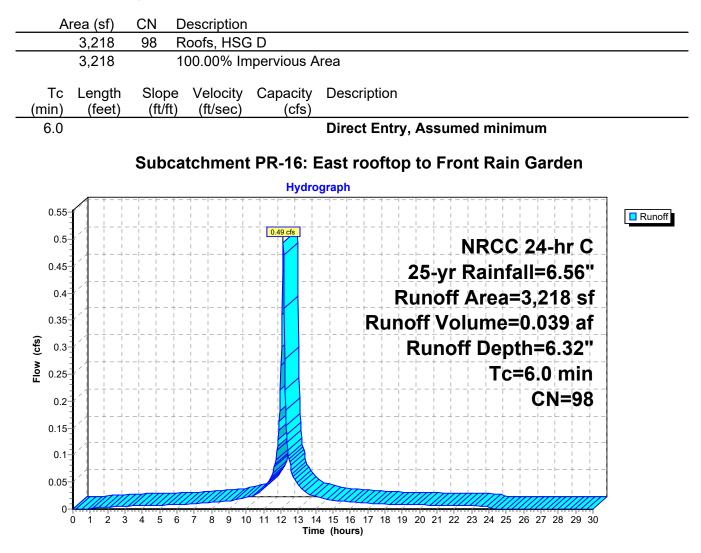


AMSW Proposed-R8

ż

3 4

0 1

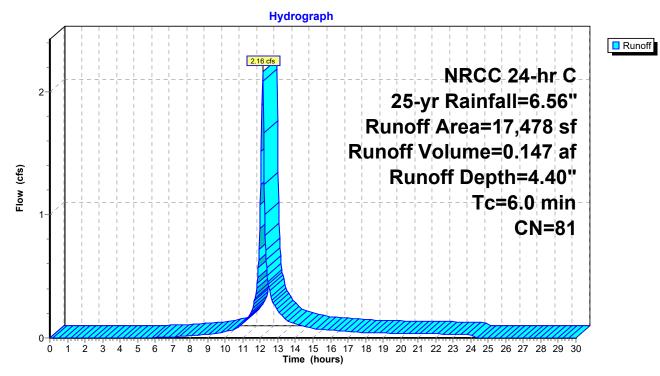

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56"

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Subcatchment PR-16: East rooftop to Front Rain Garden

Runoff = 0.49 cfs @ 12.13 hrs, Volume= Routed to Pond AP-2 : Front Lawn Rain Garden 0.039 af, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"


Summary for Subcatchment PR-17: Front Lawn

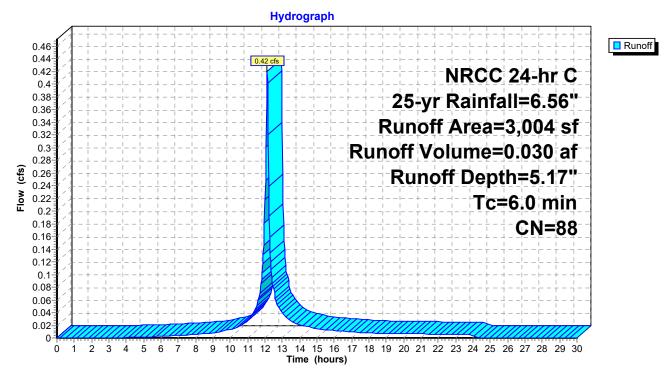
2.16 cfs @ 12.13 hrs, Volume= 0.147 af, Depth= 4.40" Runoff = Routed to Pond AP-2 : Front Lawn Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

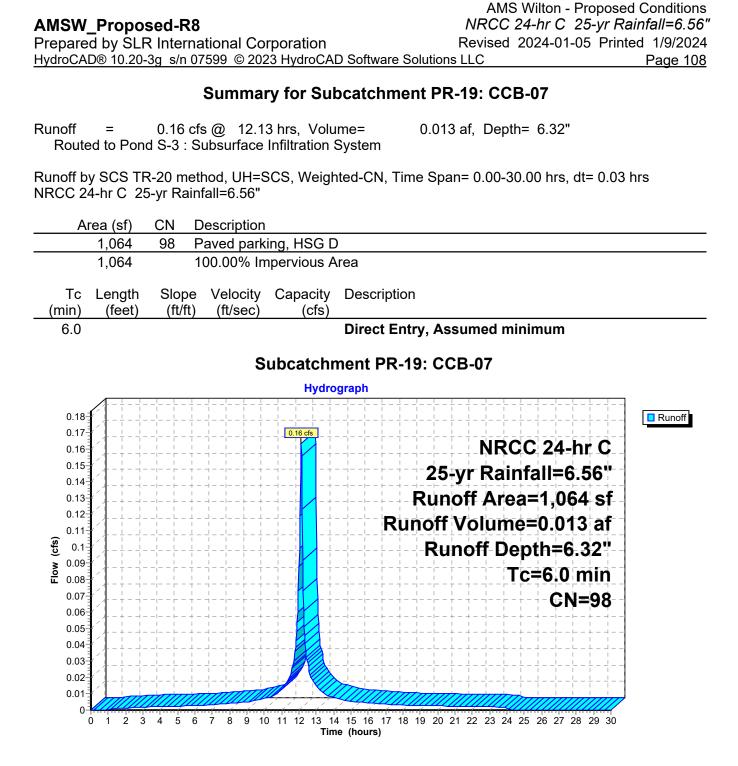
	Area (sf)	CN	Description							
	1,883	98	Paved park	Paved parking, HSG D						
	6,950	80	>75% Grass cover, Good, HSG D							
*	8,645	79	Landscapir	Landscaping, Good, HSG D						
	17,478	81	Weighted A	Weighted Average						
	15,595		89.23% Pervious Area							
	1,883		10.77% Impervious Area							
т	c Length	Slop	e Velocity	Capacity	Description					
ı mir)	•	(ft/f		(cfs)	Description					
	, , ,	(11/1	(1/360)	(015)						
6.	0				Direct Entry, Assumed minimum					

Subcatchment PR-17: Front Lawn

Page 106


Summary for Subcatchment PR-18: CCB-08

0.030 af, Depth= 5.17" Runoff 0.42 cfs @ 12.13 hrs, Volume= Routed to Pond S-3 : Subsurface Infiltration System


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

A	rea (sf)	CN	Description							
	1,482	98	Paved park	Paved parking, HSG D						
	192	80	>75% Grass cover, Good, HSG D							
*	1,330	79	Landscaping, Good, HSG D							
	3,004	88	Weighted Average							
	1,522		50.67% Pervious Area							
	1,482		49.33% Impervious Area							
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description					
6.0					Direct Entry, Assumed minimum					

Subcatchment PR-18: CCB-08

Page 107

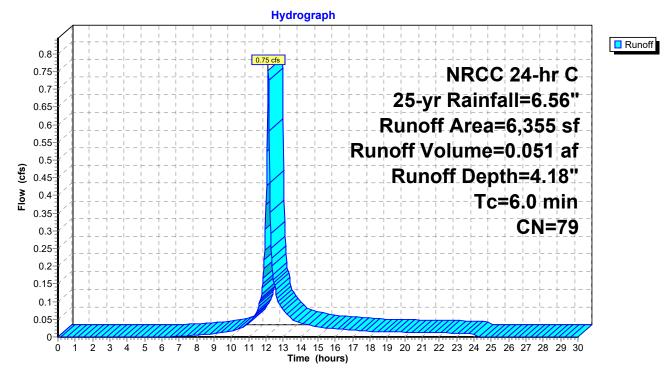
Summary for Subcatchment PR-2: CCB 10

Runoff = 1.31 cfs @ 12.13 hrs, Volume= 0.096 af, Depth= 5.62" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

A	vrea (sf)	sf) CN Description									
*	6,733	33 98 Paved park	ing, HSG C								
*	1,772		72 Landscaping, Good, HSG C								
	384		 74 >75% Grass cover, Good, HSG C 92 Weighted Average 								
	8,889 2,156										
	6,733		pervious Are	ea							
Tc	Length		Capacity	Description							
<u>(min)</u> 6.0	(feet)	eet) (ft/ft) (ft/sec)	(cfs)	Direct Entry Accuracy minimum							
0.0				Direct Entry, Assumed minimum							
		\$	Subcatchi	ment PR-2: CCB 10							
			Hydro	graph							
-1 - Flow (cts) - - - - - - - - - - - - - - - - - - -				NRCC 24-hr C 25-yr Rainfall=6.56" Runoff Area=8,889 sf Runoff Volume=0.096 af Runoff Depth=5.62" Tc=6.0 min CN=92							

Summary for Subcatchment PR-20: South of entrance drive

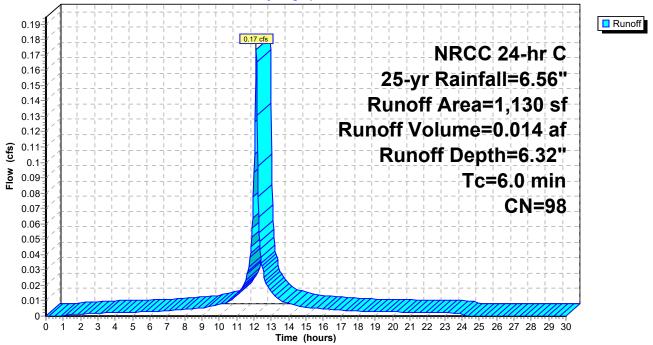

Runoff = 0.75 cfs @ 12.13 hrs, Volume= 0.0 Routed to Pond AP-4 : Landscaped Area

0.051 af, Depth= 4.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

A	rea (sf)	CN	Description							
	93	98	Paved park	Paved parking, HSG D						
	755	80	>75% Grass cover, Good, HSG D							
*	5,507	79	Landscapin	Landscaping, Good, HSG D						
	6,355 6,262 93	79	Weighted A 98.54% Per 1.46% Impe	rvious Area						
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description					
6.0					Direct Entry, Assumed minimum					

Subcatchment PR-20: South of entrance drive

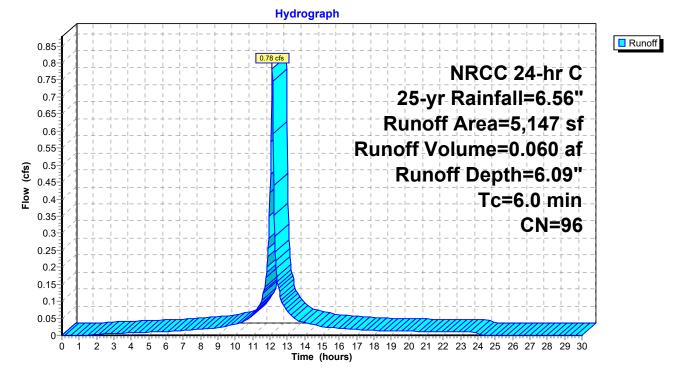

Summary for Subcatchment PR-21: Danbury Rd

0.17 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-3 : Danbury Road

0.014 af, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

A	rea (sf)	CN	Description						
	1,130	98	98 Paved parking, HSG D						
	1,130		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0	Direct Entry, Assumed minimum								
Subcatchment PR-21: Danbury Rd Hydrograph									


Summary for Subcatchment PR-3: CCB 07

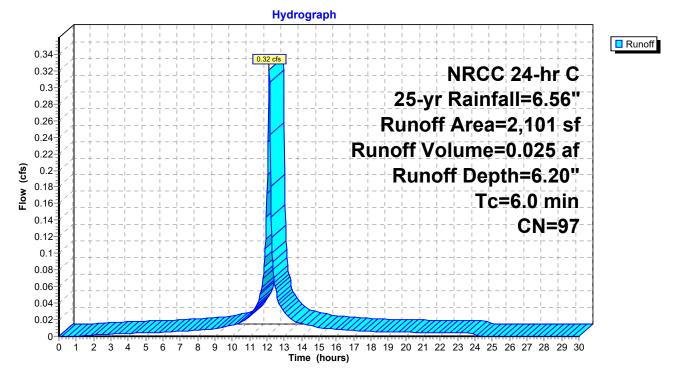
0.060 af, Depth= 6.09" Runoff 0.78 cfs @ 12.13 hrs, Volume= = Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	A	rea (sf)	CN	Description					
*		4,715	98	Paved parking, HSG C					
*		432	72	Landscaping, Good, HSG C					
		5,147	96	Weighted A	0				
		432		8.39% Perv	vious Area				
		4,715		91.61% Im	pervious Ar	ea			
	Тс	Length	Slop	,	Capacity	Description			
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)				
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-3: CCB 07

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024


Page 112

Runoff = 0.32 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.025 af, Depth= 6.20"

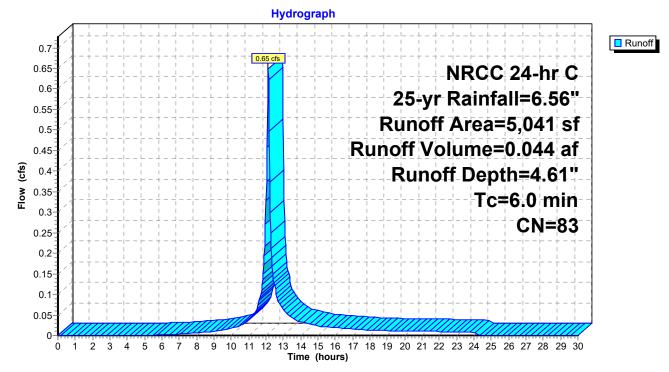
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	Area (sf)	CN	Description						
	2,026	98	Paved park	Paved parking, HSG D					
*	75	79	Landscaping, Good, HSG D						
	2,101	97	Weighted A	verage					
	75		3.57% Perv	vious Area					
	2,026		96.43% Im	pervious Ar	ea				
т	c Length	Slop	e Velocity	Capacity	Description				
(mir	•	(ft/f	,	(cfs)	· · · P · ·				
6.	0				Direct Entry, Assigned minimum				

Subcatchment PR-4: CCB 06

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 LLC Page 113

Summary for Subcatchment PR-5: South Basin


0.65 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond B-1 : South Basin

0.044 af, Depth= 4.61"

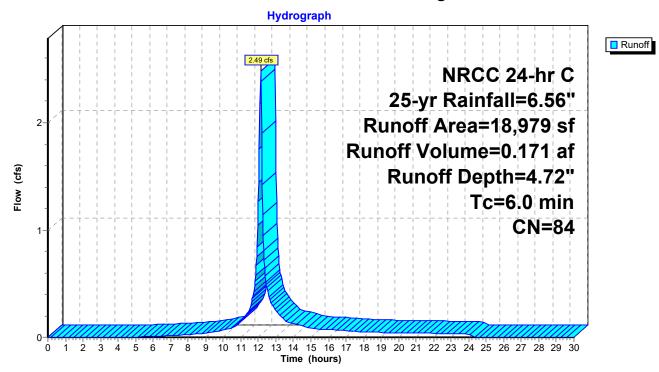
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

_	A	rea (sf)	CN	Description					
*		595	96	Permable F	aver, HSG	С			
*		366	96	Gravel surfa	ace, HSG (C			
*		2,205	72	Landscapin	g, Good, H	ISG C			
*		890	98	Paved park	ing, HSG C				
_		985	80	>75% Gras	s cover, Go	bod, HSG D			
		5,041	83	3 Weighted Average					
		4,151		82.34% Pe	rvious Area				
		890		17.66% Imp	pervious Ar	ea			
	Тс	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-5: South Basin

Page 114

Summary for Subcatchment PR-6: West along river


Runoff = 2.49 cfs @ 12.13 hrs, Volume= 0 Routed to Pond AP-1 : Norwalk River

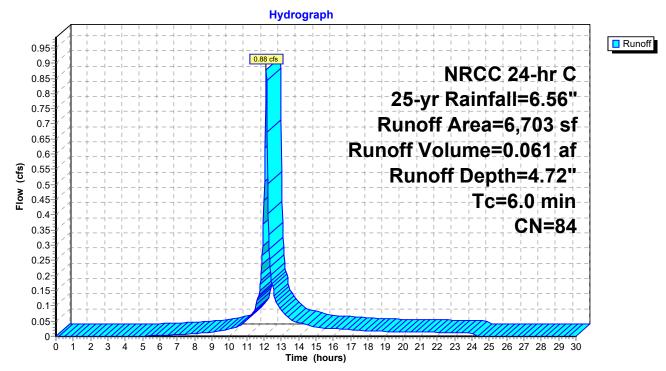
0.171 af, Depth= 4.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	Area (sf)	CN	Description							
*	4,195	96	Permeable	paver, HSC	G D					
	461	96	Gravel surfa	ace, HSG [D					
	911	98	Paved park	Paved parking, HSG D						
	2,775	80	>75% Gras	>75% Grass cover, Good, HSG D						
*	6,489	79	Landscapin	Landscaping, Good, HSG D						
	4,148	77	Woods, Go	od, HSG D						
	18,979	84	Weighted A	verage						
	18,068		95.20% Pe	rvious Area	a					
	911		4.80% Impe	ervious Are	ea					
-	Tc Length	n Slop	be Velocity	Capacity	Description					
(mi	in) (feet)) (ft/	ft) (ft/sec)	(cfs)						
6	6.0				Direct Entry, Assumed minimum					

Subcatchment PR-6: West along river

Summary for Subcatchment PR-7: North basin


0.88 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond B-2 : North Basin

0.061 af, Depth= 4.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	A	rea (sf)	CN	Description					
		453	96	Gravel surfa	Gravel surface, HSG D				
*		1,031	96	Permeable	paver, HSC	G D			
		445	80	>75% Gras	s cover, Go	ood, HSG D			
*		3,601	79	Landscapin	g, Good, H	SG D			
		692	77	Woods, Go	od, HSG D				
		481	98	Paved park	ing, HSG D				
		6,703	84	Weighted A	verage				
		6,222		92.82% Pe	rvious Area				
		481		7.18% Impe	ervious Are	a			
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-7: North basin

Page 116

Summary for Subcatchment PR-7B: CCB 26

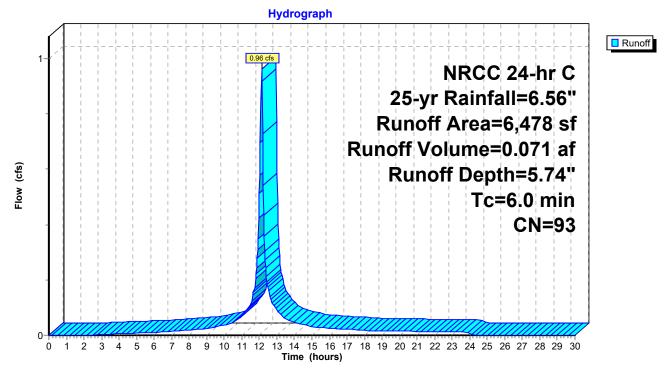
Runoff = 0.65 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.048 af, Depth= 5.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

	Area (sf)	CN	Description			
	3,518	98	Paved park	ing, HSG D		
*	797	79	Landscapin	ig, Good, H	SG D	
	4,315	94	Weighted A	verage		
	797		18.47% Pe	rvious Area		
	3,518		81.53% Impervious Area			
Tc (min)	5	Slop (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry, Assumed minimum	

Subcatchment PR-7B: CCB 26

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 LLC Page 117


Summary for Subcatchment PR-8: CCB 26A

Runoff = 0.96 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.071 af, Depth= 5.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

A	rea (sf)	CN	Description				
	4,737	98	Paved park	ing, HSG D			
	1,741	79	Landscapin	ig, Good, H	SG D		
	6,478	93	Weighted Average				
	1,741		26.88% Pervious Area				
	4,737		73.12% Impervious Area				
Tc nin)	Length (feet)			Capacity (cfs)	Description		
6.0					Direct Entry, Assumed minimum		
	Tc nin)	1,741 6,478 1,741 4,737 Tc Length nin) (feet)	4,737 98 1,741 79 6,478 93 1,741 4,737 Tc Length Slop nin) (feet) (ft/ft	4,737 98 Paved park 1,741 79 Landscapin 6,478 93 Weighted A 1,741 26.88% Perestrict 4,737 73.12% Imp Tc Length Slope Velocity nin) (feet) (ft/ft) (ft/sec)	4,73798Paved parking, HSG D1,74179Landscaping, Good, H6,47893Weighted Average1,74126.88% Pervious Area4,73773.12% Impervious ArTcLengthSlopeVelocityCapacity(ft/ft)(ft/sec)(cfs)		

Subcatchment PR-8: CCB 26A

Summary for Subcatchment PR-9: CCB 27

1.78 cfs @ 12.13 hrs, Volume= 0.124 af, Depth= 4.94" Runoff = Routed to Pond S-1 : Subsurface Infiltration System

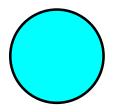
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 25-yr Rainfall=6.56"

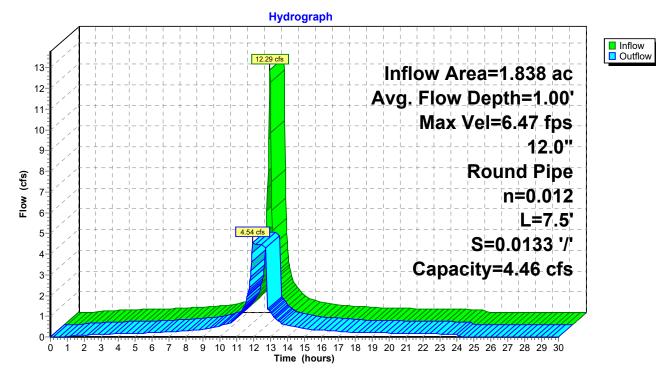
Ar	ea (sf)	CN D	escription				
	4,730			ing, HSG D			
	817				ood, HSG D		
*	7,594			g, Good, H	ISG D		
	13,141		Veighted A				
	8,411			vious Area			
	4,730	3	5.99% imp	ervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry	, Assumed minimum	
			-				
			S	Subcatch	ment PR-9:	CCB 27	
				Hydro	ograph		
Flow (cfs)					Ru Rune	NRCC 24-hr C 25-yr Rainfall=6.56" noff Area=13,141 sf off Volume=0.124 af Runoff Depth=4.94" Tc=6.0 min CN=86	Runoff

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" **AMSW** Proposed-R8 Revised 2024-01-05 Printed 1/9/2024 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Summary for Reach R1: Roof Leader


Page 120


Inflow Area = 1.838 ac,100.00% Impervious, Inflow Depth = 6.32" for 25-yr event 12.29 cfs @ 12.13 hrs, Volume= Inflow = 0.968 af Outflow = 4.54 cfs @ 11.95 hrs, Volume= 0.968 af, Atten= 63%, Lag= 0.0 min Routed to Pond S-2 : Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Max. Velocity= 6.47 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.19 fps, Avg. Travel Time= 0.0 min

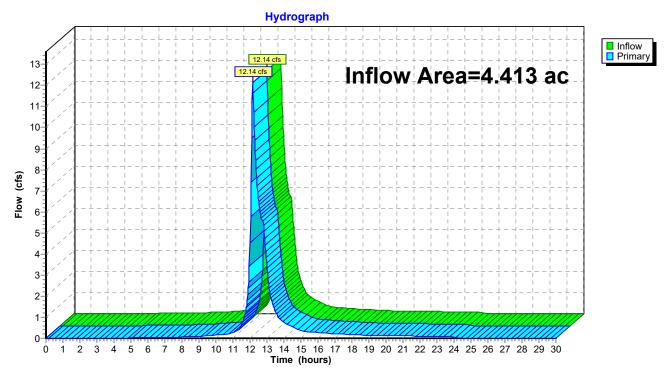
Peak Storage= 6 cf @ 11.97 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.46 cfs

12.0" Round Pipe n= 0.012 Length= 7.5' Slope= 0.0133 '/' Inlet Invert= 142.20', Outlet Invert= 142.10'

Reach R1: Roof Leader

AMSW_Proposed-R8

Stage-Discharge 1 Primary Depth (feet) 0-2 3 4 1 0 Discharge (cfs) **Reach R1: Roof Leader** Stage-Storage Storage Depth (feet) 0-2 4 1 5 Ó ż


Storage (cubic-feet)

Reach R1: Roof Leader

Summary for Pond AP-1: Norwalk River

Inflow Are	a =	4.413 ac, 66.52% Impervious, Inflow Depth = 2.70" for 25-yr event
Inflow	=	12.14 cfs @ 12.15 hrs, Volume= 0.992 af
Primary	=	12.14 cfs @ 12.15 hrs, Volume= 0.992 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Rain Garden

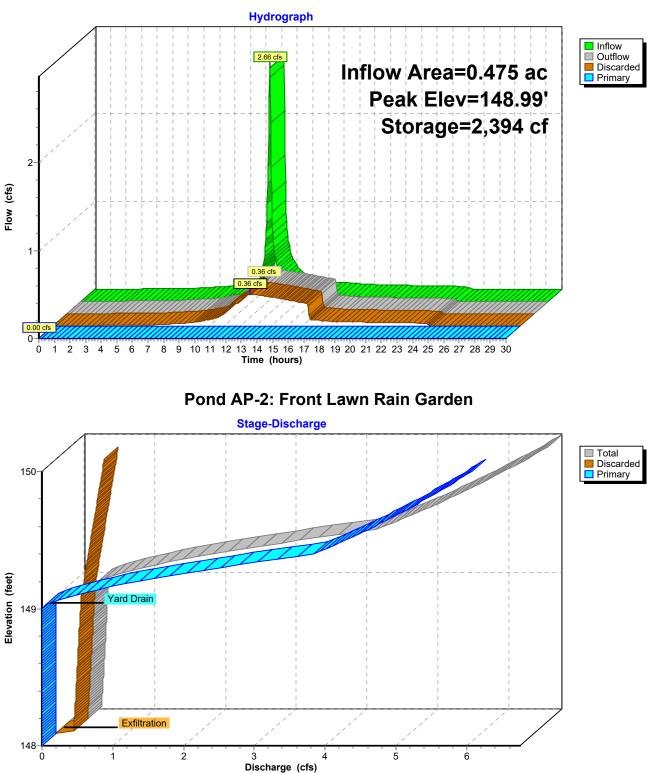
Page 123

Inflow Area =	0.475 ac, 24.65% Impervious, Inflow De	epth = 4.70" for 25-yr event				
Inflow =	2.66 cfs @ 12.13 hrs, Volume=	0.186 af				
Outflow =	0.36 cfs @ 12.68 hrs, Volume=	0.186 af, Atten= 87%, Lag= 33.1 min				
Discarded =	0.36 cfs @ 12.68 hrs, Volume=	0.186 af				
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af				
Routed to Pond S-3 : Subsurface Infiltration System						

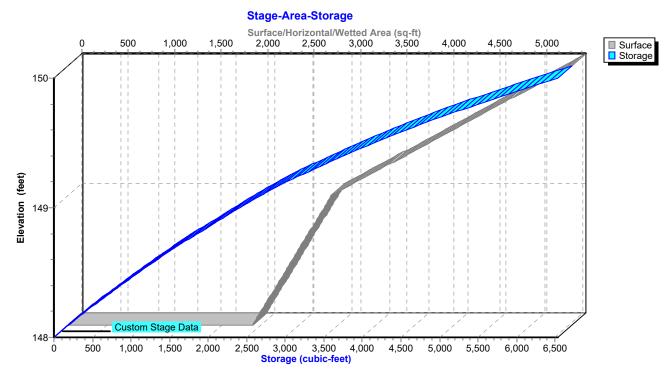
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 148.99' @ 12.68 hrs Surf.Area= 2,829 sf Storage= 2,394 cf

Plug-Flow detention time= 48.2 min calculated for 0.186 af (100% of inflow) Center-of-Mass det. time= 48.2 min (849.0 - 800.8)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	148.00'	6,53	36 cf Custom	Stage Data (Prismatic)Liste	ed below (Recalc)		
Elevatio (fee 148.0 149.0	t) 00 00	urf.Area (sq-ft) 1,985 2,833	Inc.Store (cubic-feet) 0 2,409	Cum.Store (cubic-feet) 0 2,409			
150.0	0	5,420	4,127	6,536			
Device	Routing	Invert	Outlet Device	S			
#1 Primary 145.90'		Inlet / Outlet I	l Culvert P, square edge headwall, Ke nvert= 145.90' / 145.55' S= w Area= 1.23 sf				
#2	Device 1	149.00'	3.6" x 0.9" Horiz. Yard Drain X 4.00 columns X 14 rows C= 0.600 in 18.0" Grate (71% open area) Limited to weir flow at low heads				
#3	Discarded	148.00'	5.450 in/hr E	150 in/hr Exfiltration over Surface area			


Discarded OutFlow Max=0.36 cfs @ 12.68 hrs HW=148.99' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.36 cfs)

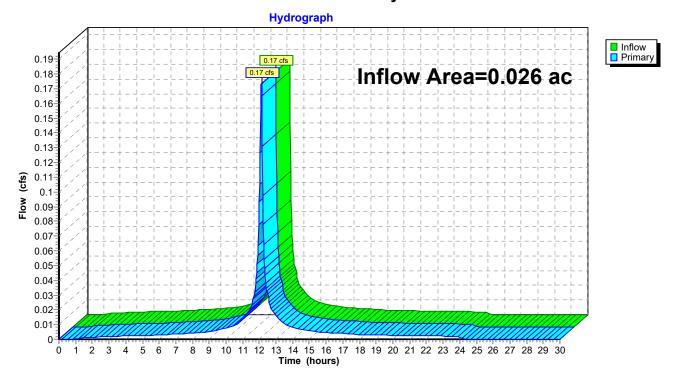
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 7.18 cfs potential flow) **1**-2=Yard Drain (Controls 0.00 cfs)


AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 utions LLC Page 124

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond AP-2: Front Lawn Rain Garden

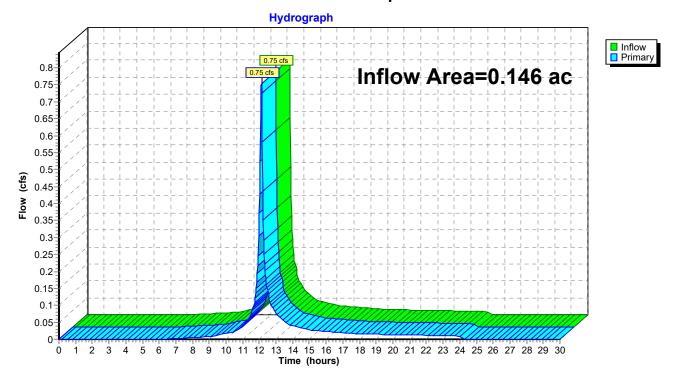


Pond AP-2: Front Lawn Rain Garden

Summary for Pond AP-3: Danbury Road

Inflow Are	a =	0.026 ac,100.00% Impervious, Inflow Depth = 6.32" for 25-yr event
Inflow	=	0.17 cfs @ 12.13 hrs, Volume= 0.014 af
Primary	=	0.17 cfs @ 12.13 hrs, Volume= 0.014 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs



Pond AP-3: Danbury Road

Summary for Pond AP-4: Landscaped Area

Inflow Are	a =	0.146 ac,	1.46% Impervious, Inflow [Depth = 4.18" for 25-yr event
Inflow	=	0.75 cfs @	12.13 hrs, Volume=	0.051 af
Primary	=	0.75 cfs @	12.13 hrs, Volume=	0.051 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

AMSW Proposed-R8 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Summary for Pond B-1: South Basin

Inflow Area =	0.116 ac, 1	7.66% Impervious,	Inflow Depth = 4.61 "	for 25-yr event		
Inflow =	0.65 cfs @	12.13 hrs, Volume	= 0.044 af	-		
Outflow =	0.63 cfs @	12.15 hrs, Volume	= 0.039 af, Att	en= 3%, Lag= 1.1 min		
Discarded =	0.01 cfs @	12.15 hrs, Volume	= 0.008 af	-		
Primary =	0.62 cfs @	12.15 hrs, Volume	= 0.031 af			
Routed to Pond AP-1 : Norwalk River						

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 140.02' @ 12.15 hrs Surf.Area= 546 sf Storage= 393 cf

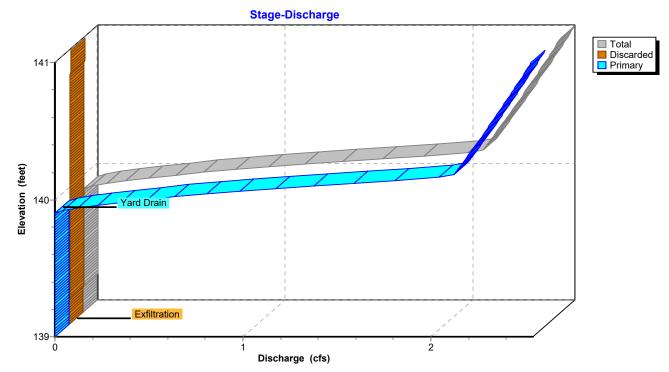
Plug-Flow detention time= 139.8 min calculated for 0.039 af (88% of inflow) Center-of-Mass det. time= 79.7 min (889.6 - 809.9)

Volume	Inver	t Avail.Sto	rage Storage	Description		
#1	139.00	' 1,11	8 cf Custom	Stage Data (Prismatic)Listed below (Red	calc)	
Elevatio	on S	urf.Area	Inc.Store	Cum.Store		
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)		
139.0	00	228	0	0		
140.0	00	539	384	384		
141.0	00	929	734	1,118		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	138.00'	8.0" Round	Culvert		
	2		L= 40.0' CPP, square edge headwall, Ke= 0.500			
			Inlet / Outlet I	nvert= 138.00' / 137.60' S= 0.0100 '/' Co	= 0.900	
			n= 0.012, Flo	w Area= 0.35 sf		
#2	Device 1	139.90'	,			
			X 14 rows C=	0.600 in 18.0" Grate (71% open area)		
			Limited to wei			
#3	Discarded	139.00'	0.400 in/hr Exfiltration over Surface area			

Discarded OutFlow Max=0.01 cfs @ 12.15 hrs HW=140.02' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.62 cfs @ 12.15 hrs HW=140.02' (Free Discharge) -1=Culvert (Passes 0.62 cfs of 2.03 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.62 cfs @ 1.12 fps)

Page 128

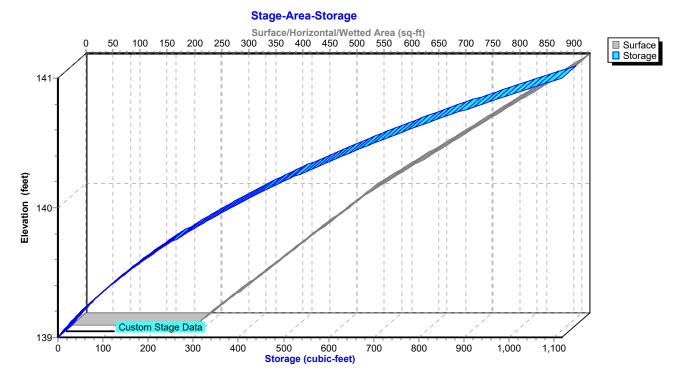

AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Hydrograph Inflow
Outflow 0.65 cfs Inflow Area=0.116 ac Discarded Primary 0.7 Peak Elev=140.02' 0.62 cfs 0.65 Storage=393 cf 0.6 0.55 0.5 0.45 Flow (cfs) 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 5 6 7 8 9 10 11 12 <u>0</u> 1

Pond B-1: South Basin

Pond B-1: South Basin


AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 Page 129

AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024

Page 130

Pond B-1: South Basin

AMSW Proposed-R8

Prepared by SLR International Corporation

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 131

Summary for Pond B-2: North Basin

Inflow Area = 0.154 ac, 7.18% Impervious, Inflow Depth = 4.72" for 25-yr event 0.88 cfs @ 12.13 hrs, Volume= Inflow = 0.061 af Outflow = 0.78 cfs @ 12.16 hrs, Volume= 0.061 af, Atten= 11%, Lag= 2.2 min 0.03 cfs @ 12.16 hrs, Volume= Discarded = 0.038 af Primary = 0.76 cfs @ 12.16 hrs, Volume= 0.022 af Routed to Pond AP-1 : Norwalk River

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.93' @ 12.16 hrs Surf.Area= 907 sf Storage= 699 cf

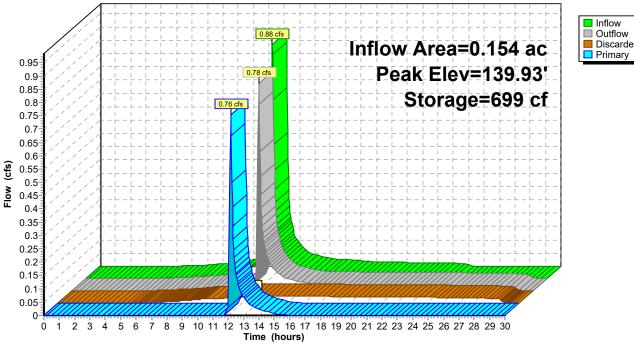
Plug-Flow detention time= 167.4 min calculated for 0.061 af (100% of inflow) Center-of-Mass det. time= 167.5 min (974.4 - 806.9)

Inver	t Avail.Sto	rage Storage	Description		
139.00)' 1,88	38 cf Custom	Stage Data (Pris	smatic)Listed below (Recalc)	
		Inc.Store	Cum.Store		
t)	(sq-ft)	(cubic-feet)	(cubic-feet)		
0	589	0	0		
0	930	760	760		
0	1,327	1,129	1,888		
		,	,		
Routing	Invert	Outlet Devices	S		
Primary	138.00'	10.0" Round	Culvert		
,		L= 200.0' CPP, square edge headwall, Ke= 0.500			
			, I O	37.00' S= 0.0050 '/' Cc= 0.900	
		n= 0.012. Flo	w Area= 0.55 sf		
			X 4.00 columns		
		rate (71% open area)			
Limited to weir flow at low heads				· · · · · · · · · · · · · · · · · · ·	
Discarded	139.00'				
)	139.00 on S t) 00 00 00 Routing Primary Device 1	139.00' 1,88 on Surf.Area t) (sq-ft) 00 589 00 930 00 1,327 Routing Invert Primary 138.00' Device 1 139.80' Discarded 139.00'	139.00' 1,888 cf Custom on Surf.Area Inc.Store t) (sq-ft) (cubic-feet) 00 589 0 00 930 760 00 1,327 1,129 Routing Invert Outlet Device Primary 138.00' 10.0" Round L= 200.0' CF Inlet / Outlet In n= 0.012, Flo Device 1 139.80' 3.6" x 0.9" He X 14 rows C= Limited to wei	139.00'1,888 cfCustom Stage Data (Prince Cum.Store (cubic-feet)onSurf.AreaInc.StoreCum.Store (cubic-feet)t)(sq-ft)(cubic-feet)(cubic-feet)005890000930760760001,3271,1291,888RoutingInvertPrimary138.00'10.0" Round Culvert L= 200.0'L= 200.0'CPP, square edge f Inlet / Outlet Invert=138.00' / 1 n= 0.012, Flow Area=Device 1139.80'3.6" x 0.9" Horiz. Yard Drain X 14 rows C= 0.600 in 18.0" Gi Limited to weir flow at low head Discarded139.00'Discarded139.00'1.250 in/hr Exfiltration over S	

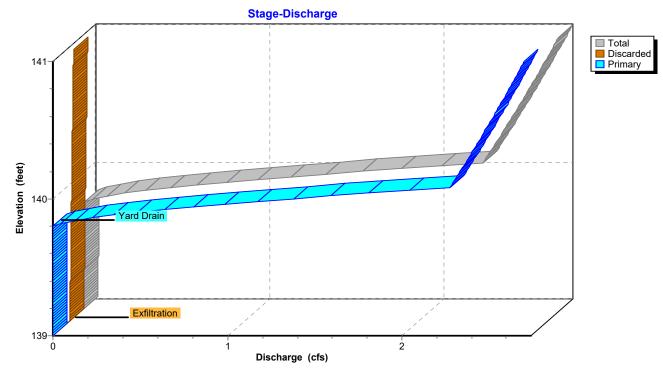
Discarded OutFlow Max=0.03 cfs @ 12.16 hrs HW=139.93' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.73 cfs @ 12.16 hrs HW=139.93' (Free Discharge) -1=Culvert (Passes 0.73 cfs of 2.20 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.73 cfs @ 1.18 fps)

AMSW_Proposed-R8

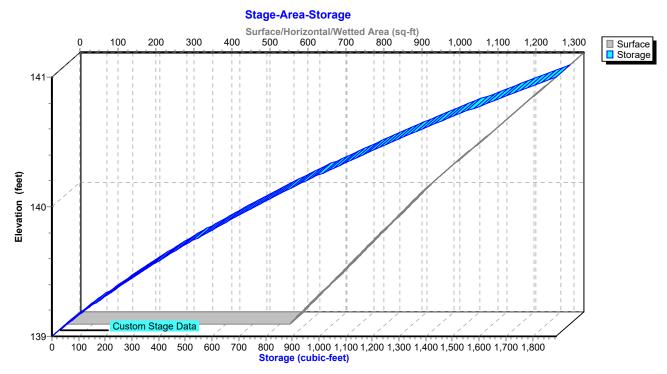

Prepared by SLR International Corporation Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 132

s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 132
Pond B-2: North Basin
Hydrograph


Outflow
Discarded
Primary

AMS Wilton - Proposed Conditions

NRCC 24-hr C 25-yr Rainfall=6.56"


Pond B-2: North Basin

AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 olutions LLC Page 133

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin

Summary for Pond S-1: Subsurface Infiltration System

Page 134

Inflow Area =	0.554 ac, 5	58.45% Impervious	, Inflow Depth =	5.44" for 25-yr event	
Inflow =	3.45 cfs @	12.13 hrs, Volum	e= 0.251	af	
Outflow =	2.44 cfs @	12.19 hrs, Volum	e= 0.220	af, Atten= 29%, Lag= 3	.7 min
Discarded =	0.02 cfs @	4.44 hrs, Volum	e= 0.035	af	
Primary =	2.42 cfs @	12.19 hrs, Volum	e= 0.185	af	
Routed to Pond	AP-1 : Norw	/alk River			

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.48' @ 12.19 hrs Surf.Area= 0.039 ac Storage= 0.063 af

Plug-Flow detention time= 133.3 min calculated for 0.220 af (88% of inflow) Center-of-Mass det. time= 72.7 min (853.0 - 780.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	142.00'	0.036 af	11.00'W x 153.14'L x 3.50'H Field A
			0.135 af Overall - 0.044 af Embedded = 0.091 af x 40.0% Voids
#2A	142.50'	0.044 af	ADS_StormTech SC-740 +Cap x 42 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			42 Chambers in 2 Rows
		0.081 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	143.35'	12.0" Round Culvert
			L= 114.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 143.35' / 142.21' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	143.50'	6.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#4	Discarded	142.00'	0.400 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 4.44 hrs HW=142.04' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=2.41 cfs @ 12.19 hrs HW=144.47' (Free Discharge)

1=Culvert (Passes 2.41 cfs of 2.98 cfs potential flow)

-2=Orifice (Orifice Controls 2.41 cfs @ 4.09 fps)

-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-1: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

21 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 151.14' Row Length +12.0" End Stone x 2 = 153.14' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

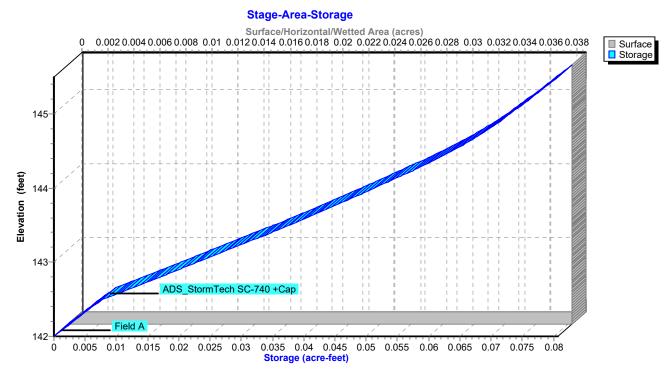
42 Chambers x 45.9 cf = 1,929.5 cf Chamber Storage

5,895.8 cf Field - 1,929.5 cf Chambers = 3,966.3 cf Stone x 40.0% Voids = 1,586.5 cf Stone Storage

Chamber Storage + Stone Storage = 3,516.0 cf = 0.081 af Overall Storage Efficiency = 59.6% Overall System Size = 153.14' x 11.00' x 3.50'

42 Chambers 218.4 cy Field 146.9 cy Stone

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 136


Hydrograph Inflow
Outflow 3.45 cfs Inflow Area=0.554 ac Discarded Primary **Peak Elev=144.48'** Storage=0.063 af 3 2.44 cfs 2.42 cfs Flow (cfs) 0.02 cfs 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 1 2 3 4 567 Ò

Page 137

Pond S-1: Subsurface Infiltration System

Summary for Pond S-2: Subsurface Infiltration System

Page 138

Inflow Area =	1.838 ac,100.00% Impervious, Infl	ow Depth = 6.32" for 25-yr event
Inflow =	4.54 cfs @ 11.95 hrs, Volume=	0.968 af
Outflow =	4.39 cfs @ 12.77 hrs, Volume=	0.968 af, Atten= 3%, Lag= 49.2 min
Discarded =	0.50 cfs @ 9.84 hrs, Volume=	0.649 af
Primary =	3.89 cfs @ 12.77 hrs, Volume=	0.319 af
Routed to Pond	d AP-1 : Norwalk River	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.92' @ 12.77 hrs Surf.Area= 0.091 ac Storage= 0.192 af

Plug-Flow detention time= 56.7 min calculated for 0.967 af (100% of inflow) Center-of-Mass det. time= 56.6 min (804.5 - 747.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	141.50'	0.100 af	30.00'W x 131.78'L x 4.00'H Field A
			0.363 af Overall - 0.114 af Embedded = 0.249 af x 40.0% Voids
#2A	142.50'	0.114 af	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 6 Rows
		0.214 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	143.15'	15.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 143.15' / 142.69' S= 0.0061 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.23 sf
#2	Device 1	143.64'	7.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#4	Discarded	141.50'	5.450 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.50 cfs @ 9.84 hrs HW=141.54' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=3.87 cfs @ 12.77 hrs HW=144.92' (Free Discharge)

1=Culvert (Passes 3.87 cfs of 5.63 cfs potential flow)

-2=Orifice (Orifice Controls 3.83 cfs @ 4.78 fps)

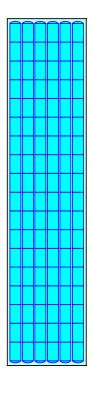
-3=Sharp-Crested Vee/Trap Weir (Weir Controls 0.04 cfs @ 0.44 fps)

Pond S-2: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

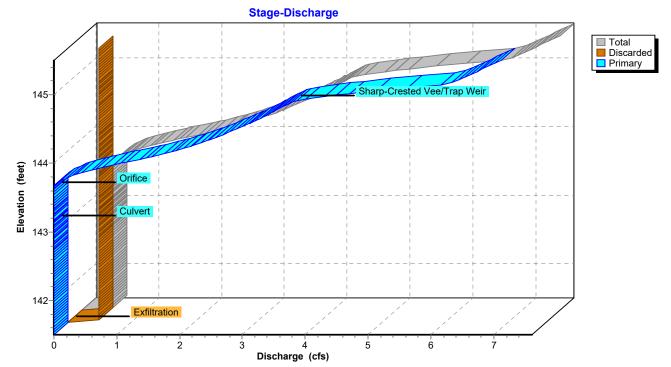

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 12.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

108 Chambers x 45.9 cf = 4,961.5 cf Chamber Storage

15,813.2 cf Field - 4,961.5 cf Chambers = 10,851.7 cf Stone x 40.0% Voids = 4,340.7 cf Stone Storage

Chamber Storage + Stone Storage = 9,302.2 cf = 0.214 af Overall Storage Efficiency = 58.8% Overall System Size = 131.78' x 30.00' x 4.00'

108 Chambers 585.7 cy Field 401.9 cy Stone


 $\square \square \square \square \square \square \square \square$

AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 140

Hydrograph Inflow
Outflow 4.54 cfs Inflow Area=1.838 ac Discarded Primary 5 Peak Elev=144.92' Storage=0.192 af 3.89 cfs 4 3 Flow (cfs) 2 1 n 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 1 4 5 6 Ż 8 0

Stage-Area-Storage
 Surface/Horizontal/Wetted Area (acres)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.035
 0.04
 0.045
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09
 SurfaceStorage 145 144 Elevation (feet) 143 ADS_StormTech SC-740 +Cap 142 Field A 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Ó Storage (acre-feet)

Pond S-2: Subsurface Infiltration System

Summary for Pond S-3: Subsurface Infiltration System

Page 142

Inflow Area =	1.020 ac, 4	7.60% Impervious, Inflov	Depth = 3.11" for 25-yr event
Inflow =	3.53 cfs @	12.13 hrs, Volume=	0.264 af
Outflow =	2.00 cfs @	12.21 hrs, Volume=	0.233 af, Atten= 43%, Lag= 5.3 min
Discarded =	0.05 cfs @	7.17 hrs, Volume=	0.115 af
Primary =	1.94 cfs @	12.21 hrs, Volume=	0.118 af
Routed to Pond	AP-1 : Norw	alk River	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 142.96' @ 12.21 hrs Surf.Area= 0.052 ac Storage= 0.089 af

Plug-Flow detention time= 198.5 min calculated for 0.233 af (88% of inflow) Center-of-Mass det. time= 140.1 min (908.4 - 768.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	140.40'	0.047 af	30.00'W x 74.82'L x 3.50'H Field A
			0.180 af Overall - 0.063 af Embedded = 0.117 af x 40.0% Voids
#2A	140.90'	0.063 af	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.110 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	141.84'	12.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 141.84' / 141.19' S= 0.0087 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	142.10'	7.0" Vert. Orifice X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	143.30'	5.0' long Weir Wall Cv= 2.62 (C= 3.28)
#4	Discarded	140.40'	1.050 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 7.17 hrs HW=140.44' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.94 cfs @ 12.21 hrs HW=142.96' (Free Discharge)

1=Culvert (Passes 1.94 cfs of 2.97 cfs potential flow)

-2=Orifice (Orifice Controls 1.94 cfs @ 3.62 fps)

-3=Weir Wall (Controls 0.00 cfs)

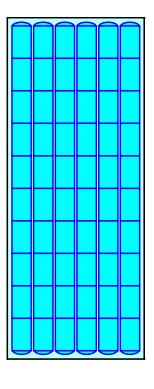
HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-3: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

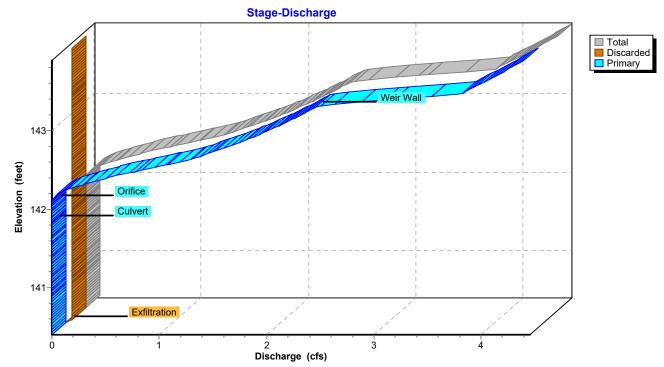

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

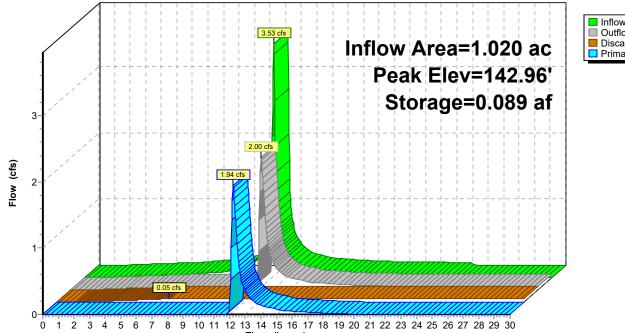
60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

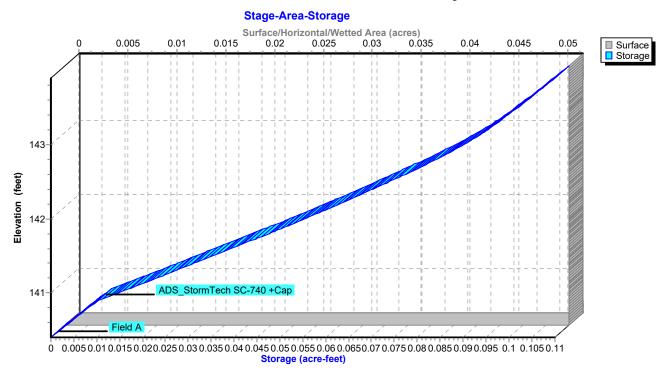
7,855.8 cf Field - 2,756.4 cf Chambers = 5,099.3 cf Stone x 40.0% Voids = 2,039.7 cf Stone Storage

Chamber Storage + Stone Storage = 4,796.1 cf = 0.110 afOverall Storage Efficiency = 61.1%Overall System Size = $74.82' \times 30.00' \times 3.50'$

60 Chambers 291.0 cy Field 188.9 cy Stone

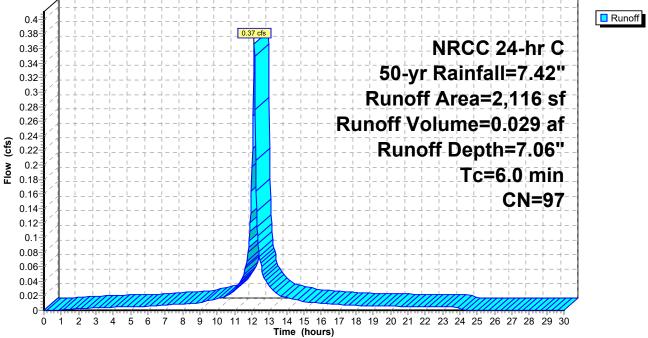



AMS Wilton - Proposed Conditions NRCC 24-hr C 25-yr Rainfall=6.56" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 144


Hydrograph Inflow
Outflow 3.53 cfs Inflow Area=1.020 ac Discarded Primary Peak Elev=142.96' Storage=0.089 af 3-2.00 cfs 1.94 cfs 0.05 cfs 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 1 2 3 4 Ò

Pond S-3: Subsurface Infiltration System

Summary for Subcatchment PR-1: CCB 14


0.029 af, Depth= 7.06" Runoff 0.37 cfs @ 12.13 hrs, Volume= = Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Area (sf)	CN	Description	l		
	2,045	98	Paved park	Paved parking, HSG D		
*	71	79	Landscapir	ng, Good, H	SG D	
	2,116	97	Weighted A	verage		
	71		3.36% Pervious Area			
	2,045		96.64% Im	pervious Ar	ea	
٦ miı)	c Length n) (feet)	Slop (ft/fl		Capacity (cfs)	Description	
6	.0		//		Direct Entry, Assumed minimum	

Subcatchment PR-1: CCB 14

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024

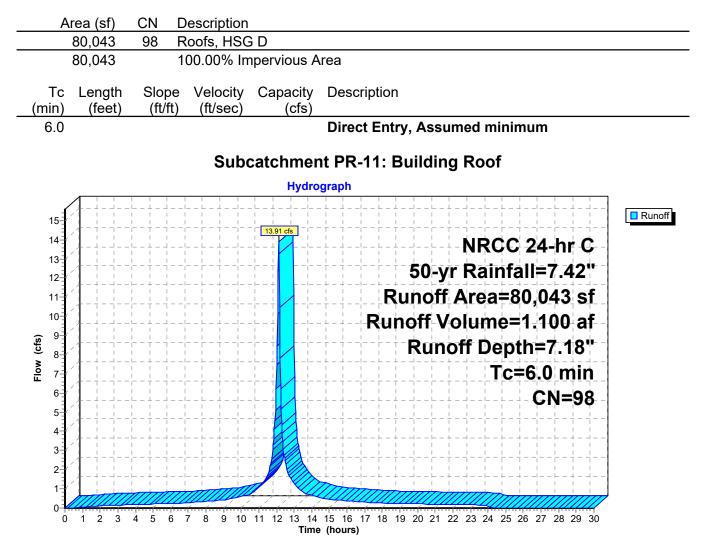
Page 146

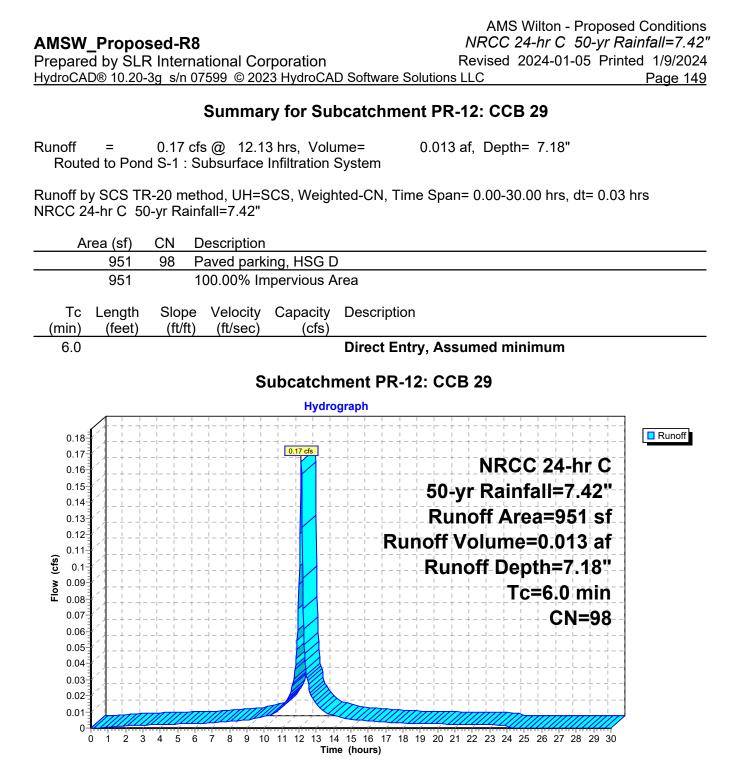
Summary for Subcatchment PR-10: CCB 28

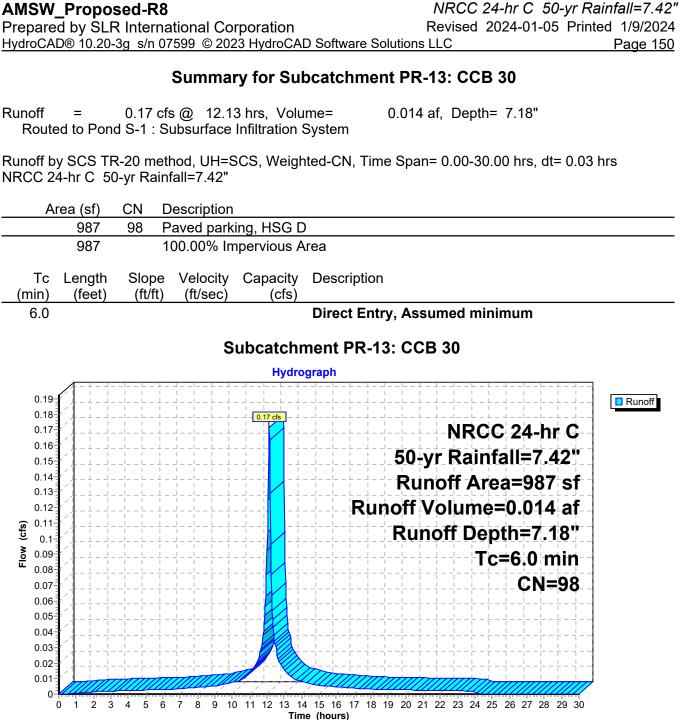
Runoff = 1.56 cfs @ 12.13 hrs, Volume= 0.118 af, Depth= 6.82" Routed to Pond S-1 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

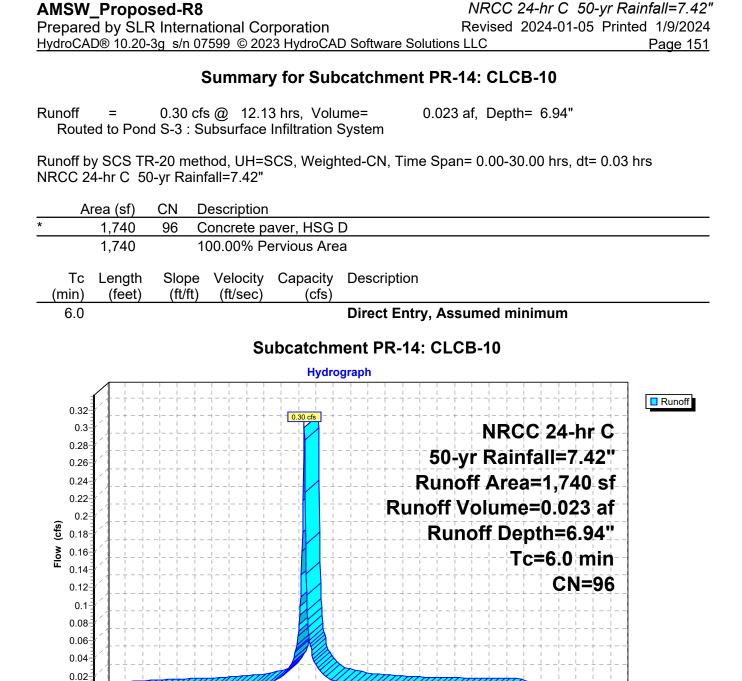
Area (sf) 7,450 440 * 1,183 9,073 1,623	CNDescription98Paved parking, HSG D80>75% Grass cover, Good, HSG D79Landscaping, Good, HSG D95Weighted Average 17.89% Pervious Area
7,450 Tc Length (min) (feet) 6.0	82.11% Impervious Area Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Assumed minimum
	Subcatchment PR-10: CCB 28
	Hydrograph Image: State of the state

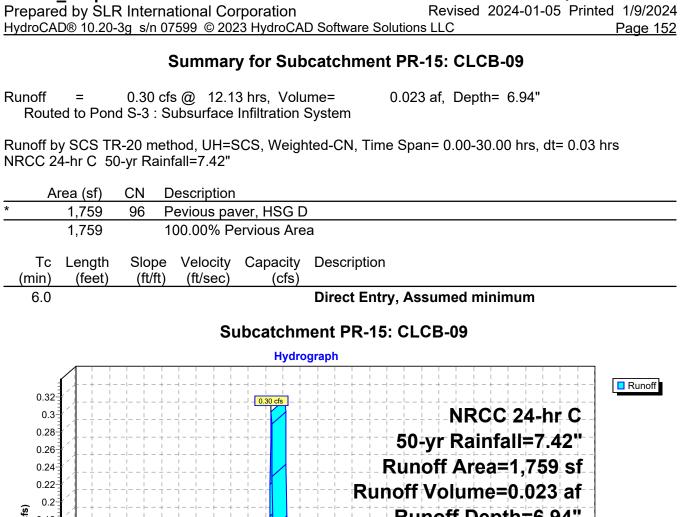

Summary for Subcatchment PR-11: Building Roof

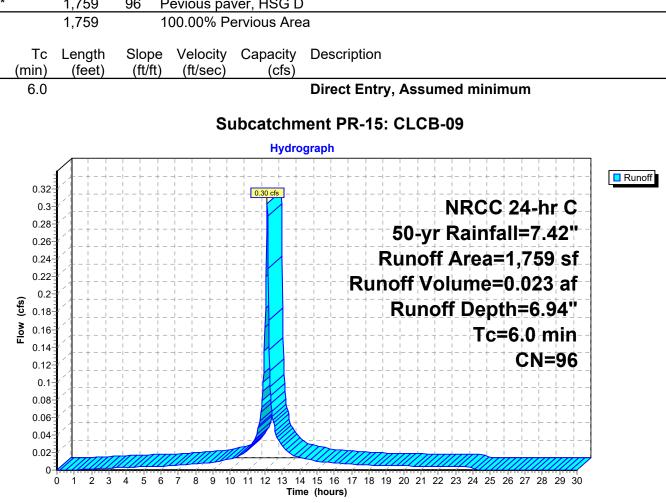

13.91 cfs @ 12.13 hrs, Volume= Runoff = Routed to Reach R1 : Roof Leader


1.100 af, Depth= 7.18"

Page 148

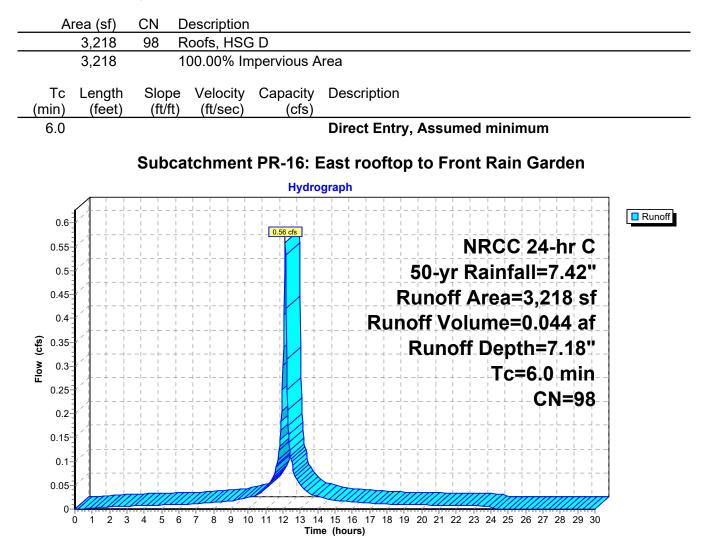

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"




NRCC 24-hr C 50-yr Rainfall=7.42"

AMS Wilton - Proposed Conditions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

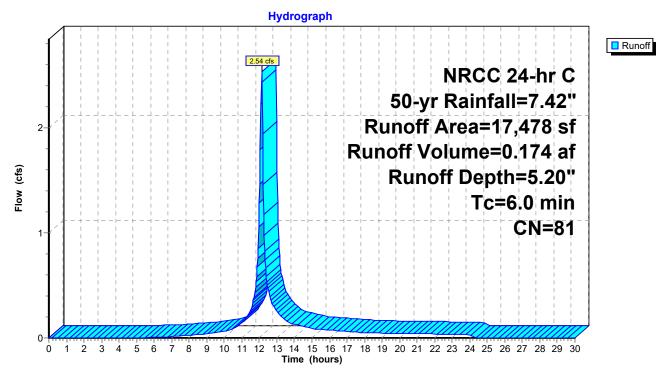


Summary for Subcatchment PR-16: East rooftop to Front Rain Garden

Runoff	=	0.56 cfs @	12.13 hrs,	Volume=
Routed	to Pond	AP-2 : Front	t Lawn Rain	Garden

0.044 af, Depth= 7.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"


Summary for Subcatchment PR-17: Front Lawn

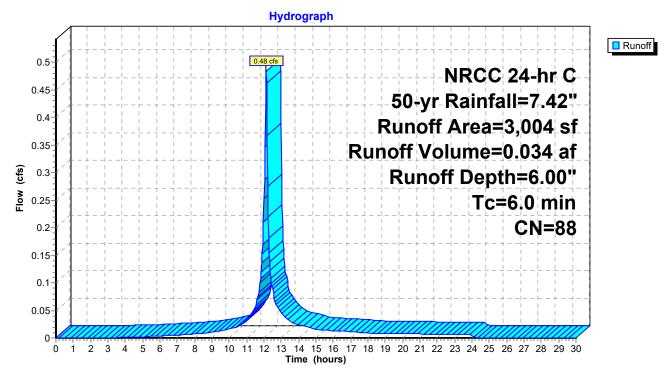
2.54 cfs @ 12.13 hrs, Volume= 0.174 af, Depth= 5.20" Runoff = Routed to Pond AP-2 : Front Lawn Rain Garden

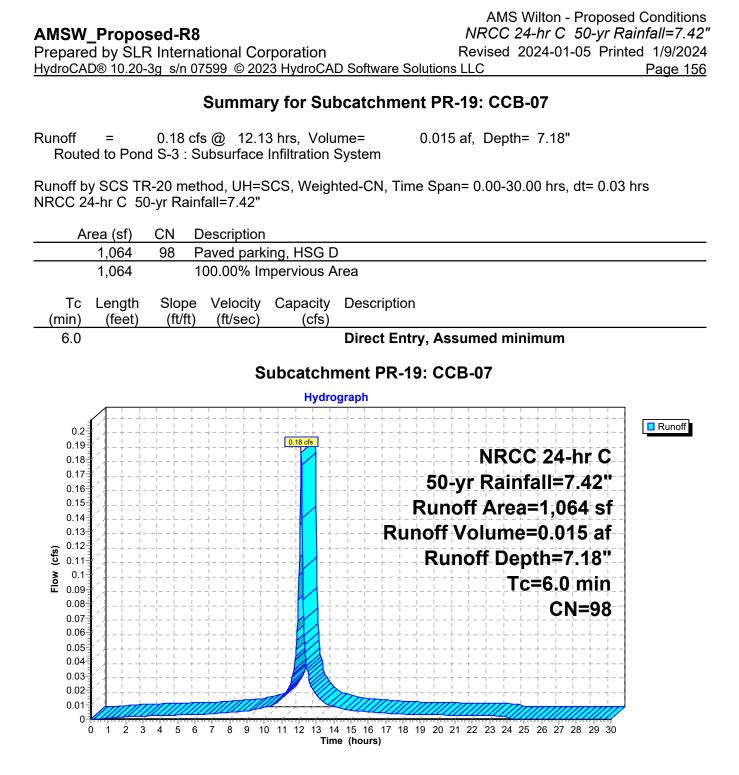
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Area (sf)	CN	Description							
	1,883	98	Paved park	ing, HSG D)					
	6,950	80	>75% Gras	>75% Grass cover, Good, HSG D						
*	8,645	79	Landscapin	g, Good, H	ISG D					
	17,478	81	Weighted A	Weighted Average						
	15,595		89.23% Pervious Area							
	1,883		10.77% Im	pervious Ar	ea					
_										
Т	5	Slop		Capacity	Description					
(min	i) (feet)	(ft/f	t) (ft/sec)	(cfs)						
6.	0				Direct Entry, Assumed minimum					

Subcatchment PR-17: Front Lawn

Page 154


Summary for Subcatchment PR-18: CCB-08


Runoff = 0.48 cfs @ 12.13 hrs, Volume= 0.034 af, Depth= 6.00" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

A	Area (sf)	CN	Description								
	1,482	98	Paved parking, HSG D								
	192	80	>75% Gras	>75% Grass cover, Good, HSG D							
*	1,330	79	Landscapir	Landscaping, Good, HSG D							
	3,004	88	Weighted A	Weighted Average							
	1,522		50.67% Pervious Area								
	1,482		49.33% Im	pervious Ar	ea						
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description						
6.0					Direct Entry, Assumed minimum						

Subcatchment PR-18: CCB-08

Summary for Subcatchment PR-2: CCB 10

Runoff 1.49 cfs @ 12.13 hrs, Volume= 0.110 af, Depth= 6.47" = Routed to Pond S-3 : Subsurface Infiltration System

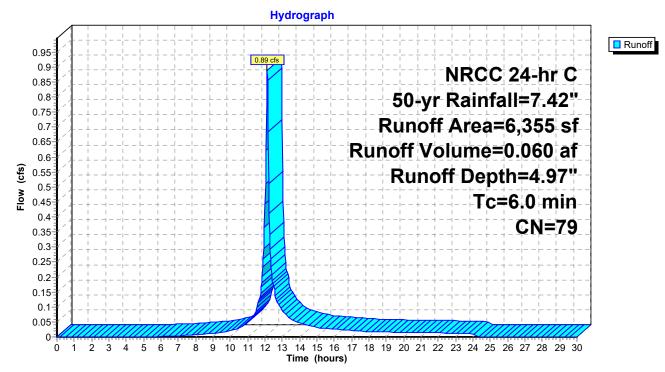
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

A	Area (sf)								
*	6,733 1,772								
	384								
	8,889								
	2,156 6,733								
Тс	Longth								
(min)	Length (feet)								
6.0			Direct Entry, Assumed minimum						
		Subcatcl	hment PR-2: CCB 10						
		Hydi	rograph						
-1 -1 -1 -0 - - -0 -0			NRCC 24-hr C 50-yr Rainfall=7.42" Runoff Area=8,889 sf Runoff Volume=0.110 af Runoff Depth=6.47" Tc=6.0 min CN=92						

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024

Page 157

Summary for Subcatchment PR-20: South of entrance drive


0.89 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-4 : Landscaped Area

0.060 af, Depth= 4.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

Α	rea (sf)	CN	Description							
	93	98	Paved park	ing, HSG D)					
	755	80		>75% Grass cover, Good, HSG D						
*	5,507	79	Landscapin	Landscaping, Good, HSG D						
	6,355	79	Weighted A	Weighted Average						
	6,262		98.54% Pervious Area							
	93		1.46% Impe	ervious Are	а					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description					
6.0					Direct Entry, Assumed minimum					

Subcatchment PR-20: South of entrance drive

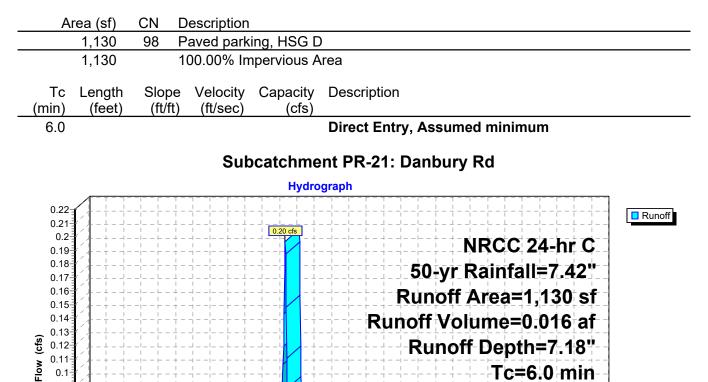
Summary for Subcatchment PR-21: Danbury Rd

0.20 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-3 : Danbury Road

0.1 0.09

0.08 0.07 0.06-0.05 0.04 0.03 0.02 0.01

ż


ġ. 4 5 6 7

Ó 1 0.016 af, Depth= 7.18"

Tc=6.0 min

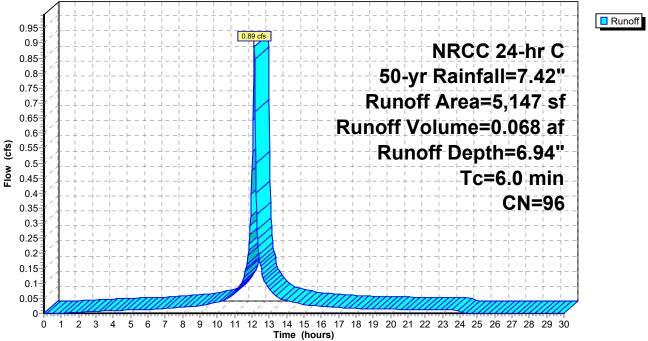
CN=98

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (hours)

Summary for Subcatchment PR-3: CCB 07


0.068 af, Depth= 6.94" Runoff 0.89 cfs @ 12.13 hrs, Volume= Routed to Pond S-3 : Subsurface Infiltration System

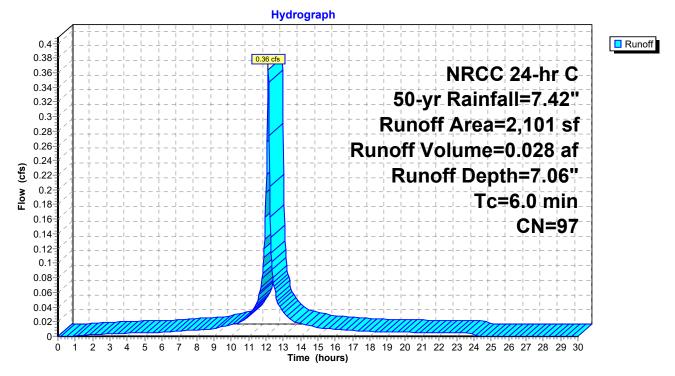
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	A	rea (sf)	CN	Description							
*		4,715	98	Paved park	Paved parking, HSG C						
*		432	72	Landscapin	Landscaping, Good, HSG C						
		5,147	96	Weighted A	0						
		432		8.39% Perv	vious Area						
		4,715		91.61% lm	pervious Ar	ea					
	Тс	Length	Slop	,	Capacity	Description					
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)						
	6.0					Direct Entry, Assumed minimum					

Subcatchment PR-3: CCB 07

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024

Page 160


Summary for Subcatchment PR-4: CCB 06

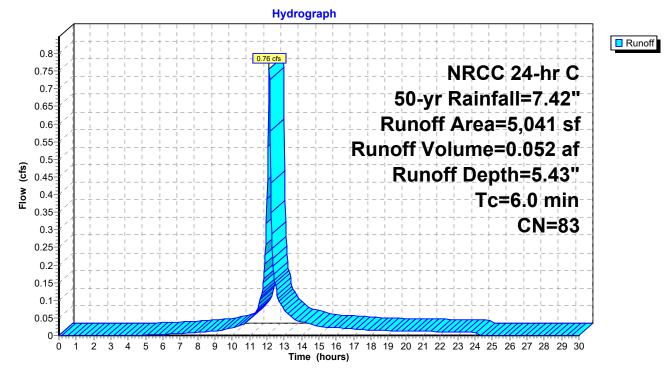
Runoff = 0.36 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.028 af, Depth= 7.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Area (sf)	CN	Description							
	2,026	98	Paved park	Paved parking, HSG D						
*	75	79	Landscapin	Landscaping, Good, HSG D						
	2,101	97	Weighted A	verage						
	75		3.57% Perv	vious Area						
	2,026		96.43% Imp	pervious Ar	ea					
T (mir	c Length n) (feet)	Slop (ft/fl		Capacity (cfs)	Description					
6.	0				Direct Entry, Assigned minimum					

Subcatchment PR-4: CCB 06

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 LLC Page 161


0.76 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond B-1 : South Basin

0.052 af, Depth= 5.43"

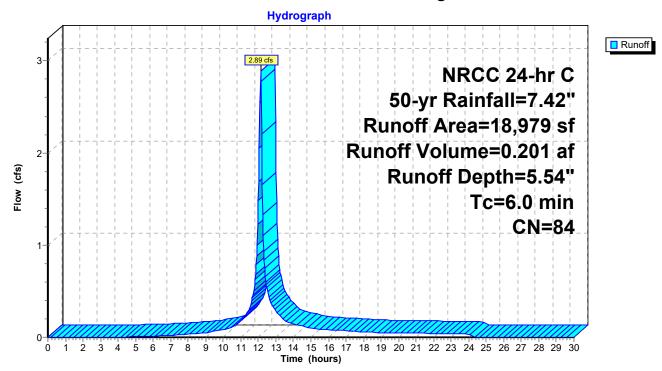
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

_	Α	rea (sf)	CN	Description							
*		595	96	Permable F	aver, HSG	C					
*		366	96	Gravel surfa	ace, HSG (2					
*		2,205	72	Landscapin	g, Good, H	ISG C					
*		890	98	Paved park	ing, HSG C						
		985	80	>75% Gras	s cover, Go	bod, HSG D					
		5,041	83	Weighted Average							
		4,151		82.34% Pe	rvious Area	l					
		890		17.66% Imp	pervious Ar	ea					
	Тс	Length	Slop	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/f	:) (ft/sec)	(cfs)						
	6.0					Direct Entry, Assumed minimum					

Subcatchment PR-5: South Basin

Page 162

Summary for Subcatchment PR-6: West along river

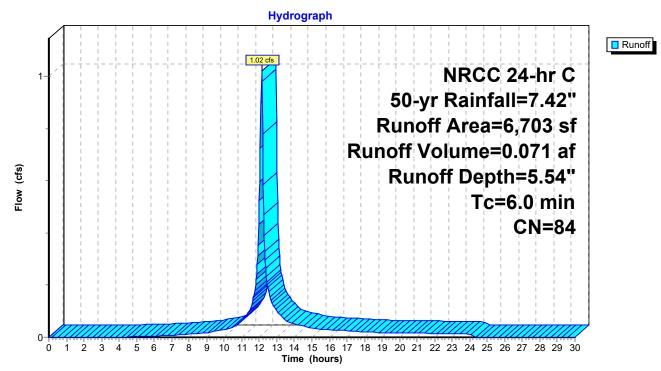

Runoff = 2.89 cfs @ 12.13 hrs, Volume= 0.20 Routed to Pond AP-1 : Norwalk River

0.201 af, Depth= 5.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Α	rea (sf)	CN	Description						
*		4,195	96	Permeable	paver, HSC	GD				
		461	96	Gravel surf	ace, HSG [
		911	98	Paved parking, HSG D						
		2,775	80	>75% Gras	>75% Grass cover, Good, HSG D					
*		6,489	79	Landscapir	ig, Good, H	ISG D				
		4,148	77	Woods, Go	od, HSG D					
		18,979	84	Weighted A	verage					
		18,068		95.20% Pe	rvious Area	1				
		911		4.80% Imp	ervious Are	а				
	Тс	Length	Slop	e Velocity	Capacity	Description				
(m	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
(6.0					Direct Entry, Assumed minimum				

Subcatchment PR-6: West along river


Summary for Subcatchment PR-7: North basin

Runoff = 1.02 cfs @ 12.13 hrs, Volume= 0.071 af, Depth= 5.54" Routed to Pond B-2 : North Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

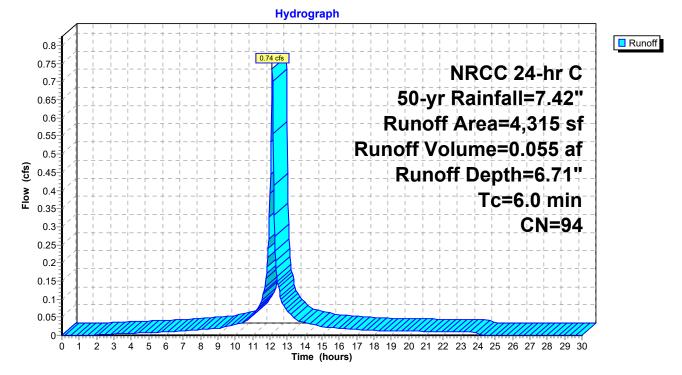
	Area (sf)	CN	Description						
	4	53	96	Gravel surfa	ace, HSG D)				
*	1,0	31	96	Permeable paver, HSG D						
	4	45	80	>75% Grass cover, Good, HSG D						
*	3,6	01	79	_andscapin	g, Good, H	ISG D				
	6	92	77	Woods, Go	od, HSG D					
	4	81	98	Paved park	ing, HSG D					
	6,7	03	84	Weighted A	verage					
	6,2	22		92.82% Pei	vious Area	1				
	4	81		7.18% Impe	ervious Are	а				
	Tc Ler	ngth	Slope	Velocity	Capacity	Description				
(m	in) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)					
6	5.0					Direct Entry, Assumed minimum				

Subcatchment PR-7: North basin

Summary for Subcatchment PR-7B: CCB 26

0.74 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-1 : Norwalk River

0.055 af, Depth= 6.71"

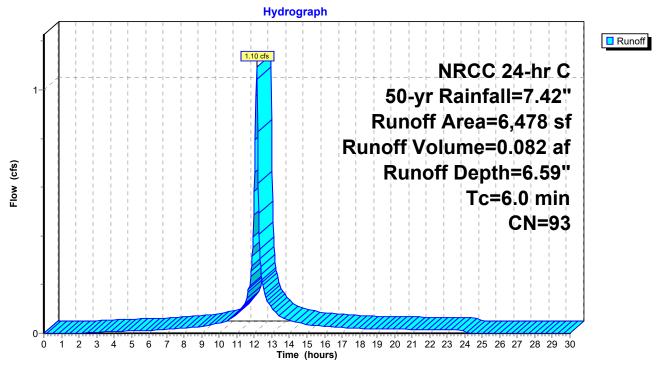

AMS Wilton - Proposed Conditions

Page 165

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

	Ar	ea (sf)	CN	Description							
		3,518	98	Paved park	Paved parking, HSG D						
*		797	79	Landscapin	Landscaping, Good, HSG D						
		4,315	94	Weighted A	•						
		797		18.47% Pervious Area							
		3,518		81.53% lm	pervious Ar	ea					
	Тс	Length	Slop	e Velocity	Capacity	Description					
(m	nin)	(feet)	(ft/ft		(cfs)	•					
	6.0					Direct Entry, Assumed minimum					

Subcatchment PR-7B: CCB 26

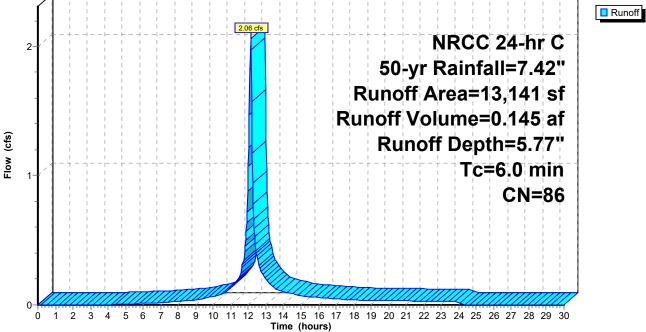


Summary for Subcatchment PR-8: CCB 26A

Runoff = 1.10 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.082 af, Depth= 6.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

A	vrea (sf)	CN	Description									
	4,737	98	Paved park	Paved parking, HSG D								
*	1,741	79	Landscapin	Landscaping, Good, HSG D								
	6,478	93	Weighted A	Weighted Average								
	1,741		26.88% Pervious Area									
	4,737		73.12% Impervious Area									
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description							
6.0					Direct Entry, Assumed minimum							
Subcatchment PR-8: CCB 26A												



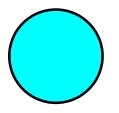
Summary for Subcatchment PR-9: CCB 27

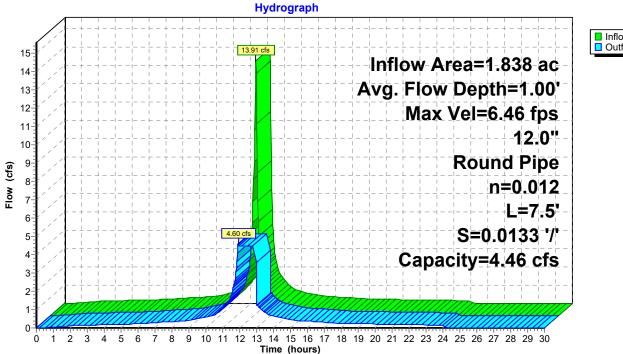
Runoff = 2.06 cfs @ 12.13 hrs, Volume= 0.145 af, Depth= 5.77" Routed to Pond S-1 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 50-yr Rainfall=7.42"

_	Area (sf)	CN	Description					
	4,730	98	98 Paved parking, HSG D					
	817	80	>75% Gras	s cover, Go	ood, HSG D			
*	7,594	79	79 Landscaping, Good, HSG D					
	13,141	86 Weighted Average						
	8,411	64.01% Pervious Area						
	4,730		35.99% Imp	pervious Ar	ea			
	Tc Length	Slop	e Velocity	Capacity	Description			
	(min) (feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0 Direct Entry, Assumed minimum							
	Subcatchment PR-9: CCB 27							
	Hydrograph							

AMSW Proposed-R8 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC


Summary for Reach R1: Roof Leader


Inflow Area = 1.838 ac,100.00% Impervious, Inflow Depth = 7.18" for 50-yr event Inflow 13.91 cfs @ 12.13 hrs, Volume= = 1.100 af Outflow = 4.60 cfs @ 11.92 hrs, Volume= 1.100 af, Atten= 67%, Lag= 0.0 min Routed to Pond S-2 : Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Max. Velocity= 6.46 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.30 fps, Avg. Travel Time= 0.0 min

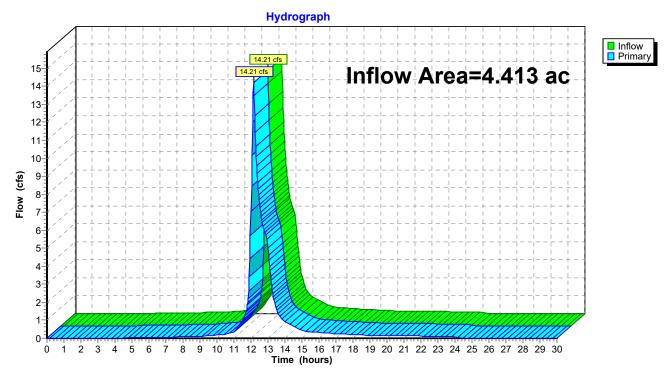
Peak Storage= 6 cf @ 11.94 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.46 cfs

12.0" Round Pipe n= 0.012 Length= 7.5' Slope= 0.0133 '/' Inlet Invert= 142.20', Outlet Invert= 142.10'

Reach R1: Roof Leader

AMS Wilton - Proposed Conditions

AMSW_Proposed-R8


Stage-Discharge 1 Primary Depth (feet) 0-2 3 4 1 0 Discharge (cfs) **Reach R1: Roof Leader** Stage-Storage Storage Depth (feet) 0-2 4 1 5 Ó ż Storage (cubic-feet)

Reach R1: Roof Leader

Summary for Pond AP-1: Norwalk River

Inflow Are	ea =	4.413 ac, 66.52% Impervious, Inflow Depth = 3.34" for 50-yr event
Inflow	=	14.21 cfs @ 12.15 hrs, Volume= 1.228 af
Primary	=	14.21 cfs @ 12.15 hrs, Volume= 1.228 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-1: Norwalk River

Summary for Pond AP-2: Front Lawn Rain Garden

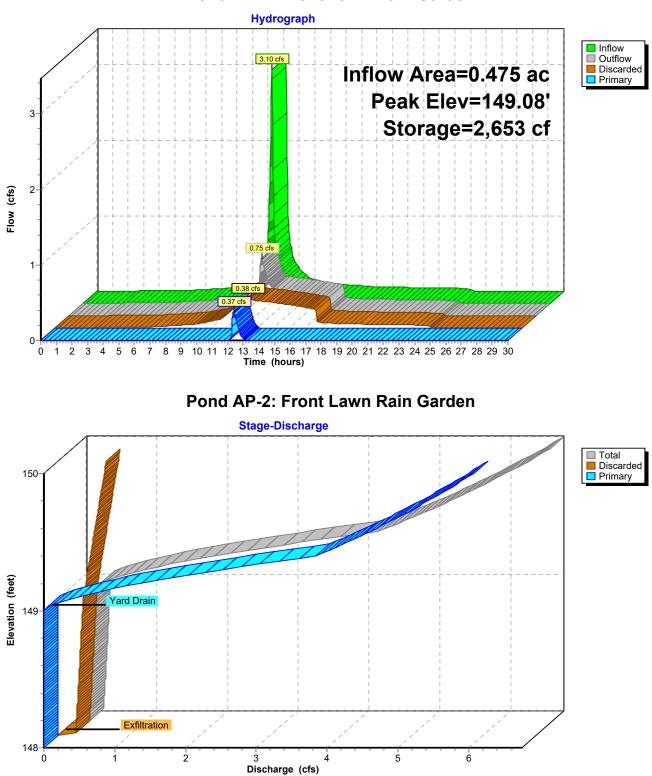
Page 171

Inflow Area =	0.475 ac, 24.65% Impervious, Inflow De	epth = 5.51" for 50-yr event		
Inflow =	3.10 cfs @ 12.13 hrs, Volume=	0.218 af		
Outflow =	0.75 cfs @ 12.38 hrs, Volume=	0.218 af, Atten= 76%, Lag= 14.9 min		
Discarded =	0.38 cfs @ 12.38 hrs, Volume=	0.206 af		
Primary =	0.37 cfs @ 12.38 hrs, Volume=	0.012 af		
Routed to Pond S-3 : Subsurface Infiltration System				

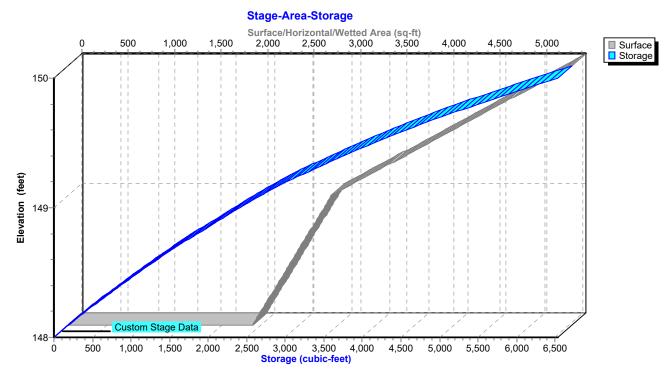
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 149.08' @ 12.38 hrs Surf.Area= 3,048 sf Storage= 2,653 cf

Plug-Flow detention time= 47.5 min calculated for 0.218 af (100% of inflow) Center-of-Mass det. time= 47.5 min (844.2 - 796.7)

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	148.00'	6,53	36 cf Custom	Stage Data (Prismatic)Listed be	low (Recalc)
Elevatio (feet		urf.Area	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
	/	(sq-ft)	1 1		
148.0 149.0	-	1,985 2,833	0 2,409	0 2,409	
150.0	0	5,420	4,127	6,536	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	145.90'	15.0" Round		00
			Inlet / Outlet I	P, square edge headwall, Ke= 0.5 nvert= 145.90' / 145.55' S= 0.010 w Area= 1.23 sf	
#2	Device 1	149.00'	3.6" x 0.9" H	oriz. Yard Drain X 4.00 columns	
				0.600 in 18.0" Grate (71% open a	irea)
#3	Discarded	148.00'	Limited to weir flow at low heads 5.450 in/hr Exfiltration over Surface area		


Discarded OutFlow Max=0.38 cfs @ 12.38 hrs HW=149.08' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.38 cfs)

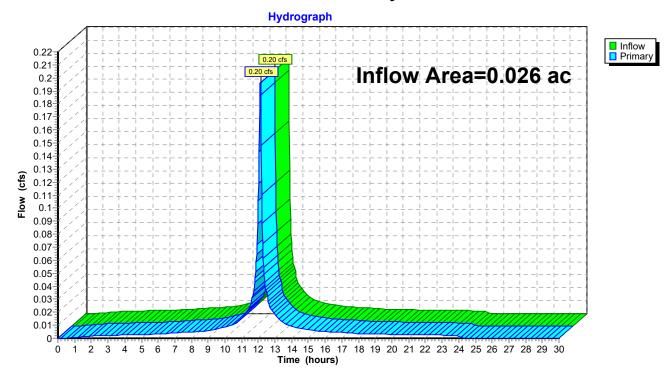
Primary OutFlow Max=0.37 cfs @ 12.38 hrs HW=149.08' (Free Discharge) -1=Culvert (Passes 0.37 cfs of 9.45 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.37 cfs @ 0.94 fps)


AMSW_Proposed-R8 Prepared by SLR International Corporation

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Page 172

Pond AP-2: Front Lawn Rain Garden

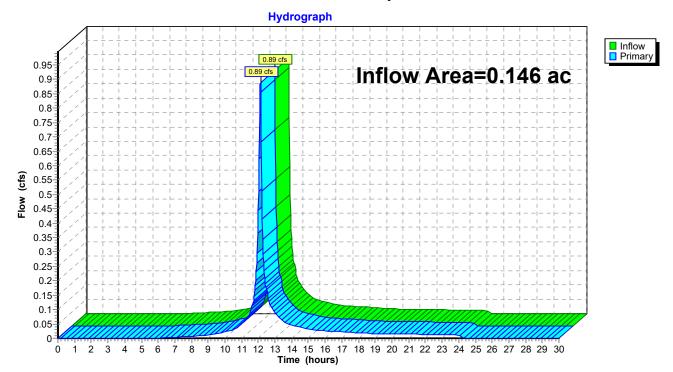


Pond AP-2: Front Lawn Rain Garden

Summary for Pond AP-3: Danbury Road

Inflow Are	a =	0.026 ac,100.00% Impervious, Inflow Depth = 7.18" for 50-yr event
Inflow	=	0.20 cfs @ 12.13 hrs, Volume= 0.016 af
Primary	=	0.20 cfs @ 12.13 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs



Pond AP-3: Danbury Road

Summary for Pond AP-4: Landscaped Area

Inflow Are	a =	0.146 ac,	1.46% Impervious, Ir	nflow Depth = 4.97"	for 50-yr event
Inflow	=	0.89 cfs @	12.13 hrs, Volume=	0.060 af	
Primary	=	0.89 cfs @	12.13 hrs, Volume=	0.060 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

AMSW_Proposed-R8NRPrepared by SLR International CorporationRevisHydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions

Summary for Pond B-1: South Basin

Inflow Area =	0.116 ac, 17.66% Impervior	us, Inflow Depth = 5.43" for 50-yr	event	
Inflow =	0.76 cfs @ 12.13 hrs, Volu	ime= 0.052 af		
Outflow =	0.74 cfs @ 12.15 hrs, Volu	ime= 0.047 af, Atten= 3%, La	ag= 1.1 min	
Discarded =	0.01 cfs @ 12.15 hrs, Volu	ime= 0.008 af	-	
Primary =	0.73 cfs @ 12.15 hrs, Volu	ime= 0.038 af		
Routed to Pond AP-1 : Norwalk River				

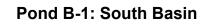
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 140.03' @ 12.15 hrs Surf.Area= 551 sf Storage= 400 cf

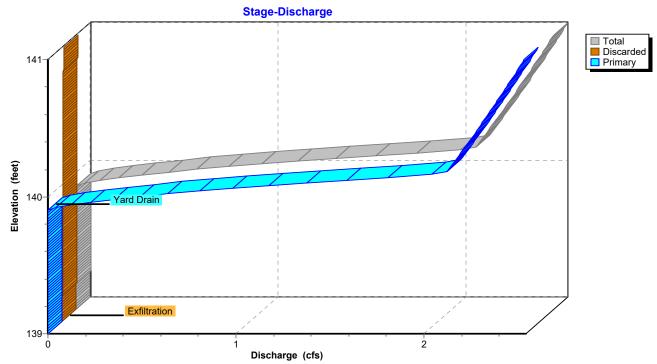
Plug-Flow detention time= 123.4 min calculated for 0.047 af (90% of inflow) Center-of-Mass det. time= 70.2 min (875.0 - 804.8)

Volume	Inver	t Avail.Stor	rage Storage	Description		
#1	139.00	' 1,11	18 cf Custom	Stage Data (Prism	atic)Listed below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
139.0	1	228	0	0		
140.0	-	539	384	384		
141.0	00	929	734	1,118		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	138.00'	8.0" Round			
			Inlet / Outlet I	P, square edge heac nvert= 138.00' / 137 w Area= 0.35 sf	lwall, Ke= 0.500 .60' S= 0.0100 '/' Cc= 0.900	
#2	Device 1	139.90'		oriz. Yard Drain X 4		
				0.600 in 18.0" Grate	e (71% open area)	
#3	Discarded	139.00'		imited to weir flow at low heads .400 in/hr Exfiltration over Surface area		

Discarded OutFlow Max=0.01 cfs @ 12.15 hrs HW=140.03' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.72 cfs @ 12.15 hrs HW=140.03' (Free Discharge) 1=Culvert (Passes 0.72 cfs of 2.04 cfs potential flow) 2=Yard Drain (Weir Controls 0.72 cfs @ 1.18 fps)

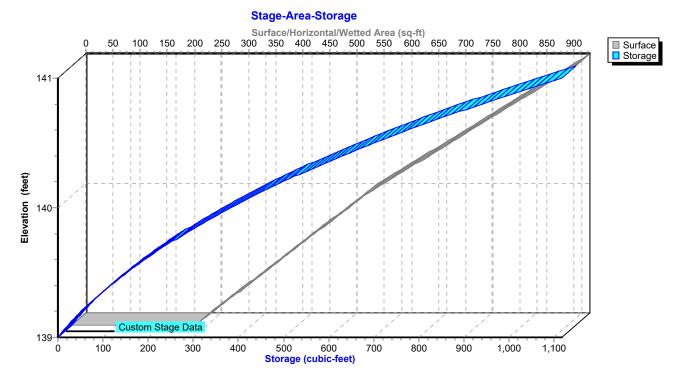

AMSW_Proposed-R8


Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 s LLC Page 177

Hydrograph Inflow
Outflow 0.76 cfs Inflow Area=0.116 ac Discarded 0 74 cfs Primary 0.8 Peak Elev=140.03' 0.73 0.75 Storage=400 cf 0.7 0.65 0.6 0.55 (c) 0.45 0.45 0.45 0.35 0.5 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 56 7 8 9 10 11 12 <u>0</u> 1

Pond B-1: South Basin



AMSW_Proposed-R8

Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024

Page 178

Pond B-1: South Basin

AMSW Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 179

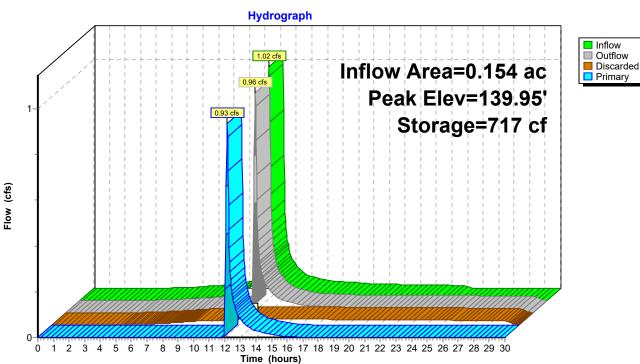
Summary for Pond B-2: North Basin

Inflow Area = 0.154 ac, 7.18% Impervious, Inflow Depth = 5.54" for 50-yr event 1.02 cfs @ 12.13 hrs, Volume= 0.071 af Inflow = Outflow = 0.96 cfs @ 12.15 hrs, Volume= 0.071 af, Atten= 6%, Lag= 1.6 min 0.03 cfs @ 12.15 hrs, Volume= Discarded = 0.041 af Primary = 0.93 cfs @ 12.15 hrs, Volume= 0.030 af Routed to Pond AP-1 : Norwalk River

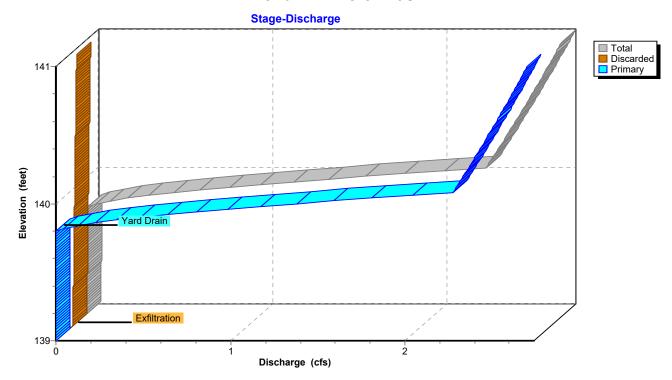
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.95' @ 12.15 hrs Surf.Area= 914 sf Storage= 717 cf

Plug-Flow detention time= 153.9 min calculated for 0.071 af (100% of inflow) Center-of-Mass det. time= 154.0 min (955.9 - 801.9)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	139.00	1,88	88 cf Custom	Stage Data (Pris	matic)Listed below (Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
139.0	00	589	0	0	
140.0	00	930	760	760	
141.0)0	1,327	1,129	1,888	
Device	Routing	Invert	Outlet Device:	S	
#1	Primary	138.00'	10.0" Round	Culvert	
	,		L= 200.0' CF	P. square edge he	eadwall, Ke= 0.500
				<i>i</i> 1	7.00' S= 0.0050 '/' Cc= 0.900
				w Area= 0.55 sf	
#2	Device 1	139.80'	,	oriz. Yard Drain X	4 00 columns
<i>"</i> –	Dovide 1	100.00	••••		ate (71% open area)
#3	Discarded	139.00'	Limited to weir flow at low heads 1.250 in/hr Exfiltration over Surface area		
#3	Discarded	139.00	1.230 III/IIF E)	kinitiation over St	liate alea


Discarded OutFlow Max=0.03 cfs @ 12.15 hrs HW=139.95' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.03 cfs)

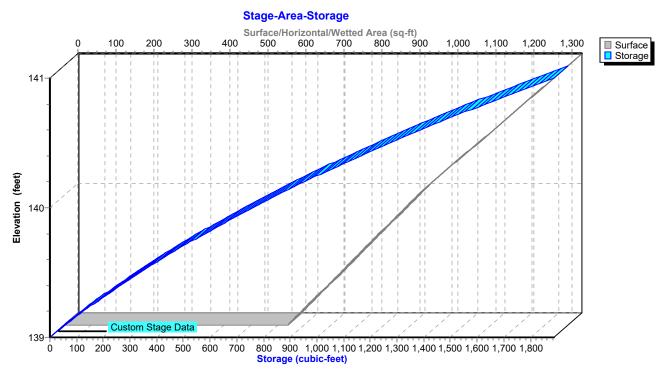
Primary OutFlow Max=0.92 cfs @ 12.15 hrs HW=139.95' (Free Discharge) -1=Culvert (Passes 0.92 cfs of 2.21 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.92 cfs @ 1.28 fps)


AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 utions LLC Page 180

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin



Pond B-2: North Basin

AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 Solutions LLC Page 181

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin

Summary for Pond S-1: Subsurface Infiltration System

Page 182

Inflow Area =	0.554 ac, 5	58.45% Impervious, Inflo	ow Depth = 6.28" for 50-yr event	
Inflow =	3.96 cfs @	12.13 hrs, Volume=	0.290 af	
Outflow =	2.74 cfs @	12.19 hrs, Volume=	0.259 af, Atten= 31%, Lag= 3.9 min	
Discarded =	0.02 cfs @	3.84 hrs, Volume=	0.035 af	
Primary =	2.72 cfs @	12.19 hrs, Volume=	0.224 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.67' @ 12.19 hrs Surf.Area= 0.039 ac Storage= 0.067 af

Plug-Flow detention time= 122.2 min calculated for 0.259 af (89% of inflow) Center-of-Mass det. time= 67.6 min (844.3 - 776.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	142.00'	0.036 af	11.00'W x 153.14'L x 3.50'H Field A
			0.135 af Overall - 0.044 af Embedded = 0.091 af x 40.0% Voids
#2A	142.50'	0.044 af	ADS_StormTech SC-740 +Cap x 42 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			42 Chambers in 2 Rows
		0.081 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	143.35'	12.0" Round Culvert
			L= 114.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 143.35' / 142.21' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	143.50'	6.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#4	Discarded	142.00'	0.400 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 3.84 hrs HW=142.04' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=2.71 cfs @ 12.19 hrs HW=144.66' (Free Discharge)

1=Culvert (Passes 2.71 cfs of 3.41 cfs potential flow)

-2=Orifice (Orifice Controls 2.71 cfs @ 4.60 fps)

-3=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond S-1: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

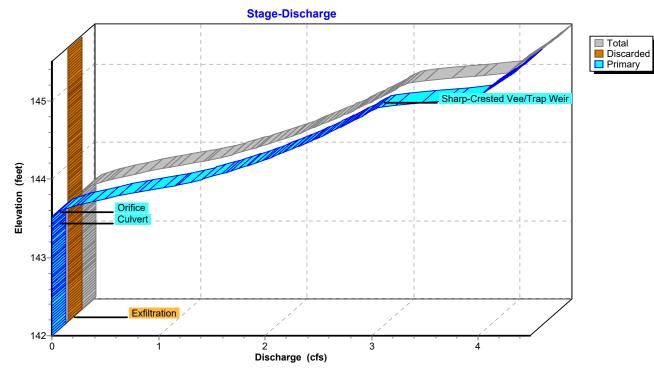
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

21 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 151.14' Row Length +12.0" End Stone x 2 = 153.14' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

42 Chambers x 45.9 cf = 1,929.5 cf Chamber Storage

5,895.8 cf Field - 1,929.5 cf Chambers = 3,966.3 cf Stone x 40.0% Voids = 1,586.5 cf Stone Storage

Chamber Storage + Stone Storage = 3,516.0 cf = 0.081 af Overall Storage Efficiency = 59.6% Overall System Size = 153.14' x 11.00' x 3.50'


42 Chambers 218.4 cy Field 146.9 cy Stone

AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 184

Hydrograph Inflow 3.96 cfs Outflow Inflow Area=0.554 ac Discarded Primary Peak Elev=144.67 4 Storage=0.067 af 2.74 cfs 3 2.72 cfs Flow (cfs) 2 1 0.02 cfs 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 5 6 7 Ò 1

Pond S-1: Subsurface Infiltration System

Stage-Area-Storage Surface/Horizontal/Wetted Area (acres) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 Surface Storage 145 Elevation (feet) 144 143 ADS_StormTech SC-740 +Cap Field A 142 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0 Storage (acre-feet)

Pond S-1: Subsurface Infiltration System

Summary for Pond S-2: Subsurface Infiltration System

Page 186

Inflow Area =	1.838 ac,10	0.00% Impervious, Inflow	Depth = 7.18" for 50-yr event		
Inflow =	4.60 cfs @	11.92 hrs, Volume=	1.100 af		
Outflow =	4.45 cfs @	12.96 hrs, Volume=	1.100 af, Atten= 3%, Lag= 62.5 min		
Discarded =	0.50 cfs @	9.51 hrs, Volume=	0.695 af		
Primary =	3.96 cfs @	12.96 hrs, Volume=	0.405 af		
Routed to Pond AP-1 : Norwalk River					

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.93' @ 12.96 hrs Surf.Area= 0.091 ac Storage= 0.193 af

Plug-Flow detention time= 55.9 min calculated for 1.100 af (100% of inflow) Center-of-Mass det. time= 55.9 min (803.3 - 747.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	141.50'	0.100 af	30.00'W x 131.78'L x 4.00'H Field A
			0.363 af Overall - 0.114 af Embedded = 0.249 af x 40.0% Voids
#2A	142.50'	0.114 af	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 6 Rows
		0.214 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	143.15'	15.0" Round Culvert	
			L= 75.0' CPP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 143.15' / 142.69' S= 0.0061 '/' Cc= 0.900	
			n= 0.012, Flow Area= 1.23 sf	
#2	Device 1	143.64'	7.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads	
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)	
#4	Discarded	141.50'	5.450 in/hr Exfiltration over Surface area	

Discarded OutFlow Max=0.50 cfs @ 9.51 hrs HW=141.54' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=3.95 cfs @ 12.96 hrs HW=144.93' (Free Discharge)

1=Culvert (Passes 3.95 cfs of 5.67 cfs potential flow)

-2=Orifice (Orifice Controls 3.86 cfs @ 4.81 fps)

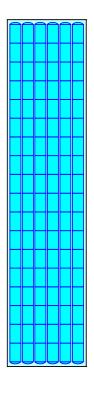
-3=Sharp-Crested Vee/Trap Weir (Weir Controls 0.09 cfs @ 0.58 fps)

Pond S-2: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

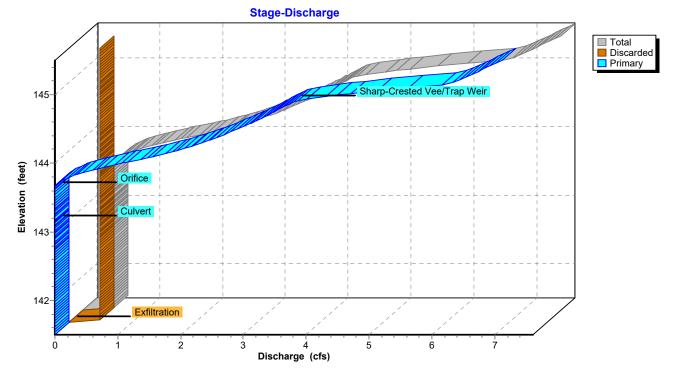

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 12.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

108 Chambers x 45.9 cf = 4,961.5 cf Chamber Storage

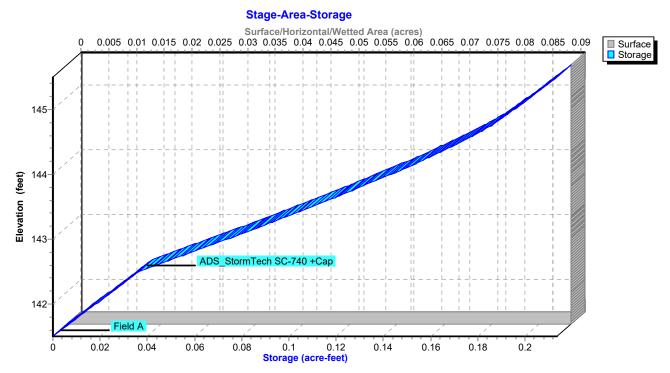
15,813.2 cf Field - 4,961.5 cf Chambers = 10,851.7 cf Stone x 40.0% Voids = 4,340.7 cf Stone Storage

Chamber Storage + Stone Storage = 9,302.2 cf = 0.214 af Overall Storage Efficiency = 58.8% Overall System Size = 131.78' x 30.00' x 4.00'

108 Chambers 585.7 cy Field 401.9 cy Stone



AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 188


Hydrograph Inflow
Outflow 4.60 cfs Inflow Area=1.838 ac Discarded 45 cfe Primary 5 Peak Elev=144.93' Storage=0.193 af 3.9 4 Flow (cfs) 2 1 ٥ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 1 4 5 6 8 0 7

Pond S-2: Subsurface Infiltration System

Summary for Pond S-3: Subsurface Infiltration System

Page 190

Inflow Area =	1.020 ac, 4	17.60% Impervious, Inflow	Depth = 3.70" for 50-yr event						
Inflow =	4.02 cfs @	12.13 hrs, Volume=	0.315 af						
Outflow =	2.42 cfs @	12.21 hrs, Volume=	0.282 af, Atten= 40%, Lag= 4.9 min						
Discarded =	0.05 cfs @	6.57 hrs, Volume=	0.118 af						
Primary =	2.36 cfs @	12.21 hrs, Volume=	0.165 af						
Routed to Pond AP-1 : Norwalk River									

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 143.24' @ 12.21 hrs Surf.Area= 0.052 ac Storage= 0.096 af

Plug-Flow detention time= 171.5 min calculated for 0.282 af (90% of inflow) Center-of-Mass det. time= 118.3 min (883.0 - 764.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	140.40'	0.047 af	30.00'W x 74.82'L x 3.50'H Field A
			0.180 af Overall - 0.063 af Embedded = 0.117 af x 40.0% Voids
#2A	140.90'	0.063 af	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.110 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices			
#1	Primary	141.84'	12.0" Round Culvert			
			L= 75.0' CPP, square edge headwall, Ke= 0.500			
			Inlet / Outlet Invert= 141.84' / 141.19' S= 0.0087 '/' Cc= 0.900			
			n= 0.012, Flow Area= 0.79 sf			
#2	Device 1	142.10'	7.0" Vert. Orifice X 2.00 C= 0.600 Limited to weir flow at low heads			
#3	Device 1	143.30'	5.0' long Weir Wall Cv= 2.62 (C= 3.28)			
#4	Discarded	140.40'	1.050 in/hr Exfiltration over Surface area			

Discarded OutFlow Max=0.05 cfs @ 6.57 hrs HW=140.44' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=2.36 cfs @ 12.21 hrs HW=143.23' (Free Discharge)

1=Culvert (Passes 2.36 cfs of 3.44 cfs potential flow)

-2=Orifice (Orifice Controls 2.36 cfs @ 4.42 fps)

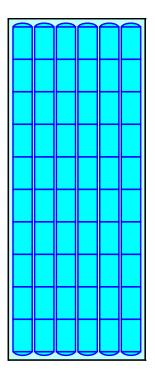
-3=Weir Wall (Controls 0.00 cfs)

Pond S-3: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

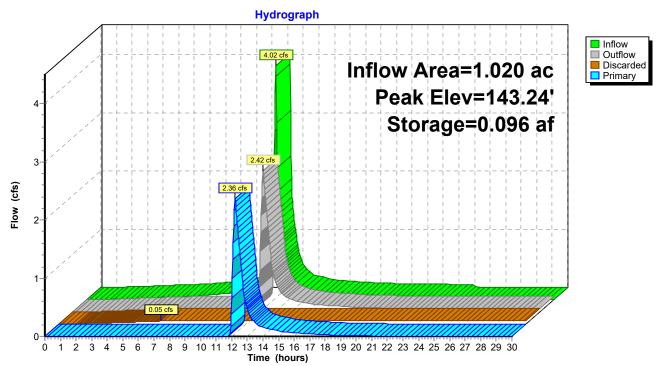
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

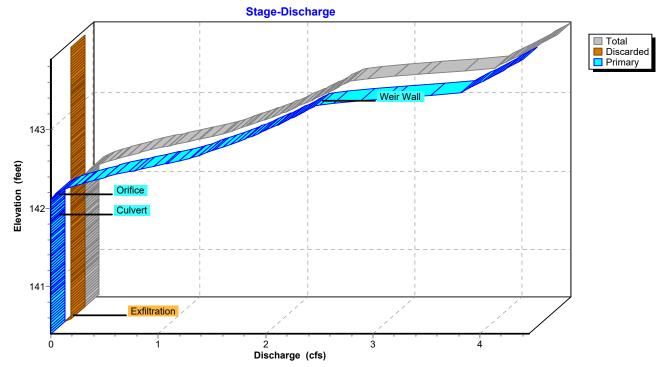

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' **Base Length** 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

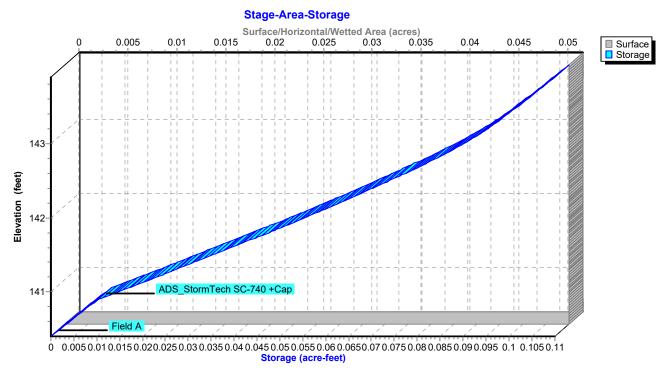
60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,855.8 cf Field - 2,756.4 cf Chambers = 5,099.3 cf Stone x 40.0% Voids = 2,039.7 cf Stone Storage


Chamber Storage + Stone Storage = 4,796.1 cf = 0.110 af Overall Storage Efficiency = 61.1% Overall System Size = 74.82' x 30.00' x 3.50'

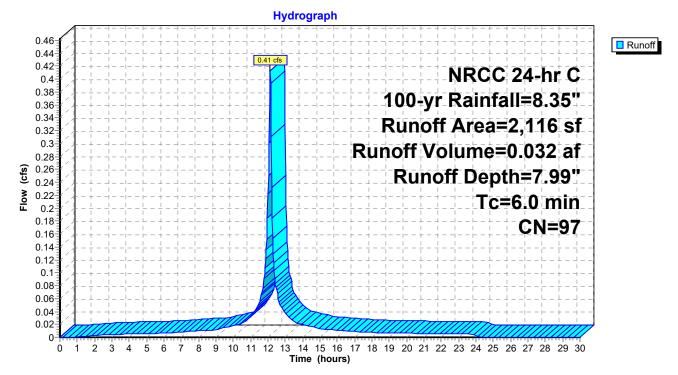
60 Chambers 291.0 cy Field 188.9 cy Stone




AMS Wilton - Proposed Conditions NRCC 24-hr C 50-yr Rainfall=7.42" Revised 2024-01-05 Printed 1/9/2024 s LLC Page 192

Pond S-3: Subsurface Infiltration System

Pond S-3: Subsurface Infiltration System


Summary for Subcatchment PR-1: CCB 14

Runoff = 0.41 cfs @ 12.13 hrs, Volume= 0.032 af, Depth= 7.99" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

A	vrea (sf)	CN	Description						
	2,045	98	Paved park	Paved parking, HSG D					
*	71	79	Landscapin	ig, Good, H	SG D				
	2,116	97	Weighted A	verage					
	71		3.36% Pervious Area						
	2,045		96.64% Imp	pervious Ar	ea				
Tc	Length	Slop	,	Capacity	Description				
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)					
6.0					Direct Entry, Assumed minimum				

Subcatchment PR-1: CCB 14

Summary for Subcatchment PR-10: CCB 28

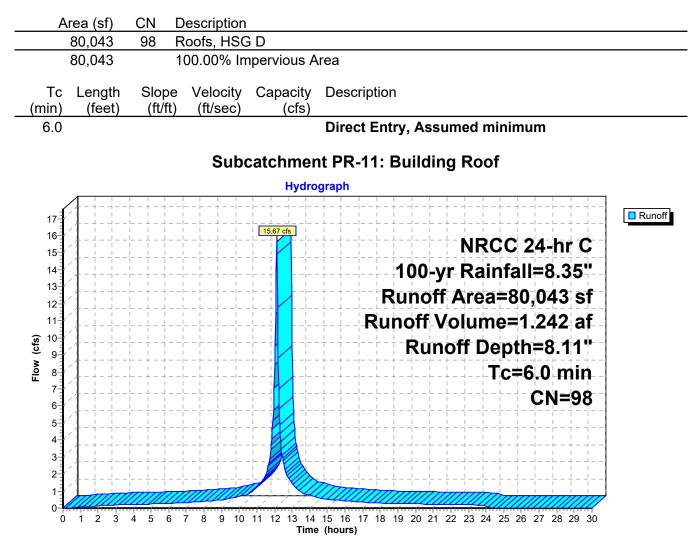
1.76 cfs @ 12.13 hrs, Volume= 0.135 af, Depth= 7.75" Runoff = Routed to Pond S-1 : Subsurface Infiltration System

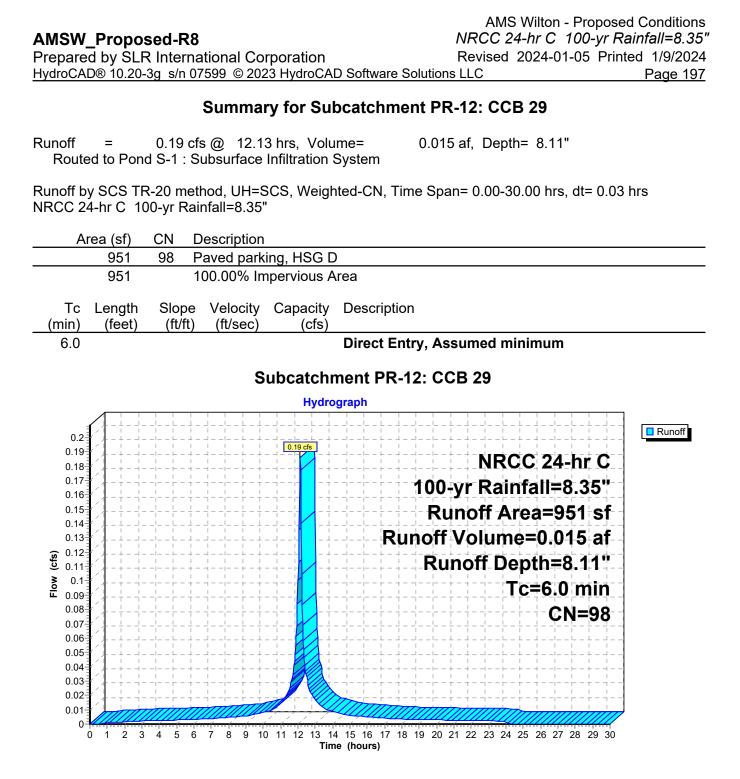
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

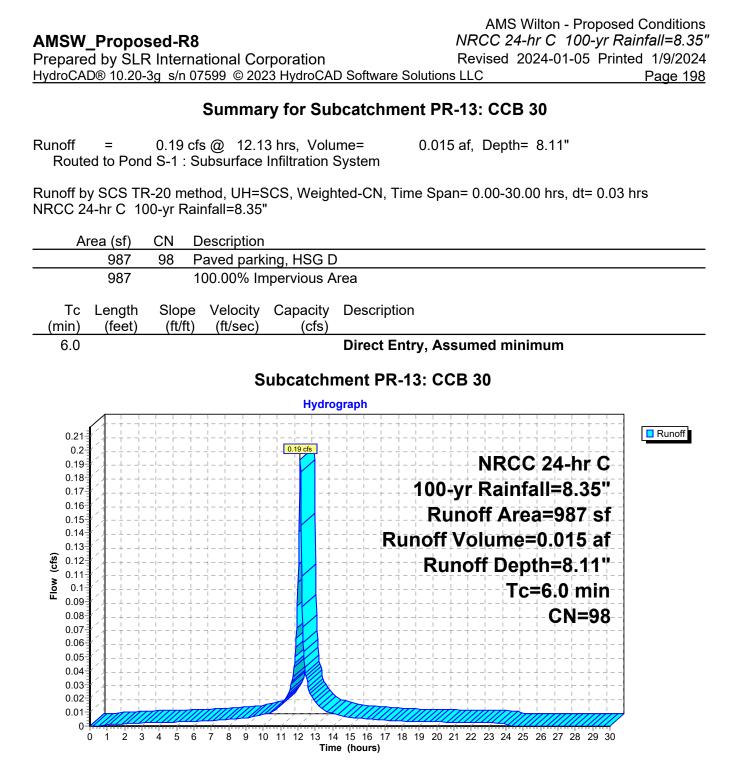
А	rea (sf)	CN E	Description							
	7,450									
*	440				ood, HSG D					
<u>.</u>	<u>1,183</u> 9,073			<u>g, Good, H</u>	15G D					
	9,073 1,623		Veighted A 7 89% Per	verage vious Area	a					
	7,450			pervious Ar						
т.										
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0	(1001)	(10/10)	(11000)	(010)	Direct Entry, Assumed minimum					
			S	ubcatchr	ment PR-10: CCB 28					
			0		ograph					
- Flow (cfs) - 1 - 1				1 1 1 1 1.76 cfs 1 1 1 1 <	NRCC 24-hr C 100-yr Rainfall=8.35" Runoff Area=9,073 sf Runoff Volume=0.135 af Runoff Depth=7.75" Tc=6.0 min CN=95	Runoff				
0 - 0	1 2 3	4 5 6	7 8 9 10		4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ne (hours)					

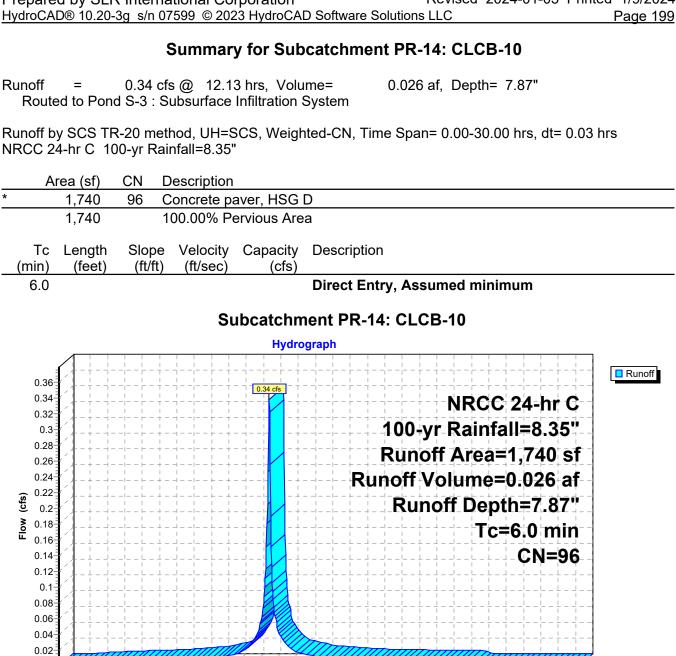
AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024

Page 195


Summary for Subcatchment PR-11: Building Roof

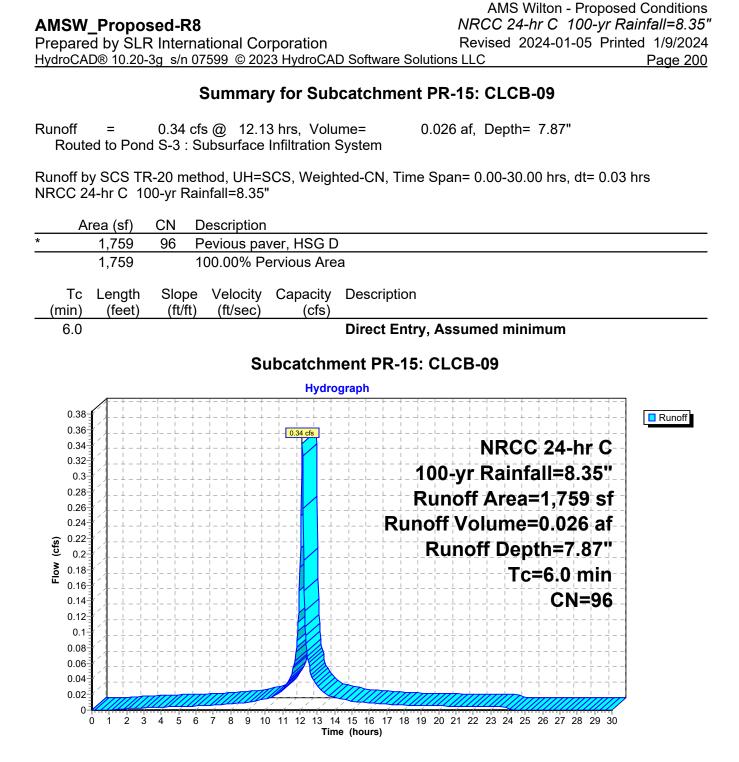

15.67 cfs @ 12.13 hrs, Volume= Runoff = Routed to Reach R1 : Roof Leader


1.242 af, Depth= 8.11"


Page 196

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

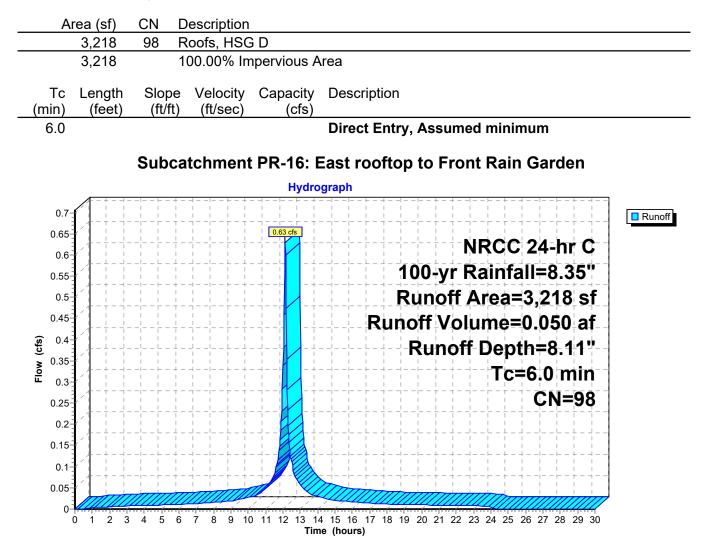
AMSW Proposed-R8 Prepared by SLR International Corporation


AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

ż

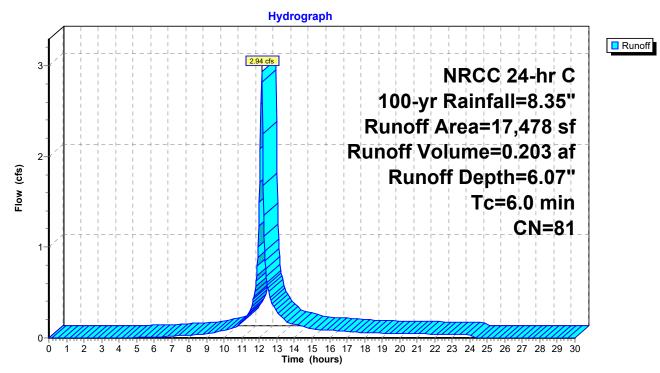
3 4 5 6 7


Ó 1

Summary for Subcatchment PR-16: East rooftop to Front Rain Garden

Runoff = 0.63 cfs @ 12.13 hrs, Volume= Routed to Pond AP-2 : Front Lawn Rain Garden 0.050 af, Depth= 8.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"


Summary for Subcatchment PR-17: Front Lawn

2.94 cfs @ 12.13 hrs, Volume= 0.203 af, Depth= 6.07" Runoff = Routed to Pond AP-2 : Front Lawn Rain Garden

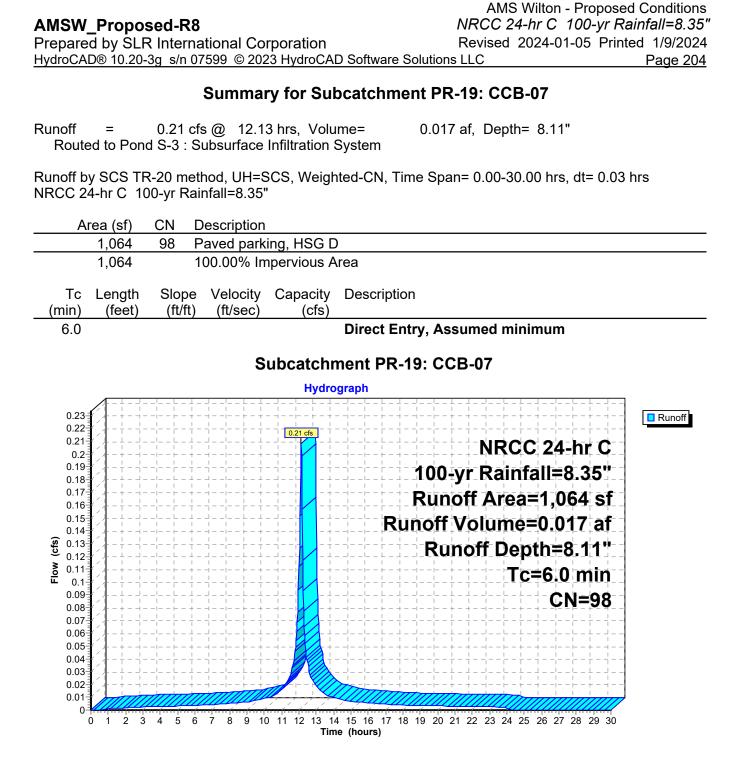
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area (sf)	CN	Description					
	1,883	98	Paved park	ing, HSG D)			
	6,950	80	>75% Grass cover, Good, HSG D					
*	8,645	79	Landscaping, Good, HSG D					
	17,478	81	Weighted Average					
	15,595		89.23% Pervious Area					
	1,883		10.77% Impervious Area					
Tc (min)	. 0	Slop (ft/f		Capacity (cfs)	Description			
6.0				· · · · ·	Direct Entry, Assumed minimum			

Subcatchment PR-17: Front Lawn

Page 202

Summary for Subcatchment PR-18: CCB-08


Runoff = 0.55 cfs @ 12.13 hrs, Volume= 0.040 af, Depth= 6.91" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	A	rea (sf)	CN D	escription							
		1,482	98 P	aved park	ing, HSG D)					
		192	80 >	30 >75% Grass cover, Good, HSG D							
*		1,330	79 L	Landscaping, Good, HSG D							
		3,004		Veighted A							
		1,522			vious Area						
		1,482	4	9.33% imp	ervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Direct Entry,	Assumed minimum				
				S	ubcatchr	ment PR-18:	CCB-08				
					Hydro	ograph		_			
	0.6-							Runoff			
					0.55 cfs - +						
	0.55-						NRCC 24-hr C				
	0.5					1	00-yr Rainfall=8.35"				
	0.45						unoff Area=3,004 sf				
	0.4						off Volume=0.040 af				
	<u>6</u> 0.35										
]	0					iiii - I	Runoff Depth=6.91"				
ī	0.3-	/					Tc=6.0 min				
	0.25-										
	0.2										
	0.15										
	0.1-										

0.05

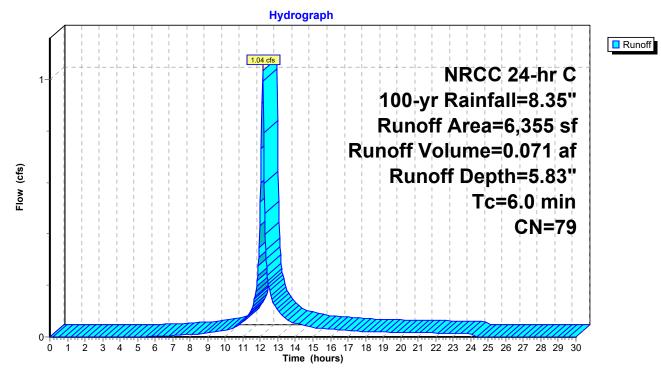
of Donth- 601"

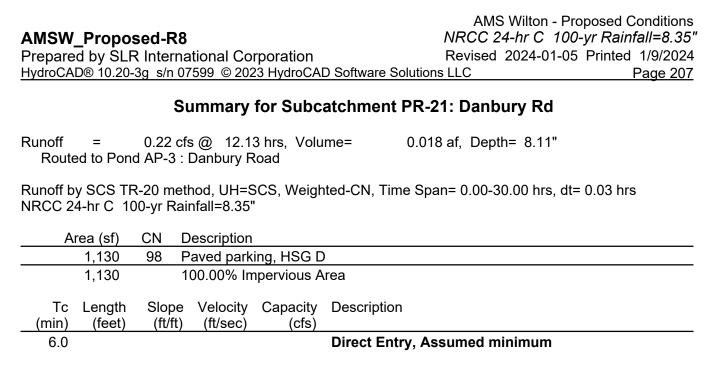
Summary for Subcatchment PR-2: CCB 10

Runoff = 1.69 cfs @ 12.13 hrs, Volume= 0.126 af, Depth= 7.39" Routed to Pond S-3 : Subsurface Infiltration System

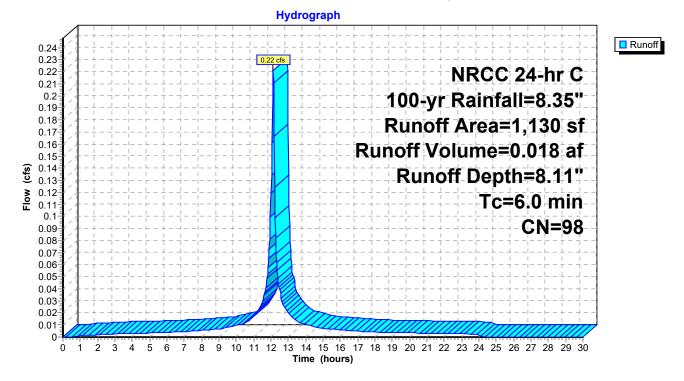
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

A	rea (sf)	CN De	scription							
*	6,733									
×	1,772 384		 72 Landscaping, Good, HSG C 74 >75% Grass cover, Good, HSG C 							
	8,889 2,156 6,733	92 We 24								
Тс	Length		Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, Assumed minimum					
			S	ubcatch	ment PR-2: CCB 10					
				Hydro	ograph					
1→				1 1 1 1 1 1 <th>NRCC 24-hr C 100-yr Rainfall=8.35" Runoff Area=8,889 sf Runoff Volume=0.126 af Runoff Depth=7.39"</th>	NRCC 24-hr C 100-yr Rainfall=8.35" Runoff Area=8,889 sf Runoff Volume=0.126 af Runoff Depth=7.39"					
r Flow (cfs)					Tc=6.0 min CN=92					
0- 0	1 2 3	4 5 6 7	8 9 10		4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 e (hours)					


Runoff = 1.04 cfs @ 12.13 hrs, Volume= Routed to Pond AP-4 : Landscaped Area

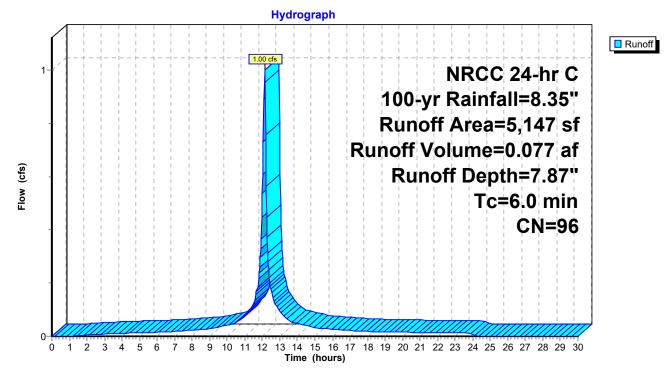

0.071 af, Depth= 5.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"


A	rea (sf)	CN	Description						
	93	98	Paved park	ing, HSG D)				
	755	80	>75% Gras	>75% Grass cover, Good, HSG D					
*	5,507	79	Landscapin	Landscaping, Good, HSG D					
	6,355 6,262 93	79	Weighted Average 98.54% Pervious Area 1.46% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0					Direct Entry, Assumed minimum				

Subcatchment PR-20: South of entrance drive

Subcatchment PR-21: Danbury Rd

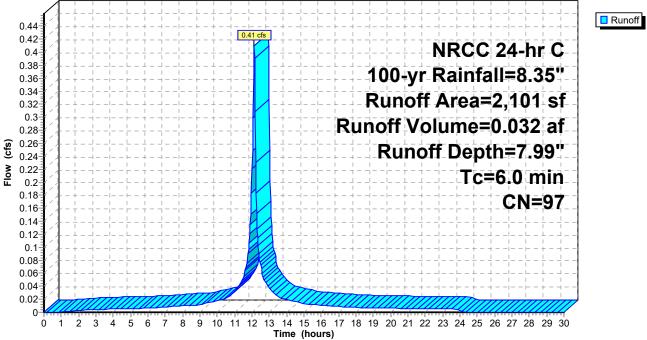

Summary for Subcatchment PR-3: CCB 07

Runoff = 1.00 cfs @ 12.13 hrs, Volume= 0.077 af, Depth= 7.87" Routed to Pond S-3 : Subsurface Infiltration System

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Ar	ea (sf)	CN	Description			
*		4,715	98	Paved park	ing, HSG C		
*		432	72	Landscapin	ig, Good, H	SG C	
		5,147 432 4,715	96	Weighted Average 8.39% Pervious Area 91.61% Impervious Area			
(Tc min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description	
	6.0					Direct Entry, Assumed minimum	

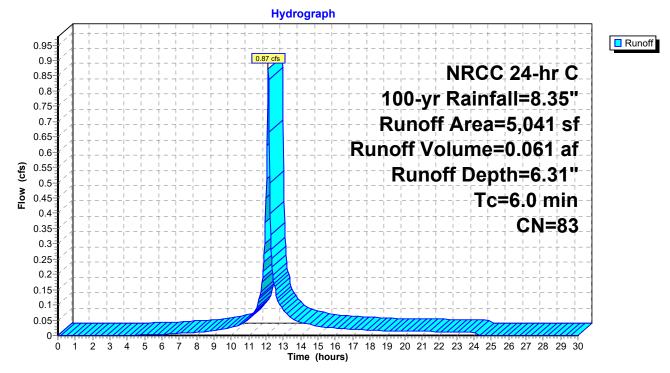
Summary for Subcatchment PR-4: CCB 06


Runoff = 0.41 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.032 af, Depth= 7.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area (sf)	CN	Description						
	2,026	98	Paved park	Paved parking, HSG D					
*	75	79	Landscaping, Good, HSG D						
	2,101	97	Weighted Average						
	75		3.57% Pervious Area						
	2,026		96.43% Im	pervious Ar	ea				
(mi	Tc Length in) (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6	6.0				Direct Entry, Assigned minimum				

Subcatchment PR-4: CCB 06


0.87 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond B-1 : South Basin

0.061 af, Depth= 6.31"

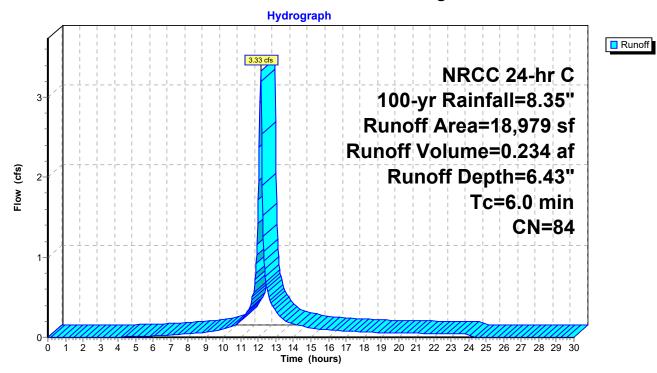
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

_	А	rea (sf)	CN	Description					
*		595	96	Permable F	aver, HSG	С			
*		366	96	Gravel surfa	ace, HSG (
*		2,205	72	Landscapin	g, Good, H	SG C			
*		890	98	Paved park	ing, HSG C				
		985	80	>75% Gras	s cover, Go	bod, HSG D			
		5,041	041 83 Weighted Average						
		4,151		82.34% Pe	rvious Area				
		890		17.66% Imp	pervious Ar	ea			
	Тс	Length	Slop	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry, Assumed minimum			

Subcatchment PR-5: South Basin

Page 210

Summary for Subcatchment PR-6: West along river

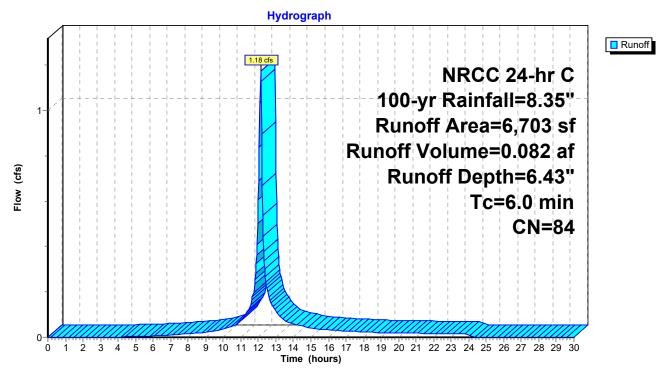

Runoff = 3.33 cfs @ 12.13 hrs, Volume= 0.234 Routed to Pond AP-1 : Norwalk River

0.234 af, Depth= 6.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area (sf)	CN	Description					
*	4,195	96	Permeable	Permeable paver, HSG D				
	461	96	Gravel surfa	ace, HSG [D			
	911	98	Paved park	ing, HSG D				
	2,775	80	>75% Gras	s cover, Go	ood, HSG D			
*	6,489	79	Landscapin	g, Good, H	ISG D			
	4,148	77	Woods, Go	od, HSG D				
	18,979	84	Weighted A	verage				
	18,068		95.20% Pe	rvious Area	a			
	911		4.80% Impe	ervious Are	ea			
-	Tc Length	n Slop	be Velocity	Capacity	Description			
(mi	in) (feet)) (ft/	ft) (ft/sec)	(cfs)				
6	6.0				Direct Entry, Assumed minimum			

Subcatchment PR-6: West along river

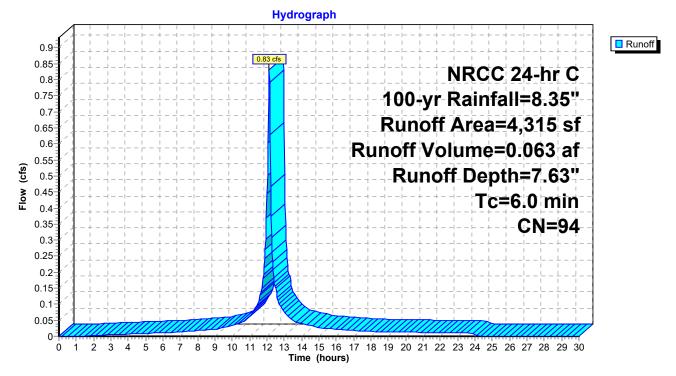

Runoff = 1.18 cfs @ 12.13 hrs, Volume= Routed to Pond B-2 : North Basin

0.082 af, Depth= 6.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area	ı (sf)	CN	Description		
		453	96	Gravel surfa	ace, HSG D)
*	1	,031	96	Permeable	paver, HSC	G D
		445	80	>75% Gras	s cover, Go	ood, HSG D
*	3	,601	79	Landscapin	g, Good, H	SG D
		692	77	Woods, Go	od, HSG D	
		481	98	Paved park	ing, HSG D	
	6	,703	84	Weighted A	verage	
	6	,222		92.82% Per	vious Area	
		481		7.18% Impe	ervious Are	а
(n		ength (feet)	Slop (ft/ft	•	Capacity (cfs)	Description
	6.0					Direct Entry, Assumed minimum

Subcatchment PR-7: North basin


Summary for Subcatchment PR-7B: CCB 26

Runoff = 0.83 cfs @ 12.13 hrs, Volume= Routed to Pond AP-1 : Norwalk River 0.063 af, Depth= 7.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

A	Area (sf)	CN	Description				
	3,518	98	Paved park	ing, HSG D)		
*	797	79	Landscapin	ig, Good, H	SG D		
	4,315	94	Weighted A	verage			
	797		18.47% Pervious Area				
	3,518		81.53% Im	pervious Ar	ea		
Tc	Length	Slop		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry, Assumed minimum		

Subcatchment PR-7B: CCB 26

Summary for Subcatchment PR-8: CCB 26A

1.24 cfs @ 12.13 hrs, Volume= Runoff = Routed to Pond AP-1 : Norwalk River

0-

0

0.093 af, Depth= 7.51"

AMS Wilton - Proposed Conditions

Page 214

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

	Area	a (sf)	CN	Description					
ж		,737			ing, HSG D				
*		,741			ig, Good, H	ISG D			
	6,478 93 Weighted Average								
		,741			rvious Area				
	4	,737		73.12% Imp	pervious Ar	ea			
	Tc L iin)	ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
<u> </u>	6.0		(1011)	(10300)	(013)	Direct Entry, Assumed minimum			
	Subcatchment PR-8: CCB 26A								
					Hydro	ograph			
	\square				1.24 cfs		Runoff		
						NRCC 24-hr C			
	11								
		-+	·			100-yr Rainfall=8.35"	_		
	1					Runoff Area=6,478 sf			
Runoff Volume=0.093 af									
🖁 🛛 🖌 Runoff Depth=7.51''									
Flow (cfs)						Tc=6.0 min			
			1 1 1			CN=93			

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Subcatchment PR-9: CCB 27

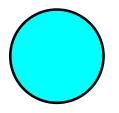
Runoff 2.36 cfs @ 12.13 hrs, Volume= 0.168 af, Depth= 6.67" = Routed to Pond S-1 : Subsurface Infiltration System

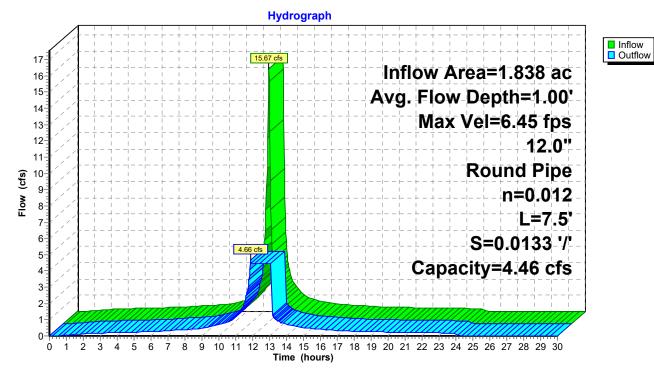
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs NRCC 24-hr C 100-yr Rainfall=8.35"

Area (sf) 4,730 817 * 7,594 13,141 8,411 4,730	CNDescription98Paved parking, HSG D80>75% Grass cover, Good, HSG D79Landscaping, Good, HSG D86Weighted Average 64.01% Pervious Area 35.99% Impervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry, Assumed minimum
	Subcatchment PR-9: CCB 27
	Hydrograph
2	Punoff NRCC 24-hr C 100-yr Rainfall=8.35" Runoff Area=13,141 sf Runoff Volume=0.168 af Runoff Depth=6.67" Tc=6.0 min CN=86

Page 215

AMSW_Proposed-R8AMS Wilton - Proposed Conditions
NRCC 24-hr C 100-yr Rainfall=8.35"Prepared by SLR International CorporationRevised 2024-01-05 Printed 1/9/2024HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLCPage 216


Summary for Reach R1: Roof Leader


Inflow Area =1.838 ac,100.00% Impervious, Inflow Depth =8.11"for 100-yr eventInflow =15.67 cfs @12.13 hrs, Volume=1.242 afOutflow =4.66 cfs @11.89 hrs, Volume=1.242 af, Atten= 70%, Lag= 0.0 minRouted to Pond S-2 : Subsurface Infiltration System

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Max. Velocity= 6.45 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.42 fps, Avg. Travel Time= 0.0 min

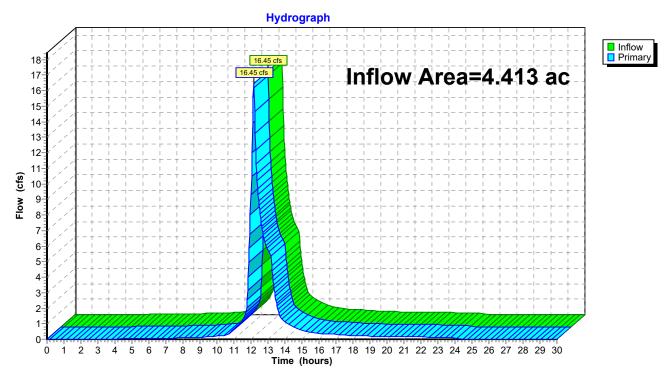
Peak Storage= 6 cf @ 11.91 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.46 cfs

12.0" Round Pipe n= 0.012 Length= 7.5' Slope= 0.0133 '/' Inlet Invert= 142.20', Outlet Invert= 142.10'

Reach R1: Roof Leader

AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Revised 2024-01-05 Printed 1/9/2024 Page 217


Stage-Discharge 1 Primary Depth (feet) 0-2 3 4 1 0 Discharge (cfs) **Reach R1: Roof Leader** Stage-Storage Storage Depth (feet) 0-2 4 1 5 Ó ż Storage (cubic-feet)

Reach R1: Roof Leader

Summary for Pond AP-1: Norwalk River

Inflow Are	a =	4.413 ac, 66.52% Impervious, Inflow Depth = 4.06" for 100-yr event
Inflow	=	16.45 cfs @ 12.16 hrs, Volume= 1.493 af
Primary	=	16.45 cfs @ 12.16 hrs, Volume= 1.493 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-1: Norwalk River

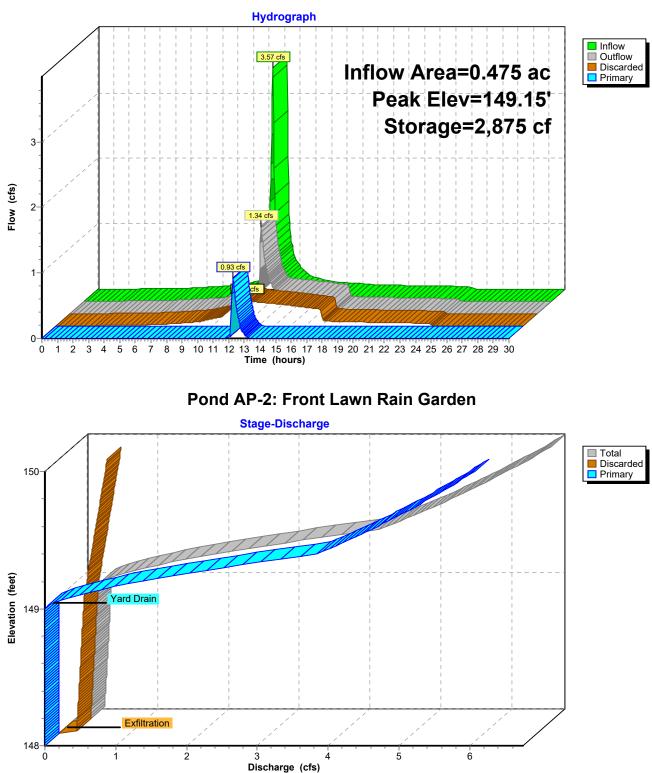
Summary for Pond AP-2: Front Lawn Rain Garden

Inflow Area =	0.475 ac, 24	4.65% Impervious, Inflow	Depth = 6.39" for 100-yr event		
Inflow =	3.57 cfs @	12.13 hrs, Volume=	0.253 af		
Outflow =	1.34 cfs @	12.28 hrs, Volume=	0.253 af, Atten= 63%, Lag= 8.9 min		
Discarded =	0.41 cfs @	12.28 hrs, Volume=	0.225 af		
Primary =	0.93 cfs @	12.28 hrs, Volume=	0.028 af		
Routed to Pond S-3 : Subsurface Infiltration System					

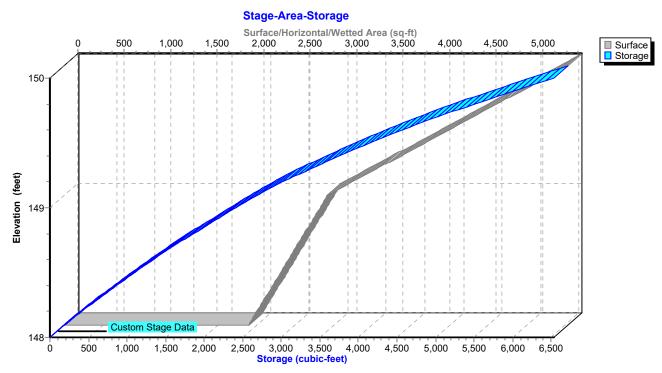
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 149.15' @ 12.28 hrs Surf.Area= 3,230 sf Storage= 2,875 cf

Plug-Flow detention time= 45.3 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 45.3 min (838.2 - 792.9)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	148.00'	6,53	6 cf Custom	Stage Data (Pris	matic)Listed below (Recalc)
Elevation	Su	rf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
148.00		1,985	0	0	
149.00		2,833	2,409	2,409	
150.00		5,420	4,127	6,536	
Device R	outing	Invert	Outlet Device	S	
#1 P	rimary	145.90'	15.0" Round	I Culvert	
			Inlet / Outlet I	nvert= 145.90' / 14	adwall, Ke= 0.500 5.55' S= 0.0101 '/' Cc= 0.900
#2 D	evice 1	149.00'	3.6" x 0.9" H	oriz. Yard Drain X	
ח ג#	iscardad	1/18 00'			-
#3 D	13001000	1-0.00	5.750 III/III L		
Device R #1 P #2 D	rimary	Invert 145.90'	Outlet Device 15.0" Round L= 34.6' CPI Inlet / Outlet I n= 0.012, Flo 3.6" x 0.9" H X 14 rows C= Limited to we	I Culvert P, square edge hea nvert= 145.90' / 14 ow Area= 1.23 sf oriz. Yard Drain X	5.55' S= 0.0101 '/' Cc= 0.900 4.00 columns ate (71% open area)


Discarded OutFlow Max=0.41 cfs @ 12.28 hrs HW=149.15' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.41 cfs)

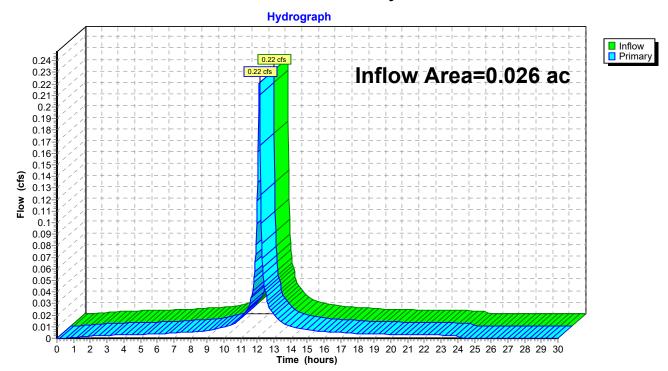
Primary OutFlow Max=0.92 cfs @ 12.28 hrs HW=149.15' (Free Discharge) 1=Culvert (Passes 0.92 cfs of 9.58 cfs potential flow) 2=Yard Drain (Weir Controls 0.92 cfs @ 1.28 fps)


AMSW_Proposed-R8 Prepared by SLR International Corporation

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Page 220

Pond AP-2: Front Lawn Rain Garden

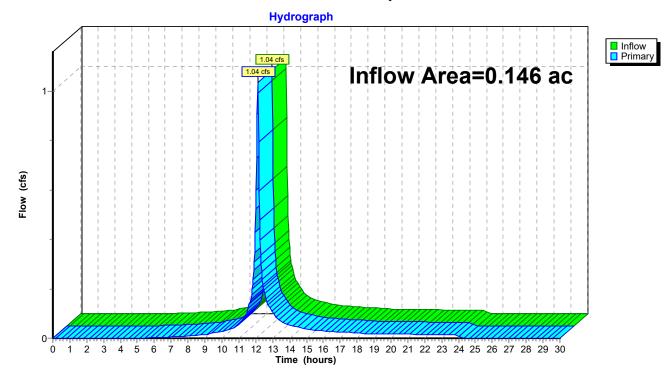


Pond AP-2: Front Lawn Rain Garden

Summary for Pond AP-3: Danbury Road

Inflow Area =		0.026 ac,100.00% Impervious, Inflow Depth = 8.11" for 100-yr event
Inflow	=	0.22 cfs @ 12.13 hrs, Volume= 0.018 af
Primary	=	0.22 cfs @ 12.13 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs



Pond AP-3: Danbury Road

Summary for Pond AP-4: Landscaped Area

Inflow Area =	0.146 ac,	1.46% Impervious, Int	flow Depth = 5.83"	for 100-yr event
Inflow =	1.04 cfs @	12.13 hrs, Volume=	0.071 af	
Primary =	1.04 cfs @	12.13 hrs, Volume=	0.071 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs

Pond AP-4: Landscaped Area

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" **AMSW** Proposed-R8 Revised 2024-01-05 Printed 1/9/2024 Prepared by SLR International Corporation HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Summary for Pond B-1: South Basin

Page 224

Inflow Area = 0.116 ac, 17.66% Impervious, Inflow Depth = 6.31" for 100-yr event 0.87 cfs @ 12.13 hrs, Volume= Inflow = 0.061 af 0.85 cfs @ 12.14 hrs, Volume= Outflow = 0.055 af, Atten= 3%, Lag= 1.0 min Discarded = 0.01 cfs @ 12.14 hrs, Volume= 0.009 af Primary = 0.85 cfs @ 12.14 hrs, Volume= 0.047 af Routed to Pond AP-1 : Norwalk River

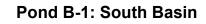
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 140.04' @ 12.14 hrs Surf.Area= 556 sf Storage= 408 cf

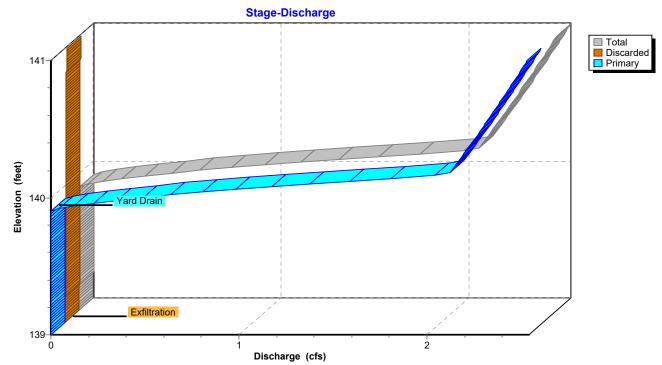
Plug-Flow detention time= 110.3 min calculated for 0.055 af (91% of inflow) Center-of-Mass det. time= 62.9 min (863.0 - 800.1)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	139.00	' 1,11	8 cf Custom	Stage Data (Prismatic)Listed below	(Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
139.0	0	228	0	0	
140.0	00	539	384	384	
141.0	00	929	734	1,118	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	138.00'	8.0" Round C	Culvert	
	2		L= 40.0' CPF	, square edge headwall, Ke= 0.500	
			Inlet / Outlet Ir	vert= 138.00' / 137.60' S= 0.0100 '/	" Cc= 0.900
			n= 0.012. Flo	w Area= 0.35 sf	
#2	Device 1	139.90'	,	riz. Yard Drain X 4.00 columns	
			X 14 rows C=	0.600 in 18.0" Grate (71% open area	1)
				flow at low heads	/
#3	Discarded	139.00'	0.400 in/hr Ex	filtration over Surface area	

Discarded OutFlow Max=0.01 cfs @ 12.14 hrs HW=140.04' (Free Discharge) **—3=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.83 cfs @ 12.14 hrs HW=140.04' (Free Discharge) -1=Culvert (Passes 0.83 cfs of 2.04 cfs potential flow) **1**-2=Yard Drain (Weir Controls 0.83 cfs @ 1.24 fps)


AMSW_Proposed-R8


Prepared by SLR International Corporation Rev HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 s LLC Page 225

Hydrograph Inflow
Outflow 0.87 cfs Inflow Area=0.116 ac Discarded 0.85 cf Primary 0.95 Peak Elev=140.04' 0.9 0.85 cfs 0.85 Storage=408 cf 0.8 0.75 0.7 0.65 0.6 (cfs) 0.55 0.5 Flow 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 13 14 15 16 17 Time (hours) 2 3 4 56 7 8 9 10 11 12 18 19 20 21 22 23 24 25 26 27 28 29 30 <u>0</u> 1

Pond B-1: South Basin

AMSW_Proposed-R8

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 s LLC Page 226

Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 Surface
 Storage 0 50 141 Elevation (feet) 140 Custom Stage Data 139 200 1,100 100 300 400 500 600 700 800 900 1,000 0 Storage (cubic-feet)

Pond B-1: South Basin

AMSW Proposed-R8 Prepared by SLR International Corporation

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 227

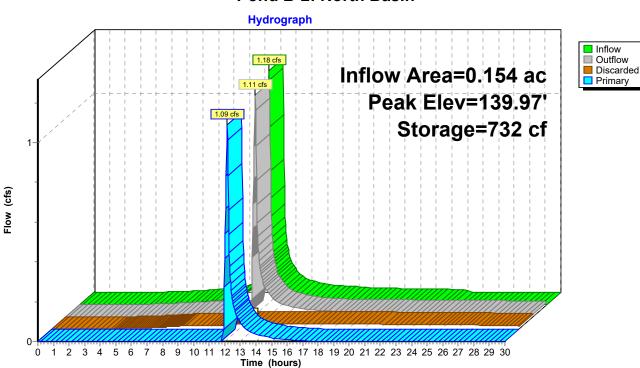
Summary for Pond B-2: North Basin

Inflow Area = 0.154 ac,		7.18% Impervious, Inflow D	epth = 6.43" for 100-yr event	
Inflow =	1.18 cfs @	12.13 hrs, Volume=	0.082 af	
Outflow =	1.11 cfs @	12.15 hrs, Volume=	0.082 af, Atten= 5%, Lag= 1.4 min	
Discarded =	0.03 cfs @	12.15 hrs, Volume=	0.043 af	
Primary =	1.09 cfs @	12.15 hrs, Volume=	0.039 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 139.97' @ 12.15 hrs Surf.Area= 920 sf Storage= 732 cf

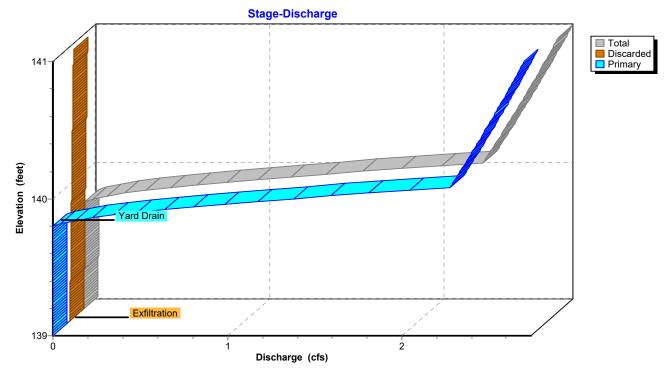
Plug-Flow detention time= 141.6 min calculated for 0.082 af (100% of inflow) Center-of-Mass det. time= 140.4 min (937.7 - 797.3)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	139.00	י' 1,88	38 cf Custom	Stage Data (Prise	matic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
139.0	0	589	0	0	
140.0	0	930	760	760	
141.0	0	1,327	1,129	1,888	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	138.00'	10.0" Round	Culvert	
	,		L= 200.0' CP	P, square edge he	eadwall, Ke= 0.500
					7.00' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flo	w Area= 0.55 sf	
#2	Device 1	139.80'	3.6" x 0.9" Ho	oriz. Yard Drain X	4.00 columns
			X 14 rows C=	0.600 in 18.0" Gra	ite (71% open area)
				r flow at low heads	· · · · ·
#3	Discarded	139.00'	1.250 in/hr Ex	diltration over Su	Irface area


Discarded OutFlow Max=0.03 cfs @ 12.15 hrs HW=139.97' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.03 cfs)

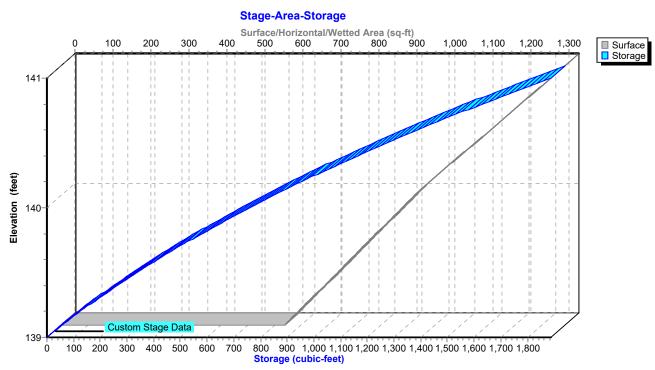
Primary OutFlow Max=1.08 cfs @ 12.15 hrs HW=139.97' (Free Discharge) -1=Culvert (Passes 1.08 cfs of 2.22 cfs potential flow) **1**-2=Yard Drain (Weir Controls 1.08 cfs @ 1.35 fps)

AMSW_Proposed-R8


AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 ons LLC Page 228

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin


Pond B-2: North Basin

AMSW_Proposed-R8

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 e Solutions LLC Page 229

Prepared by SLR International Corporation Revi HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC

Pond B-2: North Basin

Summary for Pond S-1: Subsurface Infiltration System

Inflow Area =	0.554 ac, 58.4	5% Impervious, Inflow De	epth = 7.19" for 100-yr event	
Inflow =	4.50 cfs @ 12.	.13 hrs, Volume=	0.332 af	
Outflow =	3.12 cfs @ 12.	.19 hrs, Volume=	0.301 af, Atten= 31%, Lag= 3.7 min	
Discarded =	0.02 cfs @ 3.	.33 hrs, Volume=	0.036 af	
Primary =	3.10 cfs @ 12.	.19 hrs, Volume=	0.265 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.93' @ 12.19 hrs Surf.Area= 0.039 ac Storage= 0.072 af

Plug-Flow detention time= 113.4 min calculated for 0.301 af (91% of inflow) Center-of-Mass det. time= 63.3 min (836.8 - 773.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	142.00'	0.036 af	11.00'W x 153.14'L x 3.50'H Field A
			0.135 af Overall - 0.044 af Embedded = 0.091 af x 40.0% Voids
#2A	142.50'	0.044 af	ADS_StormTech SC-740 +Cap x 42 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			42 Chambers in 2 Rows
		0.081 af	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	143.35'	12.0" Round Culvert
		L= 114.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 143.35' / 142.21' S= 0.0100 '/' Cc= 0.900
		n= 0.012, Flow Area= 0.79 sf
Device 1	143.50'	6.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
Discarded	142.00'	0.400 in/hr Exfiltration over Surface area
	Primary Device 1 Device 1	Primary 143.35' Device 1 143.50' Device 1 144.90'

Discarded OutFlow Max=0.02 cfs @ 3.33 hrs HW=142.04' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=3.07 cfs @ 12.19 hrs HW=144.91' (Free Discharge)

-1=Culvert (Passes 3.07 cfs of 3.85 cfs potential flow)

2=Orifice (Orifice Controls 3.05 cfs @ 5.19 fps)

-3=Sharp-Crested Vee/Trap Weir (Weir Controls 0.02 cfs @ 0.33 fps)

Pond S-1: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

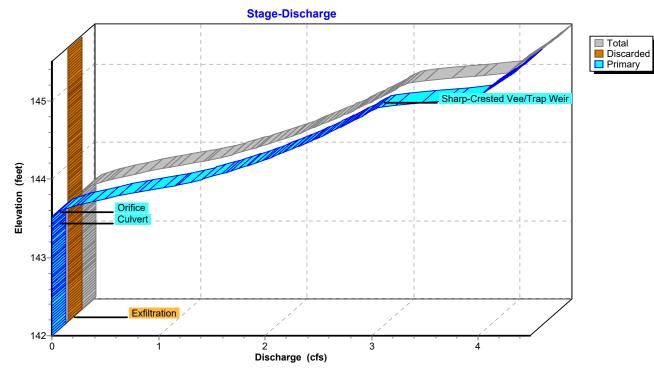
Prepared by SLR International Corporation

21 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 151.14' Row Length +12.0" End Stone x 2 = 153.14' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

42 Chambers x 45.9 cf = 1,929.5 cf Chamber Storage

5,895.8 cf Field - 1,929.5 cf Chambers = 3,966.3 cf Stone x 40.0% Voids = 1,586.5 cf Stone Storage

Chamber Storage + Stone Storage = 3,516.0 cf = 0.081 af Overall Storage Efficiency = 59.6% Overall System Size = 153.14' x 11.00' x 3.50'


42 Chambers 218.4 cy Field 146.9 cy Stone

AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 232

Hydrograph Inflow
Outflow 4.50 cfs Inflow Area=0.554 ac Discarded Primary 5 Peak Elev=144.93' Storage=0.072 af 4 3.12 cfs 3.10 cfs 3 Flow (cfs) 2 1 0.02 cfs ٥ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 Ò 1

Stage-Area-Storage Surface/Horizontal/Wetted Area (acres) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 Surface Storage 145 Elevation (feet) 144 143 ADS_StormTech SC-740 +Cap Field A 142 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0 Storage (acre-feet)

Pond S-1: Subsurface Infiltration System

Summary for Pond S-2: Subsurface Infiltration System

Inflow Area =	1.838 ac,10	0.00% Impervious, Inflow	Depth = 8.11" for 100-yr event	
Inflow =	4.66 cfs @	11.89 hrs, Volume=	1.242 af	
Outflow =	4.48 cfs @	13.17 hrs, Volume=	1.242 af, Atten= 4%, Lag= 76.9 min	
Discarded =	0.50 cfs @	9.24 hrs, Volume=	0.741 af	
Primary =	3.98 cfs @	13.17 hrs, Volume=	0.501 af	
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 144.94' @ 13.17 hrs Surf.Area= 0.091 ac Storage= 0.193 af

Plug-Flow detention time= 55.5 min calculated for 1.241 af (100% of inflow) Center-of-Mass det. time= 55.5 min (802.9 - 747.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	141.50'	0.100 af	30.00'W x 131.78'L x 4.00'H Field A
			0.363 af Overall - 0.114 af Embedded = 0.249 af x 40.0% Voids
#2A	142.50'	0.114 af	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 6 Rows
		0.214 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	143.15'	15.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 143.15' / 142.69' S= 0.0061 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.23 sf
#2	Device 1	143.64'	7.0" Vert. Orifice X 3.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	144.90'	5.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#4	Discarded	141.50'	5.450 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.50 cfs @ 9.24 hrs HW=141.54' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=3.98 cfs @ 13.17 hrs HW=144.94' (Free Discharge)

-1=Culvert (Passes 3.98 cfs of 5.68 cfs potential flow)

2=Orifice (Orifice Controls 3.87 cfs @ 4.83 fps)

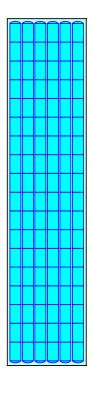
-3=Sharp-Crested Vee/Trap Weir (Weir Controls 0.11 cfs @ 0.62 fps)

Pond S-2: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

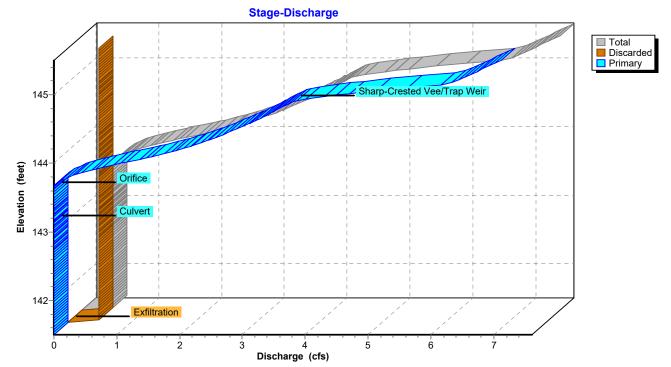

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 12.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

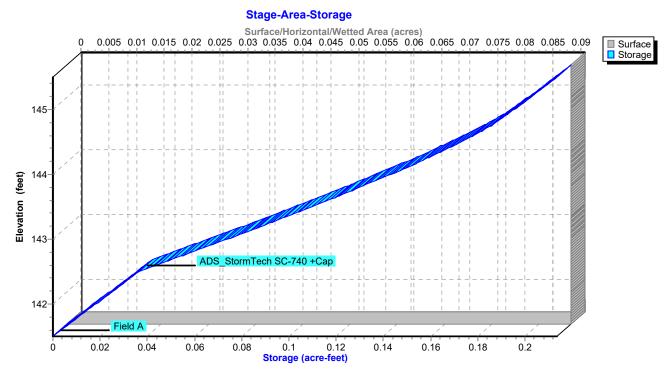
108 Chambers x 45.9 cf = 4,961.5 cf Chamber Storage

15,813.2 cf Field - 4,961.5 cf Chambers = 10,851.7 cf Stone x 40.0% Voids = 4,340.7 cf Stone Storage

Chamber Storage + Stone Storage = 9,302.2 cf = 0.214 af Overall Storage Efficiency = 58.8% Overall System Size = 131.78' x 30.00' x 4.00'

108 Chambers 585.7 cy Field 401.9 cy Stone




AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 236

Hydrograph Inflow
Outflow 4.66 cfs Inflow Area=1.838 ac Discarded Primary 5 Peak Elev=144.94' Storage=0.193 af 3.98 4 Flow (cfs) 3 2 0.50 cfs ٥ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 1 4 5 6 8 0 7

Pond S-2: Subsurface Infiltration System

Summary for Pond S-3: Subsurface Infiltration System

Inflow Area =	1.020 ac, 47.60% Impervious, Inflow D	epth = 4.39" for 100-yr event		
Inflow =	4.55 cfs @ 12.13 hrs, Volume=	0.373 af		
Outflow =	3.74 cfs @ 12.19 hrs, Volume=	0.340 af, Atten= 18%, Lag= 3.9 min		
Discarded =	0.05 cfs @ 5.91 hrs, Volume=	0.120 af		
Primary =	3.68 cfs @ 12.19 hrs, Volume=	0.219 af		
Routed to Pond AP-1 : Norwalk River				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 143.46' @ 12.19 hrs Surf.Area= 0.052 ac Storage= 0.101 af

Plug-Flow detention time= 149.0 min calculated for 0.339 af (91% of inflow) Center-of-Mass det. time= 102.3 min (863.4 - 761.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	140.40'	0.047 af	30.00'W x 74.82'L x 3.50'H Field A
			0.180 af Overall - 0.063 af Embedded = 0.117 af x 40.0% Voids
#2A	140.90'	0.063 af	ADS_StormTech SC-740 +Cap x 60 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		0.110 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	141.84'	12.0" Round Culvert
			L= 75.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 141.84' / 141.19' S= 0.0087 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	142.10'	7.0" Vert. Orifice X 2.00 C= 0.600 Limited to weir flow at low heads
#3	Device 1	143.30'	5.0' long Weir Wall Cv= 2.62 (C= 3.28)
#4	Discarded	140.40'	1.050 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 5.91 hrs HW=140.44' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=3.59 cfs @ 12.19 hrs HW=143.45' (Free Discharge)

-1=Culvert (Passes 3.59 cfs of 3.78 cfs potential flow)

2=Orifice (Orifice Controls 2.65 cfs @ 4.95 fps)

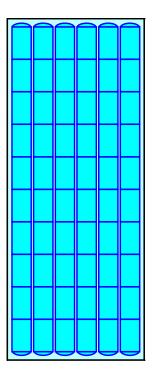
-3=Weir Wall (Weir Controls 0.94 cfs @ 1.26 fps)

Pond S-3: Subsurface Infiltration System - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

Prepared by SLR International Corporation

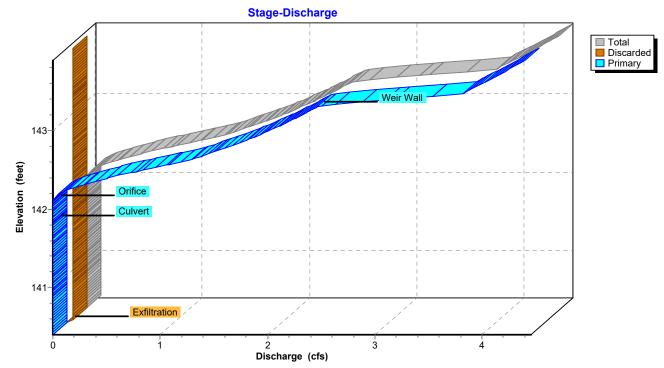

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' **Base Length** 6 Rows x 51.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 30.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

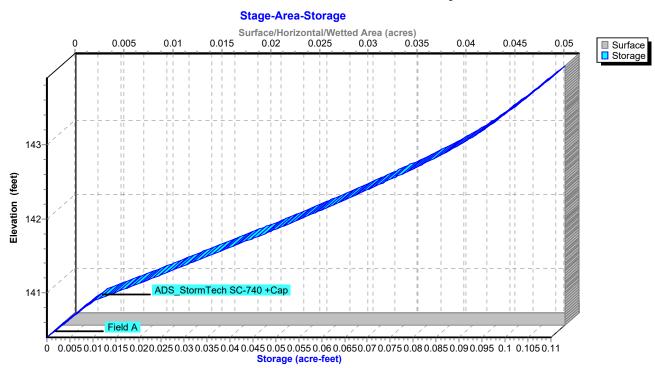
60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage

7,855.8 cf Field - 2,756.4 cf Chambers = 5,099.3 cf Stone x 40.0% Voids = 2,039.7 cf Stone Storage

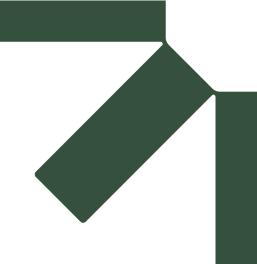
Chamber Storage + Stone Storage = 4,796.1 cf = 0.110 af Overall Storage Efficiency = 61.1% Overall System Size = 74.82' x 30.00' x 3.50'

60 Chambers 291.0 cy Field 188.9 cy Stone




AMS Wilton - Proposed Conditions NRCC 24-hr C 100-yr Rainfall=8.35" Revised 2024-01-05 Printed 1/9/2024 HydroCAD® 10.20-3g s/n 07599 © 2023 HydroCAD Software Solutions LLC Page 240

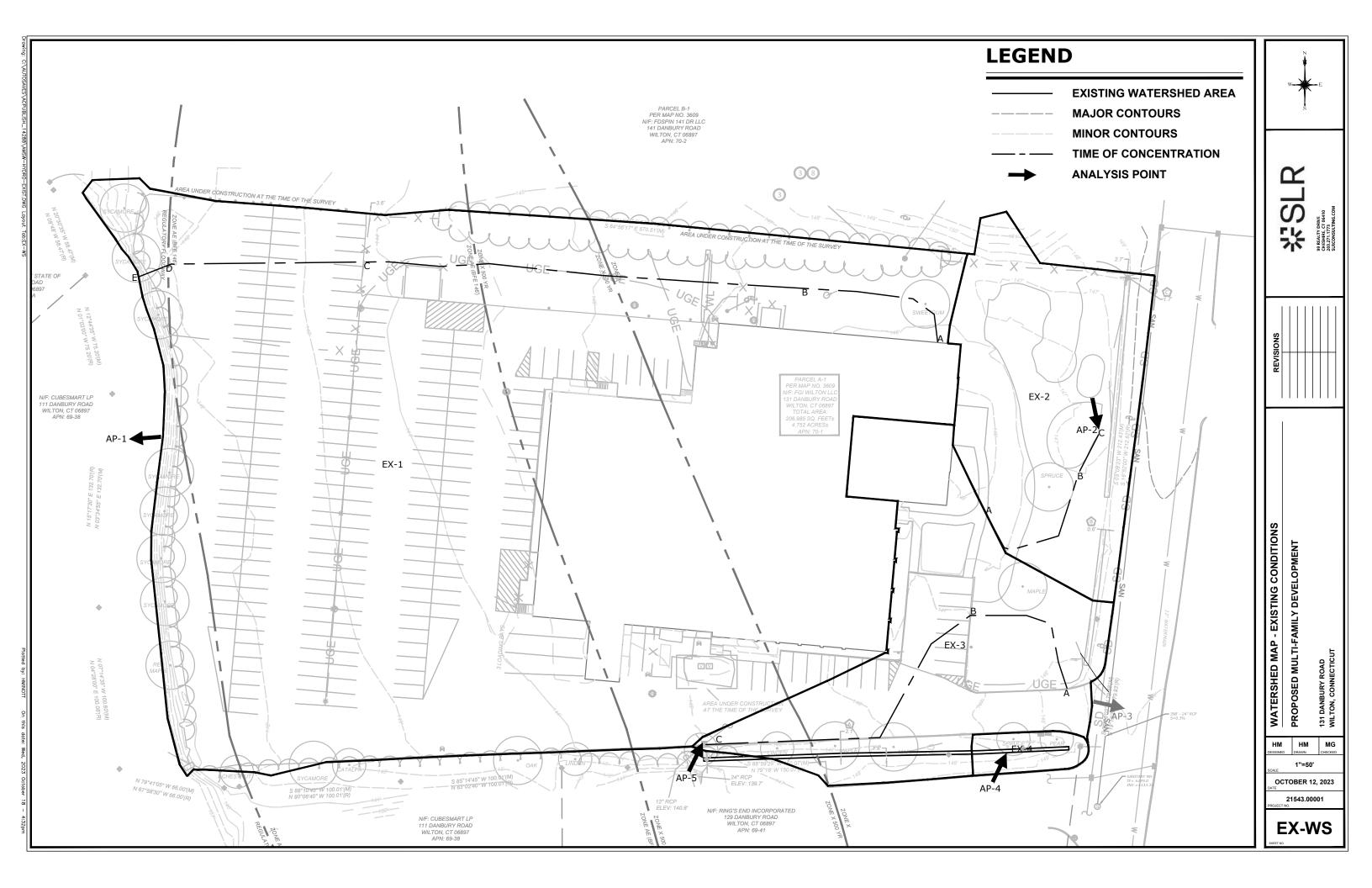
Hydrograph Inflow
Outflow 4.55 cfs Inflow Area=1.020 ac Discarded Primary 5 Peak Elev=143.46' 3.74 cfs Storage=0.101 af 4 3.68 cfs 3 Flow (cfs) 2 0.05 cfs ٥ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 1 5 0

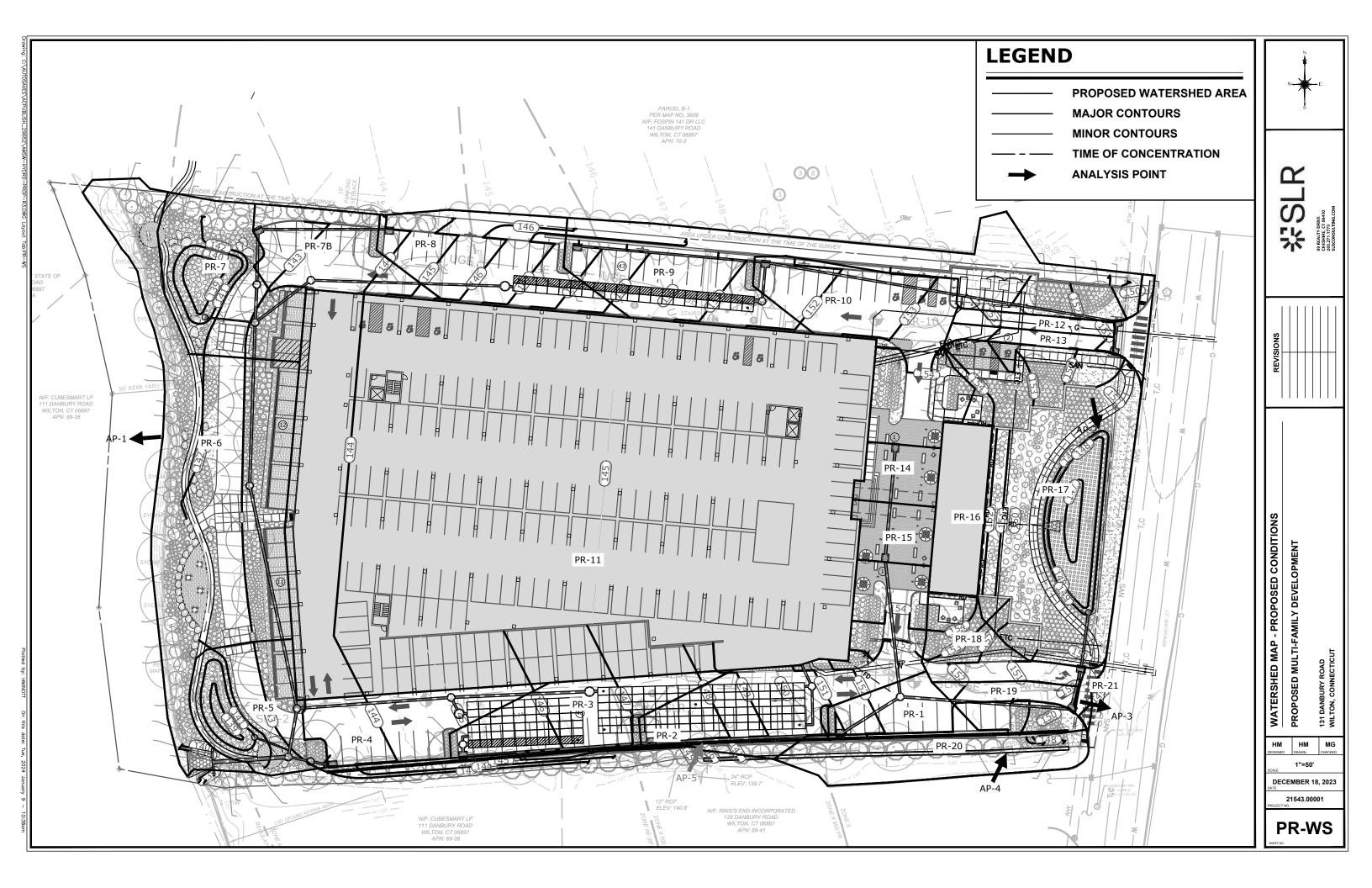


Pond S-3: Subsurface Infiltration System

Appendix H Watershed Maps

Proposed Multifamily Development


131 Danbury Road, Wilton, Connecticut Drainage Report


Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171

October 23, 2023

Appendix I NRCS Web Soil Survey

Proposed Multifamily Development

131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation


SLR Project No.: 141.21543.0000171

October 23, 2023

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
103	Rippowam fine sandy loam	B/D	0.5	7.5%
305	Udorthents-Pits complex, gravelly	С	0.8	13.0%
307	Urban land	D	4.8	74.7%
W	Water		0.3	4.7%
Totals for Area of Intere	est	6.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

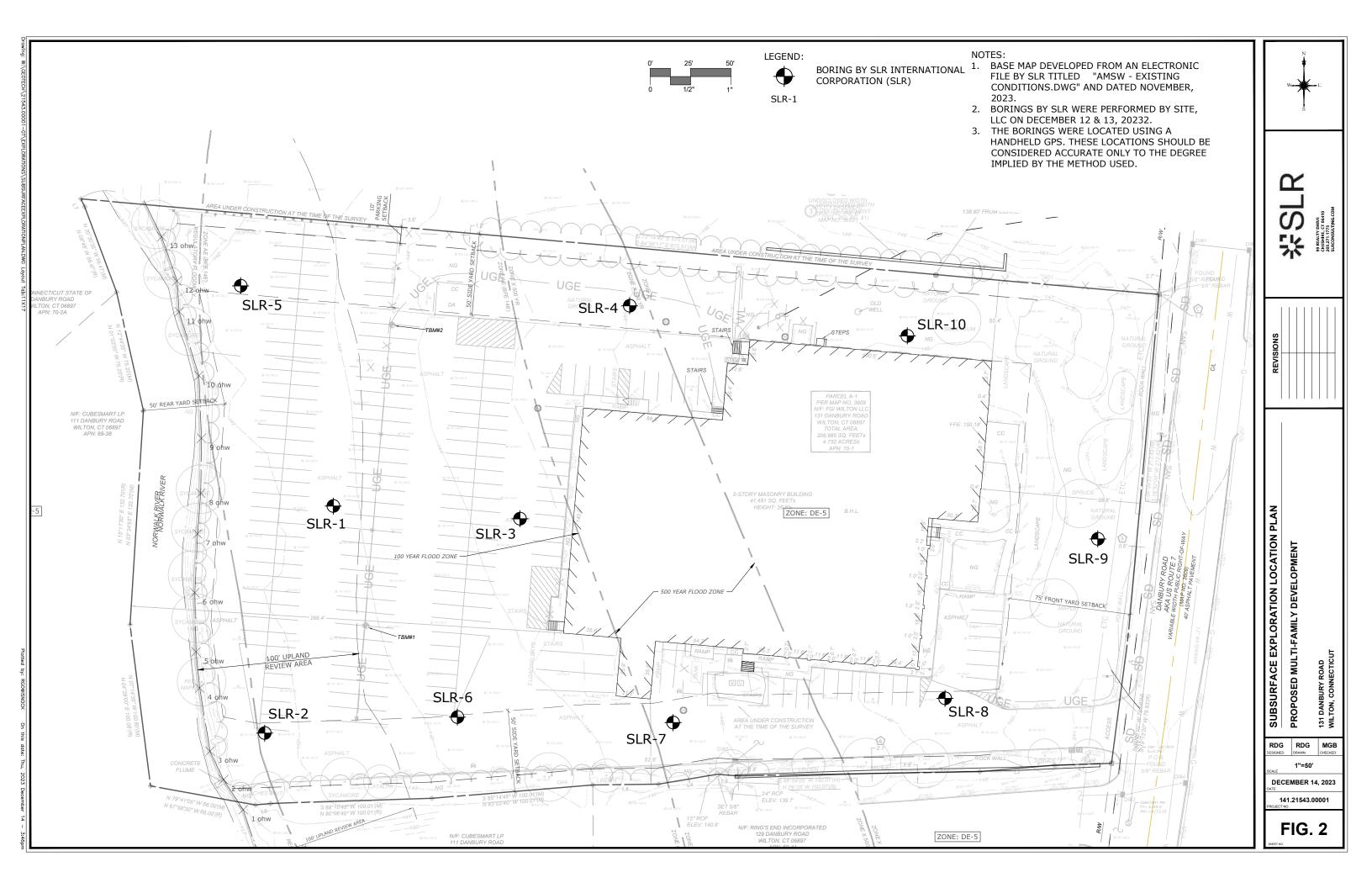
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

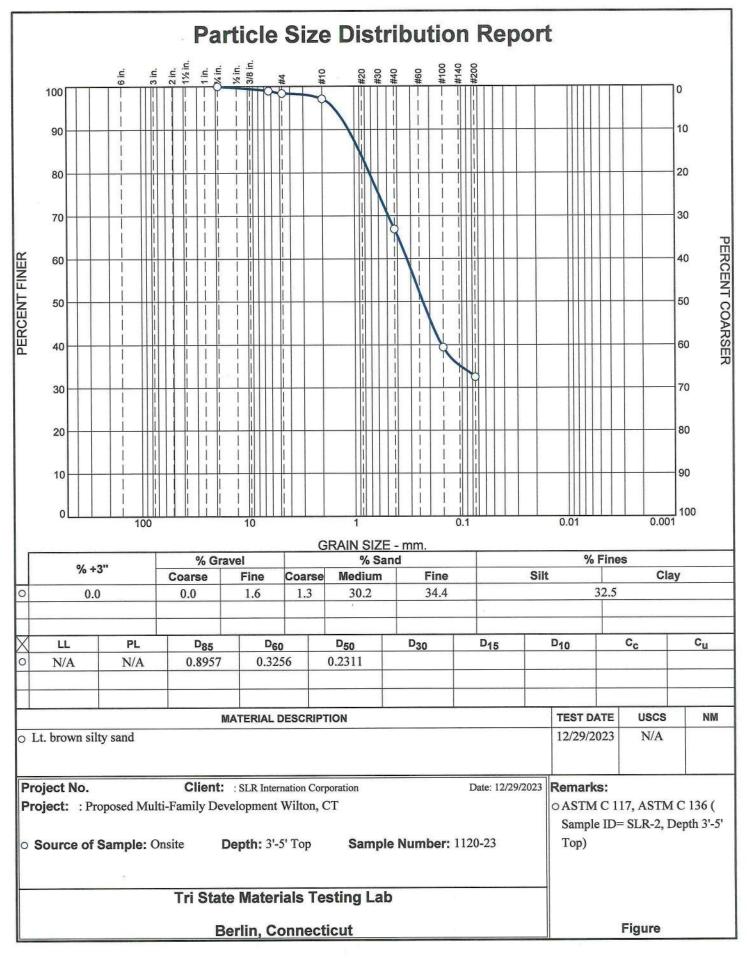
Appendix J Permeability Test Results

Proposed Multifamily Development


131 Danbury Road, Wilton, Connecticut Drainage Report

Ryan Sutherland, AMS Acquisitions Management Corporation

SLR Project No.: 141.21543.0000171


October 23, 2023

GRAIN SIZE DISTRIBUTION TEST DATA						BUTION	TEST	DATA			1	2/29/20
ent: : SLR	Internation	n Corporat	ion			Date: 12	2/29/2	2023				
			Developme	ent Wilton	n, CT							
cation: On	site											
pth: 3'-5' 1	th: 3'-5' Top Sample Number: 1120-23											
aterial Des		t. brown s	ilty sand									
uid Limit:		Plastic Limit: N/A										
CS Classifi) Clas	sificat	ion: N/A					
st Date: 12		10110	CTD (C 10		1 10 01							
server an an and a server of the		M C 117, A	ASTM C 13	66 (Samp					p)			
sted by: So st Date: 12		Technic	ian: SC			Checke	a by:	IC				
			M C 136 (Sample I	D=SIR	Denth	3'_5'	Top)				
SUTEINAINS	ASTNC	117, AS1	and the second se	And the owner of the owner	st Data (A	And in case of the local division of the loc	Alexandra and a	and some of the local division of the	Longer in	Se Traction St	AND A COM	A MERICA
st #200 Was	sh Test Wei	ghts (grams	s): Dry Spec	and the second sec	the second s	31 WI CI	1/ 00	CTOOL				
56 #200 110.		Birto (Branns	Tare Wt.		c - 177.10							
nus #200 fr	om wash =	32.3%										
acimon Woi	ichte											
e <mark>cimen We</mark> i ry specimer) = 262.00										
are (gms.) =		, 202.00										
mulative pa	n tare (gms											
<u>.</u>		Cumulati										
Sieve Opening		Weight Retained		Percer	.+	Perce	nt					
Size	5	(grams)		Passin		Retain						
3/4"		0.00		100.0	Б	0.0						
1/4"		2.70		99.0		1.0						
#4		4.20		98.4		1.6						
#10 #40		7.50 86.60		97.1 66.9		2.9 33.1						
#100		158.70		39.4		60.6						
#200	2010-01 d201 11	176.80		32.5		67.5	i					
an + tare = 0 tal loss (wa			sieving = 0.2	%								
tai 1035 (wa	sii+paii/spe	ciffen) – 52	2.370									
					Res	sults						
Cobbles		Gravel				Sanc					Fines	
	Coarse	Fine	Total	Coar		dium	Fine		Total	Silt	Clay	Total
0.0	0.0	1.6	1.6	1.3	3 30	0.2	34.4		65.9			32.5
D5	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀		D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1546	0.231	1 0	0.3256	0.7255	0.8957	1.1344	1.5511
—— Finen	ess Modulu 1.41	s										

_____ Tri State Materials Testing Lab

Checked By: IC

TRI STATE MATERIALS TESTING LAB LLC. <u>New England Regional Office</u>

60 Woodlawn Road, Berlin CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	001
	99 Realty Drive	-	
	Cheshire, CT 06410		
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023
Contractor:	N/A	LAB #:	1120-23
Technician:	IC		

LABORATORY PERMEABILITY TEST

Sample Description: Lt. brown silty sand

Source: Onsite

Sample ID: SLR-2

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	1000 cm^3
L = length of the sample in centimeters	$\Gamma =$	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	10800 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000245522 \text{ cm/sec} = 2.5 \times 10^{-4} \text{ cm/sec or } 0.8 \text{ inch/hour}$

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others.

TSMT www.tristate-testing.com

TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	001-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	001-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
Contractor:	SLR International Corporation	Sample #	1120-23
Technician:	I.C	Sample ID	SLR-2

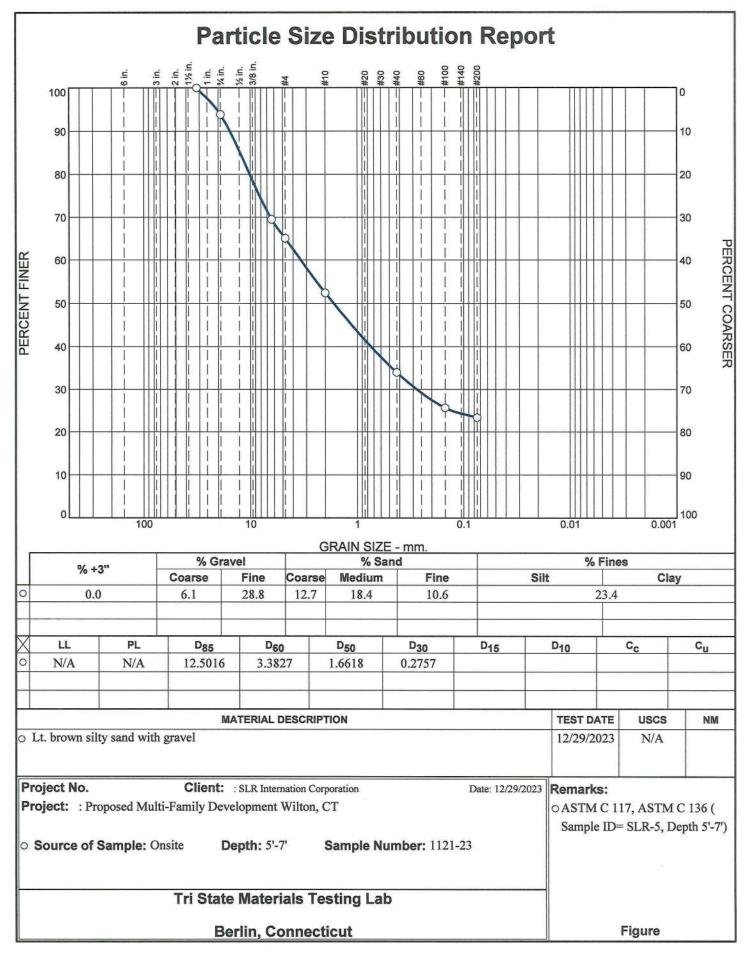
SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1120-23	Lt. brown silty sand	0.005451389 [ft3]	0.57611 lbs.	106.0 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

ation: On pth: 5'-7'	site					Sample N	lumber: 1	21-23			
aterial Des	cription: L	t. brown si	lty sand v	vith grave	1						
uid Limit:						Plastic Li		NT/A			
SCS Classification: N/A est Date: 12/29/2023					AASHIO	Classificat	ion: N/A				
	arks: ASTN	M C 117, A	STM C 1	36 (Sam	ole ID= SI	R-5, Dep	oth 5'-7')				
sted by: S						Checked					
st Date: 12		Technic									
st remarks	ASTM C	117, AST	M C 136		The state of the s	and the second second second	and the second se				
* #200 \Wa	ch Tost Wei	ahte (arome	h Dry Spo		st Data (A	STM C11	7 & C136)		Statistics of		
st #200 vva	sh Test Wei	gnts (grams	Tare Wt		e = 320.60						
			1.41.42.414								
nus #200 fr	om wash = 2	23.2%									
ecimen We	ights										
	n+tare (gms.) = 417.40									
are (gms.) =	0.00										
mulative pa	n tare (gms	.) = 0.00									
		Cumulativ	/e								
Sieve	-	Weight		Dorcor		Dorcon					
Opening Size	5	Retained (grams)	I	Percer Passin		Percen Retaine	-				
1 1/4"		0.00		100.0							
3/4"		25.60		93.9		6.1					
1/4" #4		127.20 145.60		69.5 65.1		30.5 34.9					
#4		143.60		52.4		47.6					
#40		275.60		34.0		66.0					
#100		310.10		25.7		74.3					
#200	- 0 1	319.70	laulas – 0	23.4		76.6					
	Tare = 0 l sh+pan/spe			2%							
	arri harri oh a		.270								
					Res	sults					
Cobbles		Gravel				Sand			ett.	Fines	
0.0	Coarse	Fine	Total			dium	Fine	Total	Silt	Clay	Total
0.0	6.1	28.8	34.9	12.	7 18	8.4	10.6	41.7			23.4
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2757	0.7428	1.6618	3.3827	10.1656	12.5016	15.5889	20.4709
]											

Checked By: IC

TRI STATE MATERIALS TESTING LAB LLC. New England Regional Office

60 Woodlawn Road, Berlin CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

-State materials lesung			
Client:	SLR International Corporation	Report:	002
	99 Realty Drive	-	
	Cheshire, CT 06410		
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023
Contractor:	N/A	LAB #:	1121-23
Technician:	IC		

LABORATORY PERMEABILITY TEST

Sample Description: Lt. brown silty sand with gravel

Source: Onsite

Sample ID: SLR-5

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	1000 cm^3
L = length of the sample in centimeters	L =	6.985 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	5100 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000714901 \text{ cm/sec} = 7.1 \times 10^{-4} \text{ or } 2.5 \text{ inch/hour}$

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others.

TSMT www.tristate-testing.com

TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	02-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	002-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
Contractor:	SLR International Corporation	Sample#:	1121-23
Technician:	I.C	Sample ID	SLR-5

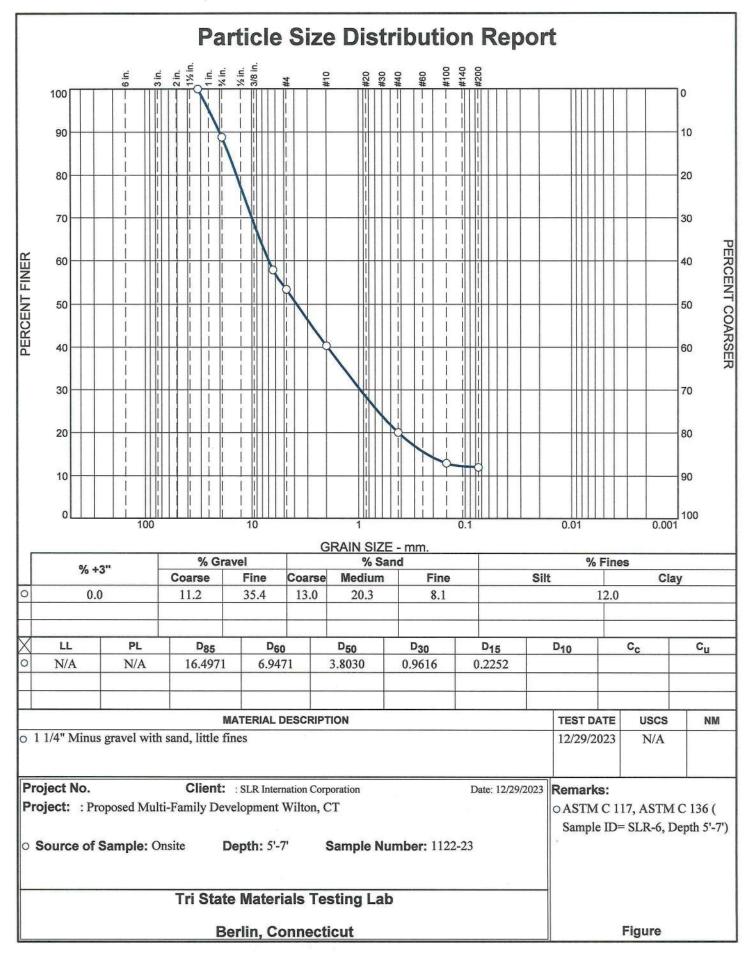
SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1121-23	Lt. brown silty sand with gravel	0.007494213 [ft3]	0.92020948 lbs.	122.7 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

GRAIN SIZE DISTRIBUTION TEST DATA

uid Limit: CS Classifie	N/A		us gravel w	onth sand,	I	Plastic Lir	nit: N/A Classificat	ion: N/A			
st Date: 12					-						
		M C 117, J	ASTM C 13	36 (Samp			-				
sted by: SC st Date: 12		Technic	cian: SC		5	Checked	oy: IC				
			ГМ С 136 (Sample I	D= SLR-6	, Depth 5	'-7')				
		and the fait			st Data (As	CONTRACTOR OF THE OWNER.	Contraction of the local division of the loc				
t #200 Was	sh Test We	ights (gram	s): Dry Spec		e = 262.30						
			Tare Wt.	. = 0.00							
nus #200 fro	om wash =	11.9%									
ecimen Wei y specimen		1 - 207.60									
re (gms.) =		.) = 297.00									
nulative pa	n tare (gm	5.) = 0.00									
		Cumulati									
Sieve		Weight				_					
Opening Size		Retaine (grams		Percen Passing		Percent Retained					
1 1/4"		(grans 0.00		100.0	5	0.0	1				
3/4"		33.30		88.8		11.2					
1/4"		125.20	1	57.9		42.1					
#4		138.60		53.4		46.6					
#10		177.50		40.4		59.6					
		237.80 259.00		20.1 13.0		79.9 87.0					
#40		261.80		12.0		88.0					
#40 #100		Loss during	sieving = 0.2								
#40 #100 #200	Tare = 0	cimon) - 1	1 00/								
#40 #100 #200		ecimeny = 1	1.9%					and the second	545 (1 4 4 7 1 4 4 4		
#40 #100 #200 an + tare = 0		ecimenț – 1	1.9%		Res	ults				and the second se	
#40 #100 #200 an + tare = 0			1.9%		Res					Finan	
#40 #100 #200 an + tare = 0	sh+pan/sp	Gravel	- T	Coar	1	Sand	Fine	Total	sil+	Fines	Total
#40 #100 #200 an + tare = 0 cal loss (was			1.9% Total 46.6	Coar: 13.0	se Med	Sand	Fine	Total 41.4	Silt	Fines Clay	Total 12.0
#40 #100 #200 an + tare = 0 cal loss (was	sh+pan/sp Coarse	Gravel	Total		se Med	Sand			Silt		
#40 #100 #200 an + tare = 0 cal loss (was	sh+pan/sp Coarse	Gravel	Total		se Med	Sand			Silt D ₈₅		

_____ Tri State Materials Testing Lab

Checked By: IC

TSMT Tri-State Materials Testing	TRI STATE MATERIALS TESTING I <u>New England Regional Office</u> 60 Woodlawn Road, Berlin CT 06037 • Tel: 203-94)3-949-7735	
Client:	SLR International Corporation	Report:	003	
	99 Realty Drive			
	Cheshire, CT 06410			
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023	
Contractor:	N/A	LAB #:	1122-23	
Technician:	IC			

LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with sand, little fines

Source: Onsite

Sample ID: SLR-6

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	1000 cm^3
L = length of the sample in centimeters	$\Gamma =$	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	900 sec
h = difference in head manometers,	h =	60 cm

K = 0.00294626 cm/sec = 2.9×10^{-3} or 10.6 inch/hour

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others

TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	03-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	003-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
Contractor:	SLR International Corporation	Sample #:	1122-23
Technician:	I.C	Sample ID	SLR-6

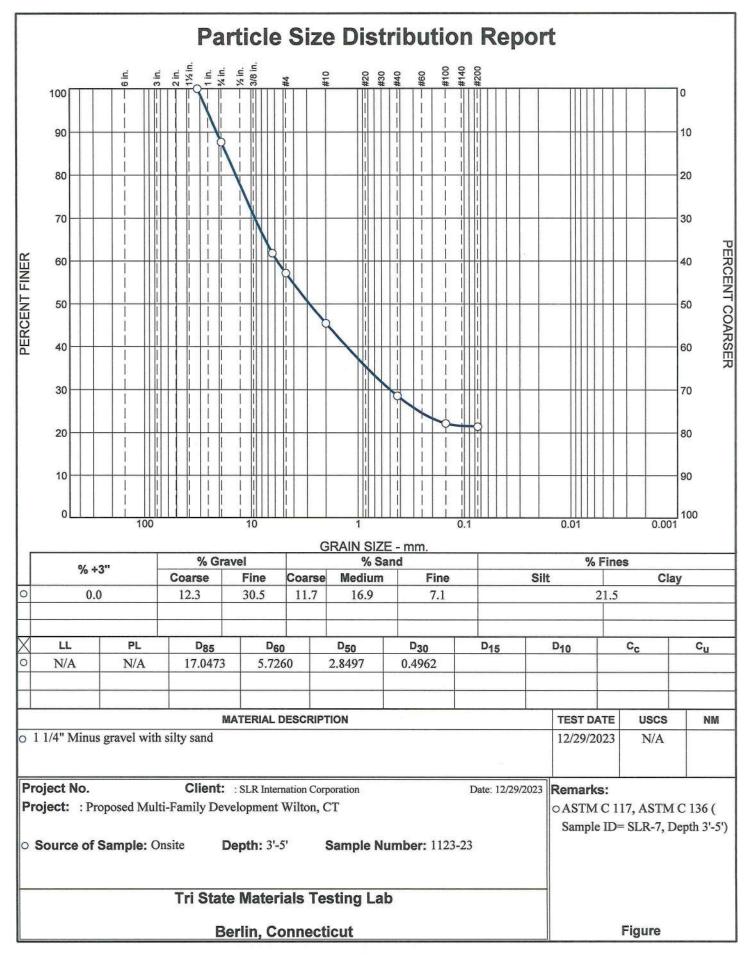
SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1122-23	1 ¼" Minus gravel with sand, little fines	0.005451389 [ft3]	0.65609569 lbs.	120.3 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

												_	,,
ient: : SLR Internati	on Cornorat	tion			1	Date: 12	1/20	9/2023					
oject: : Proposed M			ent Wilto	n CT		Date: 12		14045					
cation: Onsite	uni-i anniy	Developii		n, 01									
Depth: 3'-5' Sample Number: 1123-23													
Material Description: 1 1/4" Minus gravel with silty sand													
2	1 1/4 191111	us graver	with sitty s	sanu		Plastic L	Incl	te NI/A					
quid Limit: N/A	1.4									NT/A			
SCS Classification: N					ŀ	AASHTO		assirica	ατιοι	1: N/A			
est Date: 12/29/2023			26/0	1 10	OL	D 7 D	.1	21 51					
esting Remarks: AS	IM C 117, A	ASIMC	136 (Samj			100	-	25.1					
ested by: SC					C	Checked	i by	y: IC					
est Date: 12/29/2023													
est remarks: ASTM	C 117, AST	M C 136			State of the local division in the	Charles and the second second							
			Sieve Te			STM C11	178	& C136	5)		All Antes		
ost #200 Wash Test W	eights (grams		cimen+Tar t. = 0.00	e = 239	9.20								
inus #200 from wash	= 21.2%												
ecimen Weights	- 1 000 50												
Ory specimen+tare (gm	s.) = 303.50												
are (gms.) = 0.00													
umulative pan tare (gn	ns.) = 0.00												
	Cumulati	ve											
Sieve	Weight	t											
Opening	Retaine	d	Percer	nt		Percer	nt						
Size	(grams))	Passin	g		Retaine	ed						
1 1/4"	0.00		100.0			0.0							
3/4"	37.40		87.7			12.3							
1/4"	115.80		61.8			38.2							
#4 #10	129.90 165.50		57.2 45.5			42.8 54.5							
#40	216.60		28.6			71.4							
#100	236.00		22.2			77.8							
#200	238.30		21.5			78.5							
Pan + tare = 0 Tare = 0	Loss during		.3%										
otal loss (wash+pan/sp	ecimen) = 2	1.2%											
				Print B	Dere	allan	1	14 C 14	12				
		and the second state of the		State of the second	Resu	unts	1000				No. Contraction		The American
	Gravel					Sand		11				Fines	
Cobbles Coarse	Fine	Total	Coar	se	Medi			ne	Т	otal	Silt	Clay	Total
					101012005-2250						Jit	City	
0.0 12.3	30.5	42.8	11.	/	16.	.9	1	.1	3	5.7			21.5
D ₅ D ₁₀	D ₁₅	D ₂₀	D ₃₀	D4(0	D ₅₀		D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.4962	1.26	95	2.8497	,	5.726	0	13.9139	17.0473	20,9925	25.8227
Fineness Modul 4.18	us		0.4962	1.26	95	2.8497	'	5.726	0	13.9139	17.0473	20.9925	25.8227
			T	te Me	otoria	ale Tee	tin	alah					

Checked By: IC

TSMT Tri-State Materials Testing	TRI STATE MATERIALS TESTING I <u>New England Regional Office</u> 60 Woodlawn Road, Berlin CT 06037 • Tel: 203-94)3-949-7735	
Client:	SLR International Corporation 99 Realty Drive	Report:	004	
	Cheshire, CT 06410			
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023	
Contractor:	N/A	LAB #:	1123-23	
Technician:	IC			

LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with silty sand

Source: Onsite

Sample ID: SLR-7

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	1000 cm^3
L = length of the sample in centimeters	L =	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	4500 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000589252 \text{ cm/sec} = 5.8 \text{ x}10^{-4} \text{ or } 2.1 \text{ inch/hour}$

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others

TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	04-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	004-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
Contractor:	SLR International Corporation	Sample #:	1123-23
Technician:	I.C	Sample ID	SLR-7

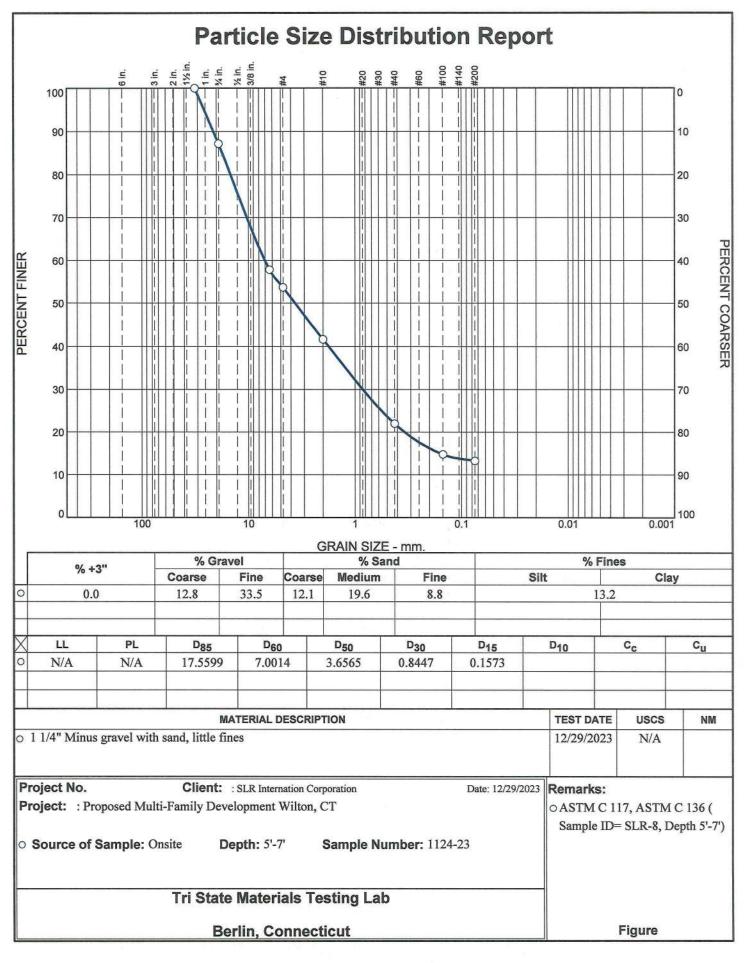
SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume of	Mass of Soil	Density
		measure		
1123-23	1 ¼" Minus gravel with silty sand	0.005451389 [ft3]	0.66844158 lbs.	122.6 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

uid Limit: 1	N/A		us gravel v	vith sand,	little fines	Plastic Lin	nit: N/A				
CS Classific		A				AASHTO (Classificati	on: N/A			
st Date: 12 sting Rema	한 같은 가격한 것은 것이 가지 않는 것으로 가슴을 것	M C 117	ASTM C 1	36 (Samr	le ID= SI	R-8 Dent	h 5'-7')				
sted by: SC		n e 117,1	IDTIM C I	50 (Sum		Checked b					
st Date: 12		Technic	cian: SC								
st remarks:	ASTM C	117, AST	CM C 136	(Sample I	D= SLR-	8, Depth 5'	-7')				
				Sieve Te	st Data (A	STM C117	& C136)	A Service Service			
st #200 Was	h Test Wei	ights (gram	s): Dry Spe	cimen+Tar	e = 355.80						
			Tare Wt	t. = 0.00							
nus #200 fro	m wash -	13 1%									
1103 #200 110	//// wash =	13.170									
ecimen Weig											
ry specimen		.) = 409.40									
are (gms.) =	0.00										
mulative par	n tare (gms	(0,0) = 0.00									
indiative par	1 101 0 (8.110	Cumulati	ive								
Sieve		Weight									
Opening		Retaine		Percer	nt	Percent					
Size		(grams	;)	Passin	g	Retained	1				
1 1/4"		0.00		100.0		0.0					
3/4" 1/4"		52.60 172.40		87.2 57.9		12.8 42.1					
1/4 #4		172.40		53.7		42.1					
#10		238.90		41.6		58.4					
#40		319.30		22.0		78.0					
#100 #200		348.90 355.20		14.8 13.2		85.2 86.8					
an + tare = 0		Loss during	g sieving = 0.								
tal loss (was	sh+pan/sp	ecimen) = 1	.3.1%								
					Po	sults			NEW PROPERTY		
	E South States and States	PROFESSION AND			ne	Surts			Contract Second Second	State of the state of the state	lesse some som
Cabbles		Gravel				Sand	and bentline			Fines	
Cobbles	Coarse	Fine	Total	Coar	se Me	dium	Fine	Total	Silt	Clay	Total
	12.8	33.5	46.3	12.	1 1	9.6	8.8	40.5			13.2
0.0				Dee	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0	D ₁₀	D ₁₅	D ₂₀	D30	-40		100000	C23-23-03	2012/02/2	121120	

Checked By: IC

LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with sand, little fines

Source: Onsite

Sample ID: SLR-8

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	1000 cm^3
L = length of the sample in centimeters	L =	6.985 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	1200 sec
h = difference in head manometers,	h =	60 cm

K = 0.00303833 cm/sec = 3.0 x10⁻³ or 10.9 inch/hour

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others

TRI STATE MATERIALS TESTING LAB, LLC.

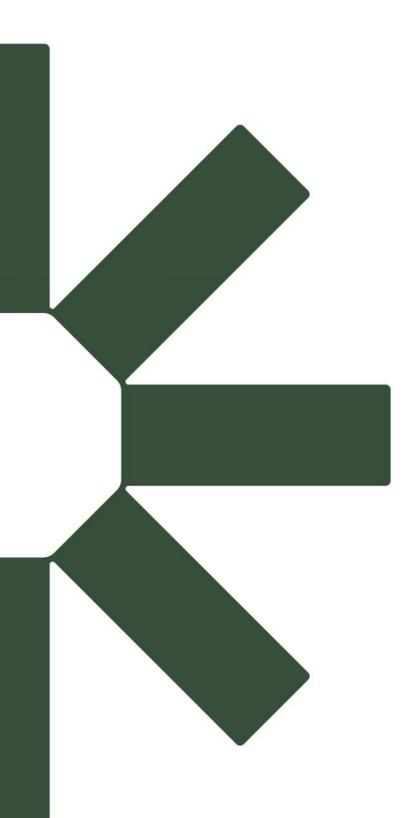
New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	05-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	005-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
Contractor:	SLR International Corporation	Sample #:	1124-23
Technician:	I.C	Sample ID	SLR-8

SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h


Sample #	Material	Volume	Mass of Soil	Density
1124-23	1 ¼" Minus gravel with sand, little fines	0.007495659 [ft3]	0.9025725 lbs.	120.4 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

Making Sustainability Happen

尜SLR

Engineering Report - Floodplain Analysis

131 Danbury Road, Wilton, Connecticut

AMS Acquisitions

Prepared by: **SLR International Corporation** 1 South Main Street, Waterbury, Vermont, 05676

SLR Project No.: 141.21543.00001 Client Reference No: 0001

November 27, 2023

Making Sustainability Happen

1.0 Floodplain Management Background

The project site (131 Danbury Rd, Wilton, CT) is located along the Norwalk River. A Flood Insurance Study (FIS) was completed for the Norwalk River (Town of Wilton) in 1982. This hydraulic modeling was updated June 18, 2010 and revised October 16, 2013, though the river system was not restudied.

2.0 Modeling

Copies of the input and output for the effective hydraulic model for the Norwalk River were obtained from the FEMA Engineering Library. The effective model was originally developed using HEC-2, the predecessor of the current modeling software known as HEC-RAS. The effective model obtained from FEMA was transferred into HEC-RAS to create a duplicate of the effective model for the floodplain analysis of the project. It should be noted that the vertical datum used in the effective model is the National Geodetic Vertical Datum of 1929 (NGVD29), therefore the data was converted to the North American Vertical Datum of 1988 (NAVD88) in the duplicate model. The conversion factor is 1.0 foot, as used in the FIS. The effective HEC-2 modeling used NGVD29 to calculate flood profiles, however the water surface elevations from the effective model have been converted to NAVD88 in the most-recent FIS.

2.1 Calibrated Model

The duplicate effective model was created to replicate the results published in the FIS. A portion of the original model, encompassing cross sections 15 through 30, and FEMA sections N and O, was used to create the duplicate effective model in HEC-RAS. The project site at 131 Danbury Rd falls between FEMA sections N and O, and more specifically between cross sections 27 and 28 from the effective HEC-2 model. This duplicate effective model was created with a datum of NAVD88. The 100-year computed water surface elevation computed by the duplicate effective model was compared to the effective HEC-2 output and the data provided in the FIS Floodway Table (Table 2-1).

FIS CROSS	CALIBRATED MODEL	WATER SU	JRFACE ELEVA	TION (NAVD88)
SECTION IDENTIFIER	CROSS SECTION NUMBER	HEC-2 Output	Floodway Data Table	Calibrated Model
N	17	141.76	141.3	140.23
	18	141.18		140.26
	19	141.73		140.87
	20	142.06		141.29
	21	142.08		141.32
	22	142.22		141.08
	23	142.61		142.17
	24	142.76		142.22
	25	144.13		144.63
	26	144.93		145.21
	27	146.77		146.61
	28	146.56		146.84
	29	151.83		151.38
0	30	153.11	153.1	153.17

The peak discharge rates used for this analysis were obtained from Volume 1 of the FIS and match those used in the effective model. The flow rates are as follows:

RETURN FREQUENCY (YEARS)	ANNUAL CHANCE PROBABILITY	FLOW RATE (CFS)
10	10%	2,980
50	2%	5,840
100	1%	7,455
500	0.2%	12,505

2.2 Corrected Model

After calibrating the duplicate effective model using data from the FIS, a corrected effective model was developed. This corrected model includes editing any erroneous errors in the duplicate effective model. For the corrected effective model, the following corrections were made:

- 1. Bridge bottom chord elevations were edited to achieve accurate no flow areas.
- 2. Effective flow zones were edited to better replicate site limitations due to buildings and bridges.

FIS CROSS	MODEL CROSS	WATER SURFACE ELEVATION (NAVD88)				
SECTION IDENTIFIER	SECTION NUMBER	Duplicate Effective Model	Corrected Effective Model			
N	17	140.23	140.32			
	18	140.26	140.84			
	19	140.87	141.34			
	20	141.29	141.71			
	21	141.32	141.62			
	22	141.08	140.88			
	23	142.17	142.35			
	24	142.22	142.40			
	25	144.63	144.63			
	26	145.21	145.21			
	27	146.61	146.61			
	28	146.84	146.84			
	29	151.38	151.38			
0	30	153.17	153.17			

Table 2-2 Summary of HEC-RAS Model Output Duplicate Effective vs. Corrected Effective (100-Year)

2.3 Existing Conditions Model

To evaluate the impact of the proposed redevelopment, a cross section was added to the corrected effective model at the approximate location of 131 Danbury Rd, identified as river station 27.5 in the model. A cross section was added because one did not exist in the effective model at the pojrect site. Topography for the new cross section inserted into the existing conditions model was developed using the best-available LiDAR contour date as well as existing site survey data. Wet channel geometry (i.e. – below the water surface) was interpolated from the data at the bounding upstream and downstream cross sections.

2.4 Proposed Conditions Model

The added cross section was updated to reflect the proposed changes at 131 Danbury Rd. Modifications made to create the proposed conditions model included proposed grading changes, removal of existing building, and addition of obstructions reflecting the ground floor parking area pillars, elevator shaft, and trash receptacle area. The proposed model reflects a conservative condition, projecting all obstructions in close proximity to the cross section. The first floor of the proposed building was not included in the model because flood levels do not approach this elevation.

3.0 Results

Results of water surface elevation for the 100-Year and 10-Year storms were compared between existing and proposed conditions. These results are summarized in Tables 3-1 and 3-2:

FIS CROSS		WATER S	URFACE ELEVATIO	N (NAVD88)			
SECTION	MODEL CROSS SECTION NUMBER	Existing Conditions	Proposed Conditions	Difference			
0	30	153.17	153.17	0.00			
	29	151.38	151.38	0.00			
	28	146.84	146.84	0.00			
	27.5 *	146.70	146.70	0.00			
	27	146.61	146.61	0.00			
	26	145.21	145.21	0.00			
	25	144.63	144.63	0.00			
	24	142.40	142.40	0.00			
	23	142.35	142.35	0.00			
	22	140.88	140.88	0.00			
	21	141.62	141.62	0.00			
	20	141.71	141.71	0.00			
	19	141.34	141.34 141.34				
	18	140.84	140.84	0.00			
N	17	140.32	140.32	0.00			
* Der	notes cross section that	passes through the	project site at 131 Da	nbury Rd			

Table 3-1 Comparison of Existing vs. Proposed Conditions (100-Year Storm)

FIS CROSS		WATER S	URFACE ELEVATIO	N (NAVD88)
SECTION IDENTIFIER	MODEL CROSS SECTION NUMBER	Existing Conditions	Proposed Conditions	Difference
0	30	151.57	151.57	0.00
	29	147.74	147.74	0.00
	28	143.39	143.39	0.00
	27.5 *	144.27	144.27	0.00
	27	144.21	144.21	0.00
	26	142.54	142.54	0.00
	25	140.68	140.68	0.00
	24	139.83	139.83	0.00
	23	139.84	139.84	0.00
	22	138.1	138.1	0.00
	21	137.2	137.2	0.00
	20	137.55	137.55	0.00
	19	136.99	136.99	0.00
	18	136.5	136.5 136.5	
N	17	136.15	136.15	0.00
* Der	notes cross section that	passes through the	project site at 131 Da	nbury Rd

 Table 3-2 Comparison of Existing vs. Proposed Conditions (10-Year Storm)

As shown in Tables 3-1 and 3-2, there is no change in flood elevation for the 100-year storm or the 10-year storm between the existing and proposed conditions.

4.0 Compliance with Local Floodplain Regulations

Section 29-9.F.7 of the Wilton Zoning Regulations requires the following:

k. Equal Conveyance: Within the floodplain, except those areas which are tidally influenced, as designated on the Flood Insurance Rate Map (FIRM) for the community, encroachments resulting from filling, new construction or substantial improvements involving an increase in footprint of the structure, are prohibited unless the applicant provides certification by a registered professional engineer demonstrating, with supporting hydrologic and hydraulic analyses performed in accordance with standard engineering practice, that such encroachments shall not result in any (0.00 feet) increase in flood levels (base flood elevation). Work within the

floodplain and the land adjacent to the floodplain, including work to provide compensatory storage shall not be constructed in such a way so as to cause an increase in flood stage or flood velocity.

I. Compensatory Storage: The water holding capacity of the floodplain, except those areas which are tidally influenced, shall not be reduced. Any reduction caused by filling, new construction or substantial improvements involving an increase in footprint to the structure, shall be compensated for by deepening and/or widening of the floodplain, storage shall be provided on-site, unless easements have been gained from adjacent property owners; it shall be provided within the same hydraulic reach and a volume not previously used for flood storage; it shall be hydraulically comparable and incrementally equal to the theoretical volume of flood water at each elevation, up to and including the 100-year flood elevation, which would be displaced by the proposed project. Such compensatory volume shall have an unrestricted hydraulic connection to the same waterway or water body. Compensatory storage can be provided off-site if approved by the municipality.

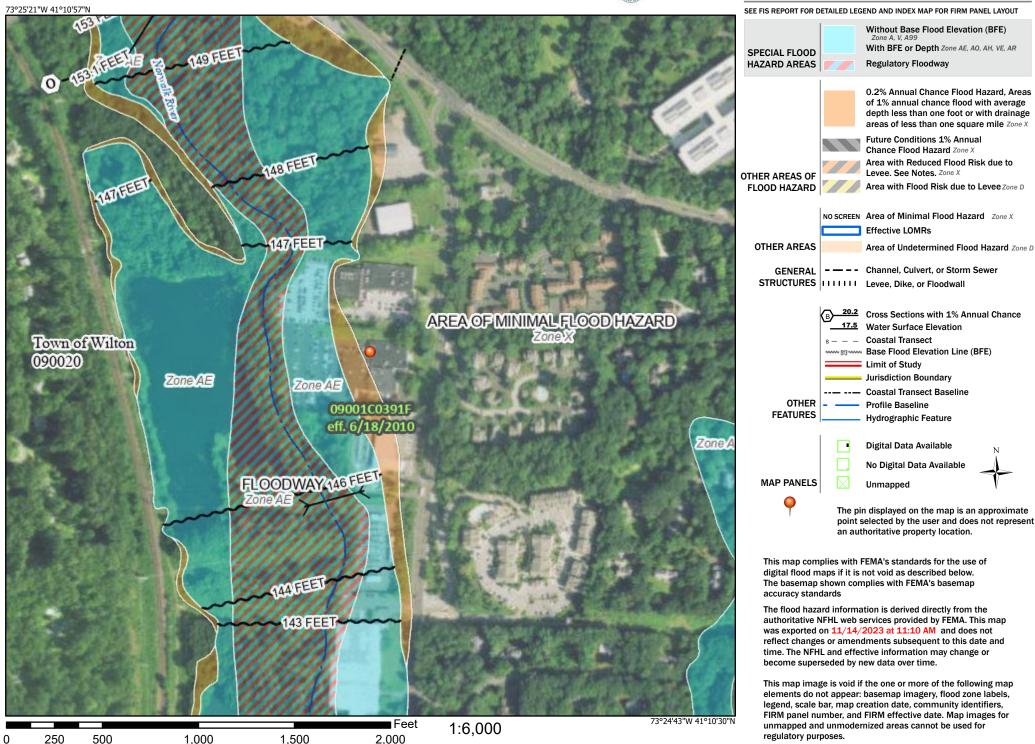
4.1 Equal Conveyance

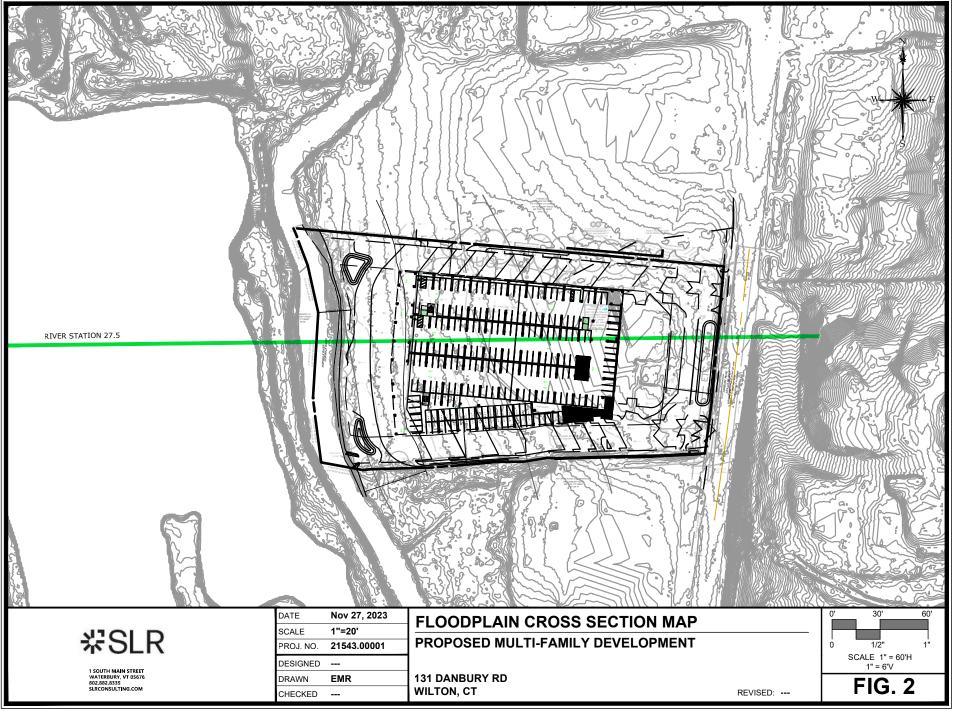
There are no increases in the base flood elevation between the Existing and Proposed conditions (Tables 3-1 and 3-2), therefore the Equal Conveyance requirement has been met. In addition, the modeling results indicate that the proposed conditions Base Flood Elevation (BFE) will not exceed the effective BFE as published in the current FIS.

4.2 Compensatory Storage

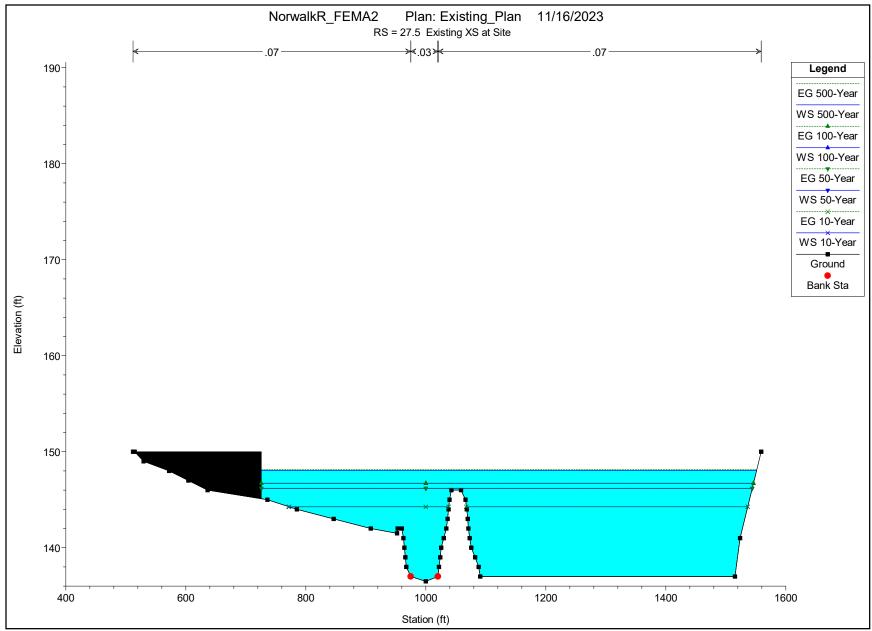
Revised grading has been proposed as part of the redevelopment of 131 Danbury Rd. This proposed earthwork results in a net cut of approximately 72 CY. Removal of the existing building and replacement with a ground level parking garage and raised building also results in a net increase of floodplain storage. Therefore, the proposed condition would not decrease floodplain storage.

쑸

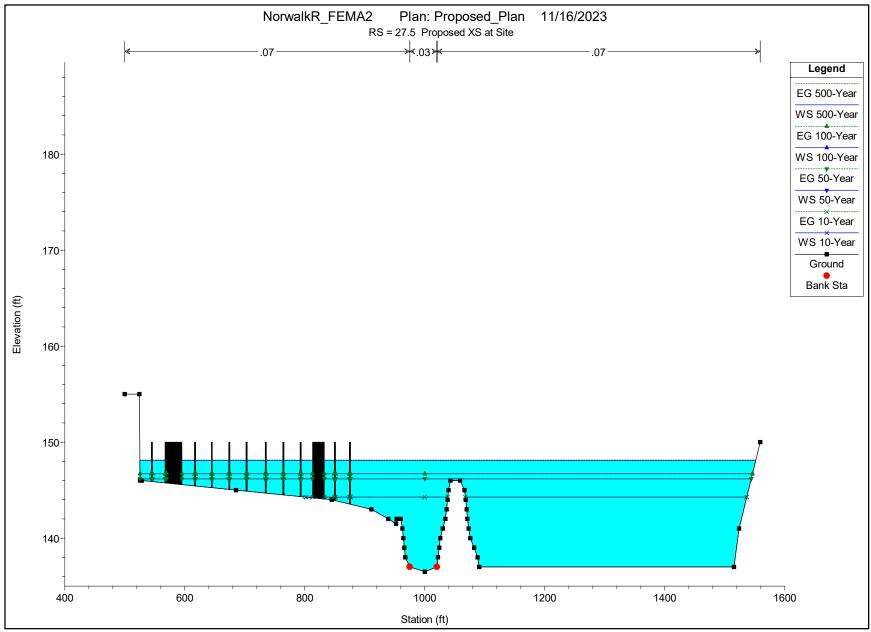

Appendix A Figures


National Flood Hazard Layer FIRMette

Legend



Basemap Imagery Source: USGS National Map 2023



Appendix B HEC-RAS Results

1 in Horiz. = 160 ft 1 in Vert. = 10 ft

1 in Horiz. = 160 ft 1 in Vert. = 10 ft

Duplicate Effective HEC-RAS Output Table November 27, 2023

HEC-RAS Plan: DupEff_NAVD88 River: RIVER-1 Reach: Reach-1

			RIVER-1 Read			0.1004.0		500			T 147 10	F 1 1 0 1
Reach	River Sta	a Profile	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area	Top Width	Froude # Chl
Reach-1	30	500-Year	12505.00	146.00	154.12	154.12	155.58	0.005709	14.29	(sq ft) 2497.82	(ft) 745.78	0.92
Reach-1	30	100-Year	7455.00	146.00	153.17	153.17	154.29	0.004549	11.65	1808.29	743.76	0.80
Reach-1	30	50-Year	5840.00	146.00	152.76	152.76	153.78	0.004191	10.70	1520.61	683.06	0.00
Reach-1	30	10-Year	2980.00	146.00	151.57	151.57	152.45	0.003765	8.78	776.03	506.92	0.70
Reach-1	29	500-Year	12505.00	141.20	153.54		154.75	0.001505	9.48	1880.78	260.28	0.50
Reach-1	29	100-Year	7455.00	141.20	151.38		152.12	0.001190	7.29	1359.56	224.08	0.43
Reach-1	29	50-Year	5840.00	141.20	150.48		151.08	0.001083	6.48	1162.65	213.79	0.40
Reach-1	29	10-Year	2980.00	141.20	147.71		148.16	0.001323	5.41	616.14	181.80	0.42
Reach-1	28	500-Year	12505.00	137.00	148.97	148.97	151.17	0.003269	14.22	2082.30	574.34	0.75
Reach-1	28	100-Year	7455.00	137.00	146.84	146.84	148.93	0.003409	12.63	1096.50	371.77	0.74
Reach-1	28	50-Year	5840.00	137.00	145.55	145.55	147.82	0.004157	12.61	700.65	255.39	0.79
Reach-1	28	10-Year	2980.00	137.00	143.59		144.87	0.003225	9.17	356.06	74.07	0.67
Decel 4	07	500 V/	40505.00	405.00	4 4 7 00		4 47 00	0.000240	4.00	7000.40	1010.00	0.00
Reach-1 Reach-1	27	500-Year	12505.00 7455.00	135.60	147.90 146.61		147.99 146.66	0.000312	4.62 3.42	7682.48 6378.56	1010.00 1006.02	0.23
Reach-1	27	100-Year 50-Year	5840.00	135.60 135.60	146.01		146.00	0.000198	2.95	5856.68	995.96	0.18
Reach-1	27	10-Year	2980.00	135.60	140.09		140.12	0.000137	2.95	4041.07	939.59	0.10
Reach-1	21	10-Teal	2900.00	133.00	144.21		144.24	0.000119	2.25	4041.07	535.35	0.14
Reach-1	26	500-Year	12505.00	134.50	146.20	146.20	147.54	0.003091	13.72	3184.65	930.44	0.72
Reach-1	26	100-Year	7455.00	134.50	145.21	145.21	146.30	0.002327	11.19	2278.71	898.74	0.62
Reach-1	26	50-Year	5840.00	134.50	144.75	144.75	145.79	0.002115	10.34	1865.89	883.92	0.59
Reach-1	26	10-Year	2980.00	134.50	142.54	140.84	143.83	0.002627	9.70	495.16	267.44	0.62
Reach-1	25.5		Bridge									
			Ŭ ,									
Reach-1	25	500-Year	12505.00	134.50	145.49	145.49	146.65	0.002755	12.39	2527.74	907.56	0.68
Reach-1	25	100-Year	7455.00	134.50	144.63	144.63	145.57	0.002165	10.37	1758.64	880.03	0.59
Reach-1	25	50-Year	5840.00	134.50	144.10	144.10	145.09	0.002220	10.11	1298.71	859.59	0.59
Reach-1	25	10-Year	2980.00	134.50	140.68	140.68	143.02	0.006673	12.78	268.04	62.09	0.95
Reach-1	24	500-Year	12505.00	133.00	144.05		144.41	0.001123	7.86	3631.41	757.79	0.43
Reach-1	24	100-Year	7455.00	133.00	142.22		142.62	0.001455	7.86	2267.51	695.44	0.47
Reach-1	24	50-Year	5840.00	133.00	141.55		141.94	0.001496	7.54	1862.09	576.15	0.47
Reach-1	24	10-Year	2980.00	133.00	139.50		140.04	0.002499	7.97	834.71	386.35	0.58
Reach-1	23	500-Year	12505.00	132.40	143.94		144.04	0.000386	4.75	6999.22	963.89	0.25
Reach-1	23	100-Year	7455.00	132.40	142.17		142.24	0.000321	3.87	5302.98	950.37	0.22
Reach-1	23 23	50-Year	5840.00	132.40	141.52		141.59	0.000284	3.48	4694.10	945.47	0.20
Reach-1	23	10-Year	2980.00	132.40	139.52		139.58	0.000305	3.05	2841.36	895.29	0.20
Reach-1	22	500-Year	12505.00	129.20	143.05	141.75	143.80	0.001494	10.61	3774.64	757.97	0.52
Reach-1	22	100-Year	7455.00	129.20	141.08	140.47	141.95	0.001663	10.01	2328.25	702.66	0.52
Reach-1	22	50-Year	5840.00	129.20	139.89	139.89	141.17	0.002313	11.00	1528.89	635.75	0.61
Reach-1	22	10-Year	2980.00	129.20	137.56	135.89	139.09	0.002835	10.20	386.51	206.59	0.65
Reach-1	21.5		Bridge									
			, i i i i i i i i i i i i i i i i i i i									
Reach-1	21	500-Year	12505.00	130.30	143.54	139.09	143.73	0.000554	5.89	5504.64	778.00	0.29
Reach-1	21	100-Year	7455.00	130.30	141.32	137.90	141.49	0.000537	5.09	3820.54	737.45	0.28
Reach-1	21	50-Year	5840.00	130.30	140.28	137.61	140.45	0.000586	4.95	3066.49	711.48	0.29
Reach-1	21	10-Year	2980.00	130.30	137.65	135.88	137.90	0.001011	5.19	1376.83	545.77	0.36
Reach-1	20	500-Year	12505.00	130.30	143.50		143.70		5.92	5475.28	778.00	0.30
Reach-1	20	100-Year	7455.00	130.30	141.29		141.45	0.000547	5.12	3793.65	736.70	0.28
Reach-1	20	50-Year	5840.00	130.30	140.24		140.41	0.000600	4.99	3037.84	709.49	0.29
Reach-1	20	10-Year	2980.00	130.30	137.56		137.83	0.001092	5.35	1328.99	535.65	0.37
	10	500.11	40505.0	400.0-				0.00007-		1000 1-		
Reach-1	19	500-Year	12505.00	130.00	142.94		143.22	0.000807	7.65	4622.20	631.46	0.38
Reach-1 Reach-1	19 19	100-Year	7455.00	130.00	140.87		141.05	0.000611	5.91	3380.14	504.77	0.32
Reach-1 Reach-1	19	50-Year 10-Year	5840.00 2980.00	130.00 130.00	139.85 137.01		140.00 137.16	0.000562	5.31 4.92	2889.23 1602.29	469.14 437.14	0.30
I CaUIFI	13	ito-real	2900.00	130.00	137.01		137.10	0.000773	4.92	1002.29	437.14	0.33
Reach-1	18	500-Year	12505.00	126.90	142.05		142.58	0.000845	7.33	2766.56	570.59	0.34
Reach-1	18	100-Year	7455.00	126.90	142.03		142.58	0.000564	5.48	1780.40	486.56	0.34
Reach-1	18	50-Year	5840.00	126.90	139.32		139.60	0.000483	4.82	1474.08	280.57	0.25
Reach-1	18	10-Year	2980.00	126.90	136.53		136.72	0.000448	3.88	906.58	167.01	0.23
Reach-1	17	500-Year	12505.00	126.90	142.01	138.30	142.55	0.000855	7.36	2746.68	570.46	0.34
Reach-1	17	100-Year	7455.00	126.90	140.23	135.38	140.57	0.000568	5.50	1768.91	484.17	0.27
Reach-1	17	50-Year	5840.00	126.90	139.27	134.20	139.58	0.000536	5.07	1374.05	272.97	0.26
Reach-1	17	10-Year	2980.00	126.90	136.15	131.79	136.67	0.001052	5.78	515.88	160.44	0.35
Reach-1	16.5		Bridge									
							-					

HEC-RAS Plan: DupEff_NAVD88 River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	16	500-Year	12505.00	126.20	139.11	138.84	142.04	0.005480	16.40	2269.95	459.28	0.84
Reach-1	16	100-Year	7455.00	126.20	136.75	136.75	139.40	0.005766	14.53	1321.38	293.15	0.83
Reach-1	16	50-Year	5840.00	126.20	136.50	135.82	138.29	0.003980	11.86	1250.76	291.94	0.68
Reach-1	16	10-Year	2980.00	126.20	134.91	132.41	135.83	0.002376	8.09	805.93	284.49	0.51
Reach-1	15	500-Year	12505.00	126.20	140.71	136.84	141.19	0.000833	8.11	3132.29	719.39	0.39
Reach-1	15	100-Year	7455.00	126.20	137.54	135.67	138.17	0.001280	8.41	1608.70	350.30	0.46
Reach-1	15	50-Year	5840.00	126.20	137.35	135.11	137.77	0.000861	6.82	1543.13	339.95	0.38
Reach-1	15	10-Year	2980.00	126.20	135.23	132.65	135.57	0.000792	5.60	917.71	285.84	0.35

Corrected Effective HEC-RAS Output Table November 27, 2023

HEC-RAS Plan: Corr_Plan River: RIVER-1 Reach: Reach-1

		River: RIVER-1 Reach: Reach-1									Froudo # Chl	
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		500.1/	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	30	500-Year	12505.00	146.00	154.12	154.12	155.58	0.005709	14.29	2497.82	745.78	0.9
Reach-1	30 30	100-Year	7455.00	146.00	153.17	153.17	154.29	0.004549	11.65	1808.29	702.76	0.80
Reach-1	30	50-Year	5840.00	146.00	152.76	152.76 151.57	153.78	0.004191	10.70	1520.61	683.06	0.76
Reach-1	30	10-Year	2980.00	146.00	151.57	151.57	152.45	0.003765	8.78	776.03	506.92	0.70
Deceb 1	29	E00 Veer	12505.00	141.20	153.54		154.75	0.001505	9.48	1880.78	260.28	0.50
Reach-1 Reach-1	29	500-Year 100-Year	7455.00	141.20	153.54		154.75	0.001505	9.40	1359.56	200.28	0.50
		-										
Reach-1	29	50-Year	5840.00	141.20	150.48		151.08	0.001083	6.48	1162.65	213.79	0.40
Reach-1	29	10-Year	2980.00	141.20	147.71		148.16	0.001323	5.41	616.14	181.80	0.42
			10505.00	107.00								
Reach-1	28	500-Year	12505.00	137.00	148.97	148.97	151.17	0.003269	14.22	2082.30	574.34	0.75
Reach-1	28	100-Year	7455.00	137.00	146.84	146.84	148.93	0.003409	12.63	1096.50	371.77	0.74
Reach-1	28	50-Year	5840.00	137.00	145.55	145.55	147.82	0.004157	12.61	700.65	255.39	0.79
Reach-1	28	10-Year	2980.00	137.00	143.59		144.87	0.003225	9.17	356.06	74.07	0.67
Reach-1	27	500-Year	12505.00	135.60	147.90		147.99	0.000312	4.62	7682.48	1010.00	0.23
Reach-1	27	100-Year	7455.00	135.60	146.61		146.66	0.000198	3.42	6378.56	1006.02	0.18
Reach-1	27	50-Year	5840.00	135.60	146.09		146.12	0.000157	2.95	5856.68	995.96	0.16
Reach-1	27	10-Year	2980.00	135.60	144.21		144.24	0.000119	2.25	4041.07	939.59	0.14
Reach-1	26	500-Year	12505.00	134.50	146.20	146.20	147.54	0.003091	13.72	3184.65	930.44	0.72
Reach-1	26	100-Year	7455.00	134.50	145.21	145.21	146.30	0.002327	11.19	2278.71	898.74	0.62
Reach-1	26	50-Year	5840.00	134.50	144.75	144.75	145.79	0.002115	10.34	1865.89	883.92	0.59
Reach-1	26	10-Year	2980.00	134.50	142.54	140.84	143.83	0.002627	9.70	495.16	267.44	0.62
Reach-1	25.5		Bridge									
Reach-1	25	500-Year	12505.00	134.50	145.49	145.49	146.65	0.002755	12.39	2527.74	907.56	0.68
Reach-1	25	100-Year	7455.00	134.50	144.63	144.63	145.57	0.002165	10.37	1758.64	880.03	0.59
Reach-1	25	50-Year	5840.00	134.50	144.10	144.10	145.09	0.002220	10.11	1298.71	859.59	0.59
Reach-1	25	10-Year	2980.00	134.50	140.68	140.68	143.02	0.006673	12.78	268.04	62.09	0.95
	20	10 real	2000.00	104.00	140.00	140.00	140.02	0.000070	12.70	200.04	02.00	0.00
Reach-1	24	500-Year	12505.00	133.00	144.67		144.94	0.000754	6.70	4103.64	760.59	0.36
Reach-1	24	100-Year	7455.00	133.00	142.40		142.77	0.001439	7.92	2399.79	729.71	0.47
Reach-1	24	50-Year	5840.00	133.00	141.79		142.13	0.001229	6.98	2005.08	586.03	0.47
Reach-1	24	10-Year	2980.00	133.00	139.83		142.13	0.001229	6.98	966.99	421.43	
Reach-I	24	10-real	2960.00	133.00	139.03		140.23	0.001761	0.90	900.99	421.43	0.50
Deeeb 4	00	500 V/	40505.00	400.40	111.50		444.07	0.000000	4.04	7007.00	000.00	0.01
Reach-1	23	500-Year	12505.00	132.40	144.59		144.67	0.000296	4.31	7627.96	968.86	0.22
Reach-1	23	100-Year	7455.00	132.40	142.35		142.42	0.000291	3.73	5477.60	951.77	0.21
Reach-1	23	50-Year	5840.00	132.40	141.77		141.82	0.000246	3.30	4925.46	947.33	0.19
Reach-1	23	10-Year	2980.00	132.40	139.84		139.88	0.000236	2.76	3123.74	908.05	0.18
				100.00						1001.00		
Reach-1	22	500-Year	12505.00	129.20	143.99	141.95	144.51	0.001000	9.10	4361.20	760.00	0.43
Reach-1	22	100-Year	7455.00	129.20	140.88	140.67	142.05	0.002091	11.14	2060.70	692.59	0.59
Reach-1	22	50-Year	5840.00	129.20	140.87	140.09	141.59	0.001299	8.77	2048.25	691.67	0.47
Reach-1	22	10-Year	2980.00	129.20	138.10	135.81	139.45	0.002291	9.59	467.85	281.30	0.59
												<u> </u>
Reach-1	21.5		Bridge									ļ
												ļ
Reach-1	21	500-Year	12505.00	130.30	143.92		144.24	0.000949	7.32	4623.07	778.00	0.38
Reach-1	21	100-Year	7455.00	130.30	141.62		142.01	0.001241	7.22	2866.85	743.63	0.42
Reach-1	21	50-Year	5840.00	130.30	140.72		141.18	0.001468	7.34	2205.44	726.80	0.45
Reach-1	21	10-Year	2980.00	130.30	137.20	137.20	139.45	0.006849	12.06	268.27	493.77	0.91
Reach-1	20	500-Year	12505.00	130.30	143.96		144.13	0.000467	5.52	5830.14	778.00	0.27
Reach-1	20	100-Year	7455.00	130.30	141.71		141.84	0.000443	4.73	4105.63	745.33	0.26
Reach-1	20	50-Year	5840.00	130.30	140.84		140.97	0.000425	4.38	3471.13	728.17	0.25
Reach-1	20	10-Year	2980.00	130.30	137.55		137.82	0.001105	5.37	1321.45	534.04	0.37
Reach-1	19	500-Year	12505.00	130.00	143.50		143.74	0.000651	7.08	4976.38	635.44	0.34
Reach-1	19	100-Year	7455.00	130.00	141.34		141.50	0.000536	5.70	3630.67	564.35	0.30
Reach-1	19	50-Year	5840.00	130.00	140.55		140.67	0.000422	4.82	3225.07	489.52	0.26
Reach-1	19	10-Year	2980.00	130.00	136.99		137.14	0.000786	4.95	1592.22	436.89	0.34
Reach-1	18	500-Year	12505.00	126.90	142.80		143.23	0.000659	6.70	3198.13	575.61	0.30
Reach-1	18	100-Year	7455.00	126.90	140.84		141.12	0.000463	5.12	2078.61	561.39	0.25
Reach-1	18	50-Year	5840.00	126.90	140.16		140.37	0.000358	4.35	1738.41	383.94	0.22
Reach-1	18	10-Year	2980.00	126.90	136.50		136.70	0.000456	3.90	901.50	166.40	0.22
	10	10 1001	2000.00	120.00	130.00		130.70	0.000400	3.90	301.00	100.40	0.23
Popph 1	17	500 Veer	12505.00	106.00	140.04	120 50	140 40	0.004500	0.00	2374.53	E70 FF	0.40
Reach-1		500-Year	12505.00	126.90	142.04	139.59	143.13	0.001538	9.89		570.55	0.46
Reach-1	17	100-Year	7455.00	126.90	140.32	135.24	141.05	0.001085	7.63	1425.08	492.69	0.38
Reach-1	17	50-Year	5840.00	126.90	139.77	134.08	140.32	0.000832	6.50	1222.16	307.24	0.33
Reach-1	17	10-Year	2980.00	126.90	136.15	131.72	136.64	0.000989	5.60	531.45	160.52	0.34
Reach-1	16.5		Bridge									
	1		1									

HEC-RAS Plan: Corr_Plan River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	16	500-Year	12505.00	126.20	138.98	138.98	142.49	0.006377	17.55	2141.04	455.20	0.90
Reach-1	16	100-Year	7455.00	126.20	136.65	136.65	139.34	0.005886	14.57	1298.73	292.64	0.83
Reach-1	16	50-Year	5840.00	126.20	136.55	135.73	138.27	0.003775	11.59	1272.18	292.19	0.67
Reach-1	16	10-Year	2980.00	126.20	134.93		135.82	0.002276	7.93	817.72	284.55	0.50
Reach-1	15	500-Year	12505.00	126.20	140.71	136.84	141.19	0.000833	8.11	3132.29	719.39	0.39
Reach-1	15	100-Year	7455.00	126.20	137.54	135.67	138.17	0.001280	8.41	1608.70	350.30	0.46
Reach-1	15	50-Year	5840.00	126.20	137.35	135.11	137.77	0.000861	6.82	1543.13	339.95	0.38
Reach-1	15	10-Year	2980.00	126.20	135.23	132.65	135.57	0.000792	5.60	917.71	285.84	0.35

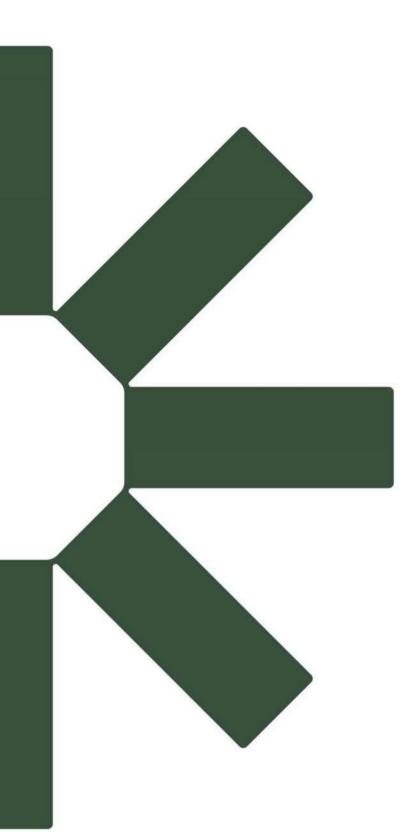
Existing Conditions HEC-RAS Output Table November 27, 2023

HEC-RAS Plan: EX_Plan River: RIVER-1 Reach: Reach-1

			Reach: Reac			0-11/1/0) (al Ohal		Tau Mialda	Encyda # Obl
Reach	River Sta	Profile	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
Reach-1	30	500-Year	12505.00	146.00	154.12	154.12	155.58	0.005709	14.29	2497.82	745.78	0.92
Reach-1	30	100-Year	7455.00	146.00	153.17	153.17	154.29	0.004549	11.65	1808.29	702.76	0.80
Reach-1	30	50-Year	5840.00	146.00	152.76	152.76	153.78	0.004191	10.70	1520.61	683.06	0.76
Reach-1	30	10-Year	2980.00	146.00	151.57	151.57	152.45	0.003765	8.78	776.03	506.92	0.70
Reach-1	29 29	500-Year	12505.00	141.20	153.54		154.75	0.001505	9.48	1880.78	260.28 224.08	0.50
Reach-1	29	100-Year	7455.00	141.20	151.38		152.12	0.001190	7.29	1359.56		0.43
Reach-1 Reach-1	29	50-Year 10-Year	5840.00 2980.00	141.20 141.20	150.48 147.74		151.08 148.18	0.001083	6.48 5.38	1162.65 620.16	213.79 182.05	0.40
T COUCHT T	20		2000.00	141.20	147.14		140.10	0.001004	0.00	020.10	102.00	0.4
Reach-1	28	500-Year	12505.00	137.00	148.97	148.97	151.17	0.003269	14.22	2082.30	574.34	0.75
Reach-1	28	100-Year	7455.00	137.00	146.84	146.84	148.93	0.003409	12.63	1096.50	371.77	0.74
Reach-1	28	50-Year	5840.00	137.00	145.55	145.55	147.82	0.004157	12.61	700.65	255.39	0.79
Reach-1	28	10-Year	2980.00	137.00	143.39		144.76	0.003632	9.50	341.27	71.23	0.70
Reach-1	27.5	500-Year	12505.00	136.50	148.05		148.14	0.000303	4.34	7056.34	825.22	0.23
Reach-1	27.5	100-Year	7455.00	136.50	146.70		146.75	0.000180	3.07	5948.96	819.98	0.17
Reach-1	27.5	50-Year	5840.00	136.50	146.16		146.20	0.000139	2.60	5506.57	817.88	0.15
Reach-1	27.5	10-Year	2980.00	136.50	144.27		144.28	0.000082	1.72	4025.38	735.54	0.1
Reach-1	27	500-Year	12505.00	135.60	147.90		147.99	0.000312	4.62	7682.48	1010.00	0.23
Reach-1	27	100-Year	7455.00	135.60	146.61		146.66	0.000198	3.42	6378.56	1006.02	0.18
Reach-1	27	50-Year	5840.00	135.60	146.09		146.12	0.000157	2.95	5856.68	995.96	0.16
Reach-1	27	10-Year	2980.00	135.60	144.21		144.24	0.000119	2.25	4041.07	939.59	0.14
Reach-1	26	500-Year	12505.00	134.50	146.20	146.20	147.54	0.003091	13.72	3184.65	930.44	0.72
Reach-1	26	100-Year	7455.00	134.50	145.21	140.20	147.34	0.002327	11.19	2278.71	898.74	0.62
Reach-1	26	50-Year	5840.00	134.50	144.75	144.75	145.79	0.002115	10.34	1865.89	883.92	0.59
Reach-1	26	10-Year	2980.00	134.50	142.54	140.84	143.83	0.002627	9.70	495.16	267.44	0.62
Reach-1	25.5		Bridge									
Reach-1	25	500-Year	12505.00	134.50	145.49	145.49	146.65	0.002755	12.39	2527.74	907.56	0.68
Reach-1	25	100-Year	7455.00	134.50	144.63	144.63	145.57	0.002165	10.37	1758.64	880.03	0.59
Reach-1 Reach-1	25 25	50-Year 10-Year	5840.00 2980.00	134.50 134.50	144.10 140.68	144.10 140.68	145.09 143.02	0.002220	10.11 12.78	1298.71 268.04	859.59 62.09	0.59
Reacti-1	25	TU-real	2900.00	134.50	140.00	140.00	143.02	0.000073	12.70	200.04	02.09	0.95
Reach-1	24	500-Year	12505.00	133.00	144.67		144.94	0.000754	6.70	4103.64	760.59	0.36
Reach-1	24	100-Year	7455.00	133.00	142.40		142.77	0.001439	7.92	2399.79	729.71	0.47
Reach-1	24	50-Year	5840.00	133.00	141.79		142.13	0.001229	6.98	2005.08	586.03	0.43
Reach-1	24	10-Year	2980.00	133.00	139.83		140.23	0.001781	6.98	966.99	421.43	0.50
Reach-1	23	500-Year	12505.00	132.40	144.59		144.67	0.000296	4.31	7627.96	968.86	0.22
Reach-1	23	100-Year	7455.00	132.40	142.35		142.42	0.000291	3.73	5477.60	951.77	0.2
Reach-1	23	50-Year	5840.00	132.40	141.77		141.82	0.000246	3.30	4925.46	947.33	0.19
Reach-1	23	10-Year	2980.00	132.40	139.84		139.88	0.000236	2.76	3123.74	908.05	0.18
		500.1/	40505.00	400.00	1 40 00	444.05		0.004000	0.40	1001.00	700.00	
Reach-1 Reach-1	22	500-Year 100-Year	12505.00 7455.00	129.20 129.20	143.99 140.88	141.95 140.67	144.51 142.05	0.001000	9.10 11.14	4361.20 2060.70	760.00 692.59	0.43
Reach-1	22	50-Year	5840.00	129.20	140.87	140.07	142.03	0.002091	8.77	2000.70	691.67	0.3
Reach-1	22	10-Year	2980.00	129.20	140.07	135.81	139.45	0.001233	9.59	467.85	281.30	0.59
Reach-1	21.5		Bridge									
Reach-1	21	500-Year	12505.00	120.20	142.00		144.04	0.000949	7 20	4623.07	778.00	0.00
Reach-1 Reach-1	21	100-Year	7455.00	130.30 130.30	143.92 141.62		144.24 142.01	0.000949	7.32	4623.07 2866.85	778.00	0.38
Reach-1 Reach-1	21	50-Year	5840.00	130.30	141.62		142.01	0.001241	7.22	2800.85	743.63	0.42
Reach-1	21	10-Year	2980.00	130.30	137.20	137.20	139.45	0.006849	12.06	268.27	493.77	0.9
Reach-1	20	500-Year	12505.00	130.30	143.96		144.13	0.000467	5.52	5830.14	778.00	0.27
Reach-1	20	100-Year	7455.00	130.30	141.71		141.84	0.000443	4.73	4105.63	745.33	0.26
Reach-1	20	50-Year	5840.00	130.30	140.84		140.97	0.000425	4.38	3471.13	728.17	0.2
Reach-1	20	10-Year	2980.00	130.30	137.55		137.82	0.001105	5.37	1321.45	534.04	0.3
Reach-1	19	500-Year	12505.00	130.00	143.50		143.74	0.000651	7.08	4976.38	635.44	0.34
Reach-1	19	100-Year	7455.00	130.00	140.00		141.50	0.000536	5.70	3630.67	564.35	0.3
Reach-1	19	50-Year	5840.00	130.00	140.55		140.67	0.000422	4.82	3225.07	489.52	0.26
Reach-1	19	10-Year	2980.00	130.00	136.99		137.14	0.000786	4.95	1592.22	436.89	0.34
	10	500.11	10535.05	/				0.00007-		0.000		
Reach-1 Reach-1	18	500-Year	12505.00	126.90	142.80		143.23	0.000659	6.70	3198.13	575.61	0.3
Reach-1 Reach-1	18	100-Year 50-Year	7455.00 5840.00	126.90 126.90	140.84 140.16		141.12 140.37	0.000463	5.12 4.35	2078.61 1738.41	561.39 383.94	0.2
Reach-1 Reach-1	18	50-Year 10-Year	2980.00	126.90	140.16		140.37	0.000358	4.35	901.50	383.94	0.22
	10	10 1341	2300.00	120.00	130.30		130.10	0.000400	5.80	301.30	100.40	0.24
	17	500-Year	12505.00	126.90	142.04	139.59	143.13	0.001538	9.89	2374.53	570.55	0.46
Reach-1	1.1											

HEC-RAS Plan: EX_Plan River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	17	50-Year	5840.00	126.90	139.77	134.08	140.32	0.000832	6.50	1222.16	307.24	0.33
Reach-1	17	10-Year	2980.00	126.90	136.15	131.72	136.64	0.000989	5.60	531.45	160.52	0.34
Reach-1	16.5		Bridge									
Reach-1	16	500-Year	12505.00	126.20	138.98	138.98	142.49	0.006377	17.55	2141.04	455.20	0.90
Reach-1	16	100-Year	7455.00	126.20	136.65	136.65	139.34	0.005886	14.57	1298.73	292.64	0.83
Reach-1	16	50-Year	5840.00	126.20	136.55	135.73	138.27	0.003775	11.59	1272.18	292.19	0.67
Reach-1	16	10-Year	2980.00	126.20	134.93		135.82	0.002276	7.93	817.72	284.55	0.50
Reach-1	15	500-Year	12505.00	126.20	140.71	136.84	141.19	0.000833	8.11	3132.29	719.39	0.39
Reach-1	15	100-Year	7455.00	126.20	137.54	135.67	138.17	0.001280	8.41	1608.70	350.30	0.46
Reach-1	15	50-Year	5840.00	126.20	137.35	135.11	137.77	0.000861	6.82	1543.13	339.95	0.38
Reach-1	15	10-Year	2980.00	126.20	135.23	132.65	135.57	0.000792	5.60	917.71	285.84	0.35


Proposed Conditions HEC-RAS Output Table November 27, 2023

HEC-RAS Plan: PR_Plan River: RIVER-1 Reach: Reach-1

			Reach: Reac									
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	30	500-Year	12505.00	146.00	154.12	154.12	155.58	0.005709	14.29	2497.82	745.78	0.92
Reach-1	30	100-Year	7455.00	146.00	153.17	153.17	154.29	0.004549	11.65	1808.29	702.76	0.80
Reach-1	30	50-Year	5840.00	146.00	152.76	152.76	153.78	0.004191	10.70	1520.61	683.06	0.76
Reach-1	30	10-Year	2980.00	146.00	151.57	151.57	152.45	0.003765	8.78	776.03	506.92	0.70
<u> </u>		500.1/	40505.00	444.00	450.54		45475	0.004505	0.40	1000 70		0.50
Reach-1	29	500-Year	12505.00	141.20	153.54		154.75	0.001505	9.48	1880.78	260.28	0.50
Reach-1	29	100-Year	7455.00	141.20	151.38		152.12	0.001190	7.29	1359.56	224.08	0.43
Reach-1	29	50-Year	5840.00	141.20	150.48		151.08	0.001083	6.48	1162.65	213.79	0.40
Reach-1	29	10-Year	2980.00	141.20	147.74		148.18	0.001304	5.38	620.10	182.05	0.41
		500.1/	40505.00	107.00	1 40 07	110.07	454.47	0.000000	44.00	0000.00	574.04	0.75
Reach-1	28	500-Year	12505.00	137.00	148.97	148.97	151.17	0.003269	14.22	2082.30	574.34	0.75
Reach-1	28	100-Year	7455.00	137.00	146.84	146.84	148.93	0.003409	12.63	1096.50	371.77	0.74
Reach-1	28	50-Year	5840.00	137.00	145.55	145.55	147.82	0.004157	12.61	700.65	255.39	0.79
Reach-1	28	10-Year	2980.00	137.00	143.39		144.77	0.003626	9.50	341.47	71.25	0.70
Decel 4	07.5	500 V/	40505.00	400 50	440.05		440.44	0.000007	4.07	7050.04	050.05	0.00
Reach-1	27.5	500-Year	12505.00	136.50	148.05		148.14	0.000307	4.37	7256.81	958.95	0.23
Reach-1	27.5	100-Year	7455.00	136.50	146.70		146.75	0.000185	3.12	5969.23	953.56	0.17
Reach-1	27.5	50-Year	5840.00	136.50	146.16		146.20	0.000143	2.64	5454.77	951.40	0.15
Reach-1	27.5	10-Year	2980.00	136.50	144.27		144.28	0.000084	1.74	3891.34	681.62	0.11
											1010.00	
Reach-1	27	500-Year	12505.00	135.60	147.90		147.99	0.000312	4.62	7682.48	1010.00	0.23
Reach-1	27	100-Year	7455.00	135.60	146.61		146.66	0.000198	3.42	6378.56	1006.02	0.18
Reach-1	27	50-Year	5840.00	135.60	146.09		146.12	0.000157	2.95	5856.68	995.96	0.16
Reach-1	27	10-Year	2980.00	135.60	144.21		144.24	0.000119	2.25	4041.07	939.59	0.14
		500.1/	40535.0-	40.0				0.00000				
Reach-1	26	500-Year	12505.00	134.50	146.20	146.20	147.54	0.003091	13.72	3184.65	930.44	0.72
Reach-1	26	100-Year	7455.00	134.50	145.21	145.21	146.30	0.002327	11.19	2278.71	898.74	0.62
Reach-1	26	50-Year	5840.00	134.50	144.75	144.75	145.79	0.002115	10.34	1865.89	883.92	0.59
Reach-1	26	10-Year	2980.00	134.50	142.54	140.84	143.83	0.002627	9.70	495.16	267.44	0.62
Reach-1	25.5		Bridge									
		500.1/	40505.00	104.50	115.10	145.40	1 10 05	0 000755	40.00	0507.74	007.50	
Reach-1	25	500-Year	12505.00	134.50	145.49	145.49	146.65	0.002755	12.39	2527.74	907.56	0.68
Reach-1	25	100-Year	7455.00	134.50	144.63	144.63	145.57	0.002165	10.37	1758.64	880.03	0.59
Reach-1	25	50-Year	5840.00	134.50	144.10	144.10	145.09	0.002220	10.11	1298.71	859.59	0.59
Reach-1	25	10-Year	2980.00	134.50	140.68	140.68	143.02	0.006673	12.78	268.04	62.09	0.95
Reach-1	24	500-Year	12505.00	133.00	144.67		144.94	0.000754	6.70	4103.64	760.59	0.36
Reach-1	24	100-Year	7455.00	133.00	142.40		142.77	0.001439	7.92	2399.79	729.71	0.47
Reach-1	24	50-Year	5840.00	133.00	141.79		142.13	0.001229	6.98	2005.08	586.03	0.43
Reach-1	24	10-Year	2980.00	133.00	139.83		140.23	0.001781	6.98	966.99	421.43	0.50
Reach-1	23	500-Year	12505.00	132.40	144.59		144.67	0.000296	4.31	7627.96	968.86	0.22
Reach-1	23	100-Year	7455.00	132.40	142.35		142.42	0.000291	3.73	5477.60	951.77	0.21
Reach-1	23	50-Year	5840.00	132.40	141.77		141.82	0.000246	3.30	4925.46	947.33	0.19
Reach-1	23	10-Year	2980.00	132.40	139.84		139.88	0.000236	2.76	3123.74	908.05	0.18
										1001.00		
Reach-1	22	500-Year	12505.00	129.20	143.99	141.95	144.51	0.001000	9.10	4361.20	760.00	0.43
Reach-1	22	100-Year	7455.00	129.20	140.88	140.67	142.05	0.002091	11.14	2060.70	692.59	0.59
Reach-1	22	50-Year	5840.00	129.20	140.87	140.09	141.59	0.001299	8.77	2048.25	691.67	0.47
Reach-1	22	10-Year	2980.00	129.20	138.10	135.81	139.45	0.002291	9.59	467.85	281.30	0.59
Decel 4	04.5		Deidere									
Reach-1	21.5		Bridge									
Reach-1	01	500 V/	40505.00	400.00	4 4 2 0 2		444.04	0.000040	7.00	4000.07	770.00	0.00
	21	500-Year	12505.00	130.30	143.92		144.24	0.000949	7.32	4623.07	778.00	0.38
Reach-1	21	100-Year	7455.00	130.30	141.62		142.01	0.001241	7.22	2866.85	743.63	0.42
Reach-1	21	50-Year	5840.00	130.30	140.72	407.00	141.18	0.001468	7.34	2205.44	726.80	0.45
Reach-1	21	10-Year	2980.00	130.30	137.20	137.20	139.45	0.006849	12.06	268.27	493.77	0.91
Deed 4	00	500.1/	40505.05	400.00	440.00			0.000.107		5000 / ·	770 00	0.07
Reach-1	20	500-Year	12505.00	130.30	143.96		144.13	0.000467	5.52	5830.14	778.00	0.27
Reach-1	20	100-Year	7455.00	130.30	141.71		141.84	0.000443	4.73	4105.63	745.33	0.26
Reach-1	20	50-Year	5840.00	130.30	140.84		140.97	0.000425	4.38	3471.13	728.17	0.25
Reach-1	20	10-Year	2980.00	130.30	137.55		137.82	0.001105	5.37	1321.45	534.04	0.37
Deck	10	500.14	40505 05	100.00	4 4 4			0.00000		10-0 0-	00- 1	
Reach-1	19	500-Year	12505.00	130.00	143.50		143.74	0.000651	7.08	4976.38	635.44	0.34
Reach-1	19	100-Year	7455.00	130.00	141.34		141.50	0.000536	5.70	3630.67	564.35	0.30
Reach-1	19	50-Year	5840.00	130.00	140.55		140.67	0.000422	4.82	3225.07	489.52	0.26
Reach-1	19	10-Year	2980.00	130.00	136.99		137.14	0.000786	4.95	1592.22	436.89	0.34
D	10	500.11	40-0							A		
Reach-1	18	500-Year	12505.00	126.90	142.80		143.23	0.000659	6.70	3198.13	575.61	0.30
Reach-1	18	100-Year	7455.00	126.90	140.84		141.12	0.000463	5.12	2078.61	561.39	0.25
Reach-1	18	50-Year	5840.00	126.90	140.16		140.37	0.000358	4.35	1738.41	383.94	0.22
Reach-1	18	10-Year	2980.00	126.90	136.50		136.70	0.000456	3.90	901.50	166.40	0.23
Reach-1	17	500-Year	12505.00	126.90	142.04	139.59	143.13	0.001538	9.89	2374.53	570.55	0.46
Reach-1	17	100-Year	7455.00	126.90	140.32	135.24	141.05	0.001085	7.63	1425.08	492.69	0.38

HEC-RAS Plan: PR_Plan River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	17	50-Year	5840.00	126.90	139.77	134.08	140.32	0.000832	6.50	1222.16	307.24	0.33
Reach-1	17	10-Year	2980.00	126.90	136.15	131.72	136.64	0.000989	5.60	531.45	160.52	0.34
Reach-1	16.5		Bridge									
Reach-1	16	500-Year	12505.00	126.20	138.98	138.98	142.49	0.006377	17.55	2141.04	455.20	0.90
Reach-1	16	100-Year	7455.00	126.20	136.65	136.65	139.34	0.005886	14.57	1298.73	292.64	0.83
Reach-1	16	50-Year	5840.00	126.20	136.55	135.73	138.27	0.003775	11.59	1272.18	292.19	0.67
Reach-1	16	10-Year	2980.00	126.20	134.93		135.82	0.002276	7.93	817.72	284.55	0.50
Reach-1	15	500-Year	12505.00	126.20	140.71	136.84	141.19	0.000833	8.11	3132.29	719.39	0.39
Reach-1	15	100-Year	7455.00	126.20	137.54	135.67	138.17	0.001280	8.41	1608.70	350.30	0.46
Reach-1	15	50-Year	5840.00	126.20	137.35	135.11	137.77	0.000861	6.82	1543.13	339.95	0.38
Reach-1	15	10-Year	2980.00	126.20	135.23	132.65	135.57	0.000792	5.60	917.71	285.84	0.35

Making Sustainability Happen

尜SLR

Wetland and Watercourse Delineation and Impact Assessment

131 Danbury Road, Wilton, Connecticut

AMS Acquisitions

Prepared by: **SLR International Corporation** 195 Church Street, 7th Floor, New Haven, Connecticut, 06510

SLR Project No.: 141.21543.00001 Client Reference No: 0001

October 23, 2023 (Revised January 5, 2023)

Making Sustainability Happen

Table of Contents

Acro	Acronyms and Abbreviationsiii				
1.0	Introduction4				
2.0	Regulatory Definitions4				
3.0	Methodology5				
4.0	General Site Description and Existing Conditions5				
5.0	Wetland and Watercourse Delineation Results7				
5.1	Soils				
5.2	Wetland and Watercourse Delineation7				
5.3	Wetland Resource Functions and Values8				
6.0	Proposed Project10				
6.1	Sediment and Erosion Control Measures11				
6.2	Stormwater Management11				
6.3	Mitigation12				
6.4	Alternatives				
7.0	Conclusion12				

Tables in Text

Table 1:	NRCS Soil Units	7
Table 2:	Wetland Functions and Values Assessment	9

Appendices

- Appendix A Site Maps
- Appendix B Photographic Log
- Appendix C NBBD Correspondence

Acronyms and Abbreviations

BFE	Base Flood Elevation
CGS	Connecticut General Statutes
CT DEEP	Connecticut Department of Energy & Environmental Protection
FEMA	Federal Emergency Management Agency
LF	Linear feet
NDDB	Natural Diversity Database
NRCS	Natural Resources Conservation Service
OHW	Ordinary High Water
RCP	Reinforced concrete pipe
S&E	Sediment and Erosion
SF	Square feet
SFHA	Special flood hazard area
SLR	SLR International Corporation

1.0 Introduction

On behalf of AMS Acquisitions, SLR International Corporation (SLR) has prepared the following report to describe the existing conditions of regulated wetland and watercourse resources, and potential impacts to identified regulated resources, resulting from a proposed multi-family building and associated appurtenances at 131 Danbury Road, a 4.75-acre site in southern Wilton (**Figure 1**) with frontage on the Norwalk River. The proposed project involves the redevelopment of a site that contains a two-story masonry office building and paved surface parking lot across the entirety of the parcel. Proposed site activities are depicted on site plans prepared by SLR entitled *Proposed Multi-Family Development* dated October 23, 2023, revised January 5, 2024.

On August 3, 2023, Megan B. Raymond, Registered Soil scientist, Professional Wetland Scientist and certified floodplain manager, and Mike Armstrong, Environmental Scientist visited the property to determine the presence or absence of wetlands and/or watercourses, and to assess existing conditions relative to the proposed site work. A wetland and watercourse were identified in the western portion of the site that is comprised of a 385-foot reach of the Norwalk River and a narrow palustrine forested wetland underlain by alluvial soils (**Figure 2**).

In summary, though portions of the proposed activities will take place within the upland review area (URA) to the Norwalk River, the proposed redevelopment does not present a high potential to adversely affect regulated wetland resources. This conclusion is based on five primary elements of the proposed site design. Specifically, 1) no significant direct impacts to wetland/watercourse systems will occur, 2) short-term potential impacts to the resource are managed through redundant sediment and erosion control and best management practices, 3) potential long-term impacts will be avoided through a comprehensive stormwater management system where none currently exist, 4) the overall site impervious and impervious within the regulated area will decrease and 5) a native planting plan is proposed between the Norwalk River and the proposed apartment building and parking area to begin to restore a greenbelt riparian area adjacent to the Norwalk River.

2.0 Regulatory Definitions

Inland wetlands and watercourses within the project area were evaluated in accordance with the regulations of the Town of Wilton and the State of Connecticut Inland Wetlands and Watercourses Act, Connecticut General Statutes (CGS) 22a-36 through 45 and the Federal Clean Water Act (Section 404). The wetland resources identified on the property are protected under local, state, and federal statutes.

The <u>Inland Wetlands and Watercourses Act</u> (CGS §22a-38) defines <u>inland wetlands</u> as, "land, including submerged land...which consists of any soil types designated as poorly drained, very poorly drained, alluvial, and floodplain." <u>Watercourses</u> are defined in the Act as, "rivers, streams, brooks, waterways, lakes, ponds, marshes, swamps, bogs and all other bodies of water, natural or artificial, vernal or intermittent, public or private, which are contained within, flow through or border upon the state or any portion thereof." The Act defines <u>intermittent</u> <u>watercourses</u> as having a defined permanent channel and bank and the occurrence of two or more of the following characteristics: A) evidence of scour or deposits of recent alluvium or detritus, B) the presence of standing or flowing water for a duration longer than a particular storm incident, and C) the presence of hydrophytic vegetation.

<u>Upland Review Area</u>, per the Town of Wilton Inland Wetlands and Watercourses Regulations, includes any land adjacent to and within 100 feet of the wetland or watercourse.

Federal Wetlands and Watercourses were considered using the U.S. Army Corps of Engineers *Wetlands Delineation Manual* (USACE, 1987) and *Regional Supplement to the Corps of Engineers Wetland Delineation Manual for the Northcentral and Northeast Region* (USACE, 2012), and the classification system of the National Cooperative Soil Survey and Field Indicators of Hydric Soils in the United States (USDA, 2017).

3.0 Methodology

A second-order soil survey in accordance with the principles and practices noted in the United States Department of Agriculture (USDA) publication *Soil Survey Manual* (1993) was completed at the subject site. The classification system of the National Cooperative Soil Survey was used in this investigation. Soil map units identified at the project site generally correspond to those included in the *Soil Survey of the State of Connecticut* (USDA 2005).

<u>Wetland</u> determinations were completed based on the presence of poorly drained, very poorly drained, alluvial, or floodplain soils and submerged land (e.g., a pond). Soil types were identified by observation of soil morphology (soil texture, color, structure, etc.). To observe the morphology of the property's soils, test pits and/or borings (maximum depth of 2 feet) were completed at the site.

<u>Intermittent watercourse</u> determinations were made based on the presence of a defined permanent channel and bank and the occurrence of two or more of the following characteristics: A) evidence of scour or deposits of recent alluvium or detritus, B) the presence of standing or flowing water for a duration longer than a particular storm incident, and C) the presence of hydrophytic vegetation.

Ordinary high water (OHW) boundaries were demarcated (flagged) with blue surveyor's tape (hung from vegetation) labeled with consecutive flag numbers that were generally spaced a maximum of every 50 feet. The wetland boundary is located along the lines that connect these sequentially numbered flags. Flag numbers 1-OHW through 13-OHW demarcate the intermittent watercourse boundary. <u>The resource boundaries are subject to change until adopted by local, state, or federal regulatory agencies</u>.

On the day of the review, weather conditions were sunny and dry, with an air temperature of approximately 75° Fahrenheit. Site conditions were suitable for wetland delineation work.

4.0 General Site Description and Existing Conditions

The 4.75-acre subject parcel is in a moderately settled mixed-use residential and commercial area in the southern portion of Wilton. The site is situated on the west side of Danbury Road roughly 1,250 feet south of its intersection with Westport Road. Accessed to the east from Danbury Road (State Route 7), the site displays 280 linear feet (LF) of frontage on Danbury Road. The topography of this area is a gentle gradient sloping to the west, 138 feet to 149 feet (NAVD 88). The property is primarily underlain by human transported material, or fill, with a small area of coarse-loamy alluvium adjacent to the Norwalk River.

The site is presently developed. Existing structures consist of a multi-story office building and asphalt parking area that extends to within ten feet of the delineated OHW. The existing commercial building is approximately 44,200 square feet (SF). Onsite impervious surface totals approximately 3.22 acres, or roughly 68 percent, of the total lot area. Approximately 25 percent of the 3.22-acres impervious area is paved surface parking within the 100-foot URA to the Norwalk River. Approximately 90 percent of the URA is impervious. No stormwater management practices exist on the site presently. In addition to the building and parking area,

the site is manicured and occupied by lawn area and landscaping trees, including eastern cottonwood (*Populus deltoides*), Norway spruce (*Picea abies*), and Arborvitae (*Thuja* sp.).

The abutting sites to the north and south display variable land uses. A multi-family residential building is under construction north of the property and Ring's End Lumber abuts the site to the south. The Norwalk River comprises the western property line. The abutting northern property displays a similar amount of previous development, extending within 10 feet of the river, while the abutting property to the south includes a narrow woodland between the river and the built environment. Offsite to the south, a headwall with a 24-inch pipe carries stormwater drainage to the rear of the Ring's End surface lot. A depositional outlet fan and scour hole were noted during the site investigation.

Biological and Biodiversity Conditions

Primary ecologies on the site are pavement and urban structure, mowed lawn with trees, and a small area of the Norwalk River and forested palustrine wetland, that occupies 0.25-acre or 5 percent of the site. Beyond the roughly quarter acre wetland resource, the current upland is largely comprised of pavement and urban structure with narrow areas of woodland edge or manicured lawn with trees to the north, south and east. These conditions provide very limited habitat supportive of wildlife other than those generalist species tolerant of human activity and adapted to developed landscapes, limited tree canopy, and shrub density.

The aquatic, and persistently flooded, palustrine habitats associated with the Norwalk River provide the potential for finfish and shellfish habitat. Several non-native Asiatic clam (*Corbicula fluminea*) shells were observed during the delineation. There appears to be at least one dam on the Norwalk River between the subject parcel and Long Island Sound – at Kellogg Pond – which impedes direct mobility for anadromous and catadromous fish species. The narrow overhanging canopy vegetation on the river may provide roosting and perching sites for angling waterfowl.

As noted by the Connecticut Department of Energy & Environmental Protection (CT DEEP) in a letter dated August 21, 2023 (**Appendix C**): "Based on current data maintained by the Natural Diversity Database (NDDB) and housed in the CT DEEP *ezFile Portal*, "no extant populations of Federal or State Endangered, Threatened or Special Concern species (RCSA Sec. 26-306) are known to occur within the project area delineated for the Building and Infrastructure Development".

Watershed Location

The site is located within the lower Norwalk River subregional watershed (Basin #7300), a 10.39-square mile basin in Georgetown, Cannondale, and Wilton. The confluence with the main tributary to the Norwalk River, the Silvermine River, which runs to the west is approximately three miles downstream. The Norwalk River flows approximately three miles from the confluence with the Silvermine River and drains to Long Island Sound in Norwalk.

FEMA Mapping

According to the most recent Federal Emergency Management Agency (FEMA) mapping, effective September 26, 2008, special flood hazard areas (SFHA) including the regulatory floodway, 100-year, and 500-year floodplains occur on the subject site. The base flood elevation (BFE) of these flood hazard zones occurs between 146.3 and 146.6 feet NAVD.

5.0 Wetland and Watercourse Delineation Results

Regulated wetland resources onsite consist of the OHW to Norwalk River that includes a narrow palustrine forested wetland at the western property line. The OHW was delineated and flagged with blue surveyor's tape and depicted by flags (W-1 to W-13) (**Figure 2**). In total, 385 LF of watercourse/wetland were delineated on the site occupying approximately 0.25-acres.

5.1 Soils

Geospatial data were accessed via the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS) web soil survey mapping. The soil survey mapping is appended (**Figure 3**). The survey identifies the following soil mapping units with associated NRCS map number in the project area (**Table 1**):

Map Unit		Parent Slope		Drainage	High Water Table			Depth To	
Sym	Name	Material	(%)	-	Depth (in)	Kind	Mos.	Bedrock (in)	
	Wetland Soil								
103	Rippowam fine sandy loam	Coarse-loamy alluvium	0 to 3	Poorly drained	0 to 18	-	-	>80	
	Upland Soil								
305	Udorthents-Pits complex, gravelly	Gravelly outwash	0 to 35	Moderately well drained	>80	-	-	>80	

Table 1: NRCS Soil Units

Soils were examined using a Dutch auger. Field investigations confirmed NRCS mapping.

5.2 Wetland and Watercourse Delineation

SLR Registered Soil Scientist and Professional Wetland Scientist Megan B. Raymond, and Environmental Scientist Mike Armstrong delineated the OHW line to the Norwalk River in August 2023. The regulated resource consisted of a steeply earthen vegetated bank, varying between 4 and 15 feet in width, underlain by coarse silty alluvium that commences adjacent to the edge of the asphalt parking lot. A concrete flume, approximately 24-inches wide, carries stormwater runoff from the parking lot directly to the river adjacent to the southern property line. Vegetation on the bank consists of a canopy of American elm (*Ulmus americana*), red maple (*Acer rubrum*), American sycamore (*Platanus occidentalis*), and hickory (*Carya sp.*). These species shade the eastern portion of the river channel. A dense liana layer is composed of poison ivy (*Toxicodendron radicans*) grape vine (*Vitis* sp.) and Oriental bittersweet (*Celastrus orbiculatus*). The understory consists of a combination of native and non-native shrubs such as silky dogwood (*Swida amonum*), Japanese knotweed (*Fallopia japonica*), multiflora rose (*rosa multiflora*), common wormwood (*Artemisia vulgaris*), stinging nettle (*Urtica diocia*), Asian bittersweet (*Celastrus orbiculatus*), winged burning-bush (*Euonymus alatus*), and deer-tongue rosette grass (*Dichanthelium clandestinium*).

At the toe of the bank, the Norwalk River is approximately 35- to 40-feet wide and displayed water levels around 2- to 5-feet deep during the site investigation. The bed material consists mainly of cobbles and sand. No stormwater outlets were observed on or adjacent to the bank.

The OHW line was delineated based on the first observable break in slope at the top of the bank. Near wetland flag W-3, a man-made riffle grade control was observed in the river. The site lies on a relatively straight reach of the river, but meander bends exist upstream and downstream of the site. Though not observable, an excavated pond exists at the top of the western bank immediately across the river from the subject parcel.

A narrow upland edge exists between OHW and asphalt parking lot. Measuring between 5 to 15 feet in width, vegetation in this edge consists of a canopy of black cherry (*Prunus serotina*), boxelder (*Acer negundo*), black willow (*Salix nigra*), and northern catalpa (*Catalpa speciosa*), and shrub layer of Japanese honeysuckle (*Lonicera japonica*), Morrow's honeysuckle (*Lonicera morrowii*), and crab apple (*Malus* sp.).

5.3 Wetland Resource Functions and Values

A functional evaluation using the USACE *Highway Methodology Workbook Supplement* and based on SLR's field observations is provided (**Table 2**). The first column lists the functions and values generally ascribed to wetlands, while the second column summarizes the rationale used to determine whether these functions and values are being performed within the Norwalk River. Given its perennial nature and regional significance, the river is a high value resource that contributes to many recognized wetland functions.

	Functions and Values	Comment		
	Groundwater Recharge/Discharge	Yes – Groundwater discharge is associated with a perennial watercourse		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Flood Flow Alteration (Storage and Desynchronization)	Yes – The Norwalk River contains a mapped FEMA floodway and floodplain		
	Fish and Shellfish Habitat	Yes – The perennial hydrologic regime supports finfish or shellfish habitat		
Ť	Sediment/Toxicant Retention	No – The lack of residence time on the subject parcel limits contribution to this function		
	Nutrient Removal/Retention/ Transformation	No – The lack of residence time on the subject parcel limits contribution to this function		
+	Production Export (Nutrient)	Yes – The vegetative structural heterogeneity allows for trophic level exchange		
my	Sediment/Shoreline/Watercourse Bank Stabilization	Yes - Banks are vegetated		
2	Wildlife Habitat	Yes – The watercourse may provide habitat for finfish, shellfish and wading birds		
A	Recreation (Consumptive and Non- Consumptive)	No – The small area does not allow for recreation		
	Educational Scientific Value	No – There is no educational use adjacent to the site		
*	Uniqueness/Heritage	No – This area does not present unique habitats		
$\Leftrightarrow$	Visual Quality/Aesthetics	Yes – The river provides visual quality and aesthetics		
ES	Endangered Species	No – According to the most recent CT DEEP NDDB polygons occur onsite		

### Table 2: Wetland Functions and Values Assessment

The principal functions of the wetlands include the following:

- Groundwater recharge
- Floodflow alteration
- Fish and shellfish habitat
- Wildlife Habitat
- Visual Quality

## 6.0 Proposed Project

The proposed project involves the demolition of an existing building and the construction of a multi-family residential building with a separate structure (Jewel Box) proposed to house the development's amenities at the front of the property. The development proposes one, four and one half-story building with a central courtyard containing a total of 208 residential units. A parking lot is proposed at grade that will accommodate 321 spaces. The site will be accessed from the east by Danbury Road (Route 7) and will be serviced by town water and sewer.

The State of Connecticut regulates activities in, and adjacent to, wetlands and watercourses, as land development may result in short- and long-term direct and indirect impacts to wetlands and watercourses. The project has been designed to have minimal impacts to wetlands from short- and long-term perspectives. Work within the URA has been designed to avoid indirect wetland and watercourse impacts. Sedimentation and erosion control will minimize the potential for short-term impacts, while stormwater management will provide long-term water quality protection.

Much of the proposed building is outside of the URA standing a minimum of 80 feet from the Norwalk (Figure 4). Most of the improvements proposed at the rear of the building and in the URA are pervious, including a reinforced turf emergency access drive, permeable paver parking spaces, gathering spaces for residents also constructed from permeable pavers, and two connected, four-foot wide, stone dust walkways. The exceptions are a 4,134-SF portion of the building and a five-foot wide, roughly 50-foot-long walkway which will be constructed of concrete. This area will also include two stormwater infiltration areas (rain gardens) and dense seeding/plantings of native vegetative species. These proposed improvements will replace the existing impervious parking lot. The proposed project design would reduce the overall site impervious surface area by just over 0.25 acres from 3.22 acres to 2.97 acres. The existing impervious surface coverage is comprised of 41,481 SF of building and 98,923 SF of pavement in the upland area, with an additional 34,016 SF of pavement in the URA. Under the proposed condition, the building would cover 84,483 SF and the pavement 44,729 SF. The existing impervious surface in the URA area is 34,016 SF, while proposed is 6,473 SF, for a reduction of approximately 80 percent. Earthwork in the URA will be a net fill of 508 cubic yards (CY)¹ comprised of imported clean granular material suitable for construction or consist of in situ material from adjacent site regrading.

A native riparian planting buffer is proposed to enhance the riparian zone in the long-term. The restoration plan includes protecting the existing sycamore trees, invasive plant removal, and replanting with a variety of native species. Upland trees will be planted around the perimeter of the development to aid in long-term site stability, increase shading, and improve aesthetic appeal.

No significant direct impacts to the wetland area are proposed². Proposed activities necessitate grading, covered and surface parking spaces, installation of an overlook plaza gathering space, two stormwater infiltration basins, and basin features within the URA to the wetland boundary. Disturbance within the URA 33,094 SF, of which 0.16 acres will be impervious area. Impervious surface within the URA would be reduced by 0.62 acres (from 0.78 acres to 0.16 acres) under the proposed condition. Details of the proposed disturbance within the URA follow:

¹ Earthwork in URA is 237 CY of cut and 745 CY of fill for net 508 CY fill.

² See stormwater management (Section 6.2) for proposed work for stormwater outlet.

- Temporary installation of sediment and erosion controls
- Removal of asphalt, concrete, and underlying base (34,016 SF)
- Installation of reinforced turf for fire access (6,672 SF)
- Construction of building in URA (4,876 SF)
- Installation of stormwater piping to discharge from the site
- Landscape areas with native trees/shrubs/perennials (± 17,919 SF)
- Pervious walking paths/seating areas/pervious paver parking (6,396 SF)
- Removal and management of invasive species along the river's edge

A front yard setback will be established along the subject boundary's eastern access point on Danbury Road. The front yard setback will extend 75 feet to the west from Danbury Road. The site's watershed will continue to drain west toward the Norwalk River on the western property boundary. A restored native riparian planting buffer is proposed in disturbed and pervious portion of the URA to enhance the riparian zone to wetland boundary in the long-term including keeping existing sycamore trees, new stormwater infiltration area installation, and invasive plant removal. Additional upland tree plantings will be installed around the perimeter of the development to aid in long-term site stability, shade, and aesthetic appeal.

### 6.1 Sediment and Erosion Control Measures

A Sediment and Erosion (S&E) Control Plan has been developed to minimize potential shortterm impacts during construction. The S&E Control Plan includes descriptive specifications concerning land grading, topsoiling, temporary and permanent vegetative cover, and erosion checks. Details have been provided for all erosion controls with corresponding labels on the S&E Control Plan. All S&E controls provided are in accordance with the 2002 *Connecticut Guidelines for Soil Erosion and Sediment Control*.

The site will be accessed via Danbury Road in two locations at the southeastern and northeastern parts of the property which will become the entrances for all vehicles following construction. Construction entrance pads will be installed and maintained during operations which will generate vehicular tracking of mud. During construction, the limits of disturbance will be bordered on all sides by sediment filter fence and straw wattles. Temporary soil stockpile areas will be enclosed by a secondary set of silt fencing, within the larger perimeter of silt fence. An erosion control blanket will be placed along the western sediment filter fence to further protect the perennial watercourse during construction. The use of redundant sedimentation and erosion control measures will minimize the potential for short-term impacts to the perennial watercourse, and stockpiles will both be protected by two sediment control measures. Inlet protection and sediment traps will be installed to contain construction runoff during construction. Sediment and erosion control measures will remain in place until the site is stabilized.

### 6.2 Stormwater Management

A comprehensive stormwater management system has been designed to provide water quality management while attenuating proposed peak flow that will be designed, installed and maintained, in accordance with town and state standards, including the 2004 *Connecticut Stormwater Quality Manual*. The system design and components employ standard engineering practices that are regularly used throughout the town and the northeast to prevent stormwater pollution. The stormwater management system includes water quality and water quality



protections. An underground detention system comprised of three series of Stormtech infiltration chambers, two of which will be equipped with isolator rows to allow maintenance, will mitigate peak flows. The infiltration chambers are positioned to accommodate runoff from either the building roof or the parking areas, not a combination of the sources. A hydrodynamic separator will be used for water quality at the end of the treatment train, prior to discharge via a rip-rap splash pad to the Norwalk River. The rip-rap splash pad will be located at the existing concrete flume – that will be removed - and require approximately 85 SF of work below the OHW to remove the flume and install the stormwater outlet. Two rain gardens are proposed within the riparian enhancement area that will be planted with native species and outlet via evaporation or infiltration, or to the stormwater system with a significant precipitation event.

### 6.3 Mitigation

A planting plan of native trees, shrubs, and grasses has been developed to restore and enhance the riparian corridor between the perennial watercourse and the proposed development. Native vegetation, including Serviceberry (*Amelanchier alinifolia*), Blue Wild Indigo (*Baptista australis*), Fox Sedge (*Carex vulpinoidea*), Bayley's Red Twig Dogwood (*Cornus sericea*), Hay-scented Fern (*Dennstaedtia punctilobula*), Joe Pye Weed (*Eupatorium maculatum*), Winterberry (*llex verticillata*), Heavy Metal Switch Grass (*Panicum virgatum*), The Blues Little Bluestem (*Schizachyrium scoparium*), Steeplebush (*Spiraea tormentosa*), Lowbush Blueberry (*Vaccinium angustifolium*), and Nannyberry (*Viburnum lentago*), will enhance water quality by slowing down runoff, increasing residence time, and filtering sediment and pollutants from the stormwater before it reaches the river. The addition of these native species will also attract local pollinators and provide enhanced wildlife habitat in addition to a buffer between the proposed site improvements and adjacent regulated resource areas. In addition to the planting plan, other mitigating features include the reduction in impervious area in the URA and on the site overall, and providing water quality renovation of stormwater prior to discharge in the Norwalk River.

### 6.4 Alternatives

The site was studied to determine the feasible and prudent alternatives that would achieve the project purpose with the fewest land-use impacts. These analyses resulted in a site plan that proposes less impervious overall and an approximately 80 percent reduction in impervious area in the URA. In looking granularly at the design layout, modifications to the building layout and access were considered. Alternatives to the building layout were constrained by the required setbacks from Danbury Road and the Norwalk River. Therefore, no alternative designs were realized with the building. However, of considerable importance was the interface between proposed work and the Norwalk River. In this area, two primary alternatives were considered. One, was a bituminous concrete surface for an emergency access route, and the other is a reinforced turf alternative. After consideration, SLR determined that a the most prudent and feasible alternative was possible and proposes a reinforced turf for the emergency access way. This reinforced turf will allow a "green return" to the riparian area and avoid an underutilized impervious surface adjacent to the ecologically important component of the site.

## 7.0 Conclusion

SLR delineated wetlands within a 4.75-acre site at 131 Danbury Road in Wilton to assess the potential impact of a proposed multi-family development to on-site wetland resources. Wetland resources consist of the OHW and a narrow forested palustrine wetland to the Norwalk River,



and a perennial watercourse that exists on the western site boundary. The property contains approximately 385 LF of frontage on the Norwalk River.

The proposed redevelopment project will not result in an adverse effect on the Norwalk River. The proposed project avoids significant direct wetland impacts, includes comprehensive stormwater management and sediment and erosion control, includes a riparian enhancement plan, and reduces overall impervious area on the site as well as a significant reduction in the URA. Sedimentation and erosion control will minimize the potential for short-term impacts during construction while stormwater management will prevent long-term impacts. There is no anticipated diminishment of existing wetland function. The proposed project will not result in adverse modification to the existing physical characteristics of existing wetland system.

If you have any questions regarding this report, please do not hesitate to contact Megan B. Raymond at the email addresses below.

Sincerely,

**SLR International Corporation** 

Mr B.

Megan B. Raymond, MS, PWS, RSS, CFM Principal Scientist, Wetlands & Waterways Lead mraymond@slrconsulting.com

My Uhr

Mike Armstrong, MS Environmental Scientist marmstrong@slrconsulting.com

21543.00001.j524.rpt.docx

CEERELL

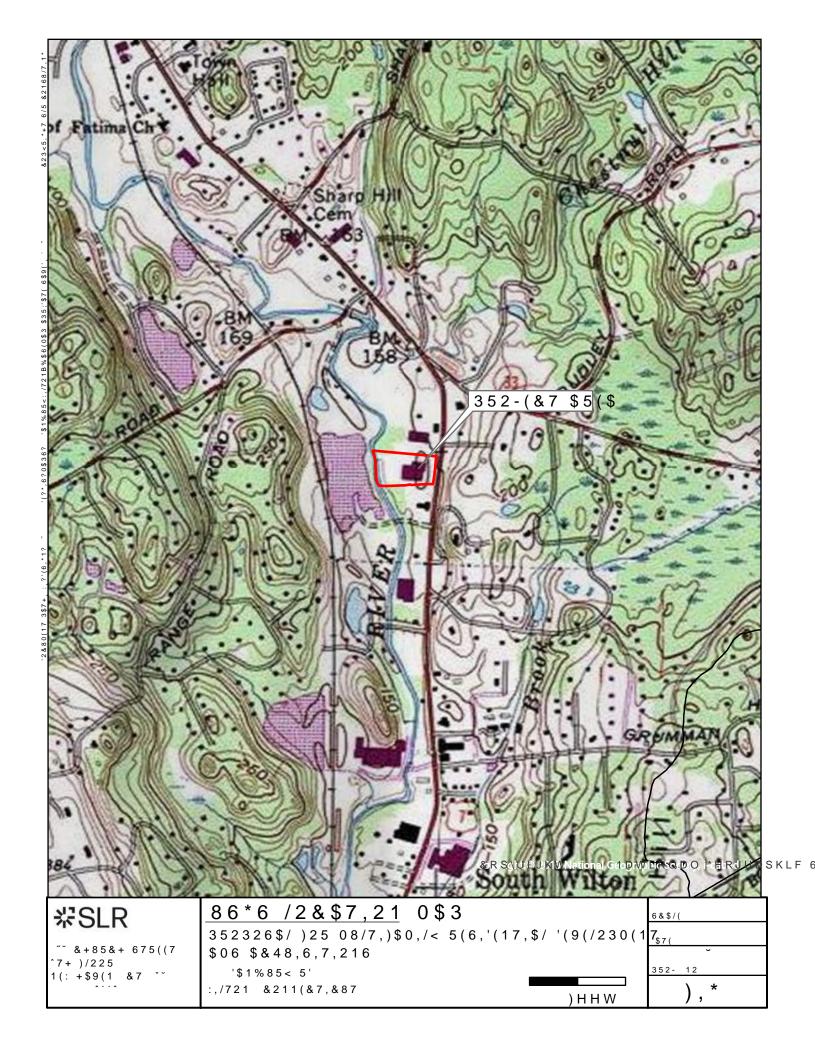
Chris Robbins Principal Scientist crobbins@slrconsulting.com

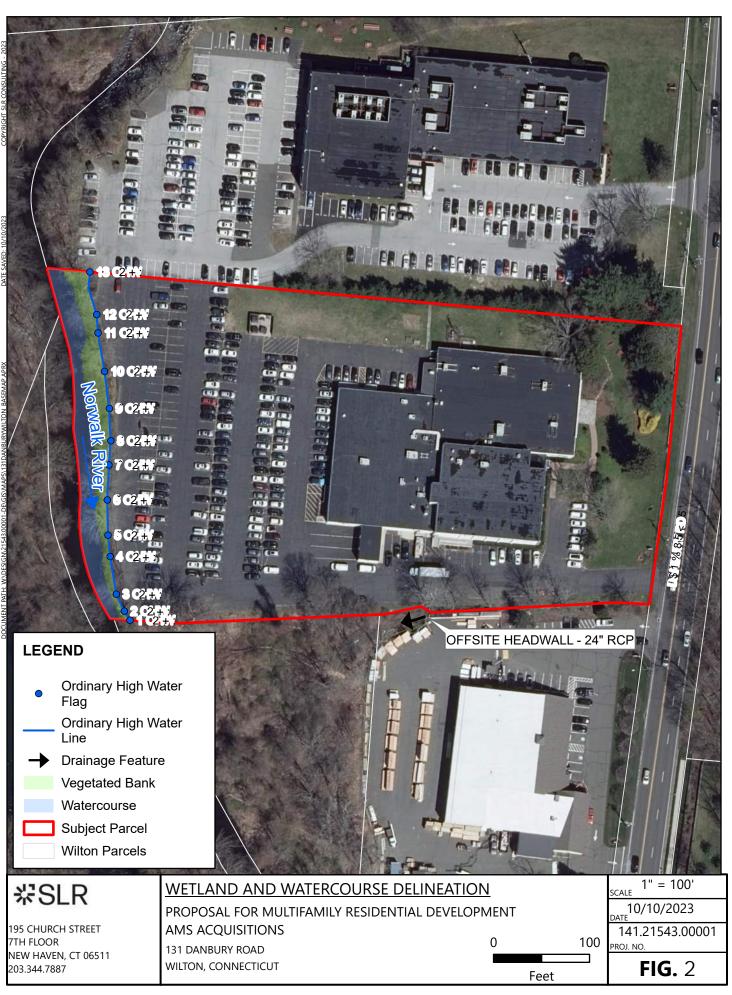




## Appendix A Site Maps

# Wetland and Watercourse Delineation and Impact Assessment


131 Danbury Road, Wilton, Connecticut


**AMS Acquisitions** 

SLR Project No.: 141.21543.00001

October 23, 2023 (Revised January 5, 2023)

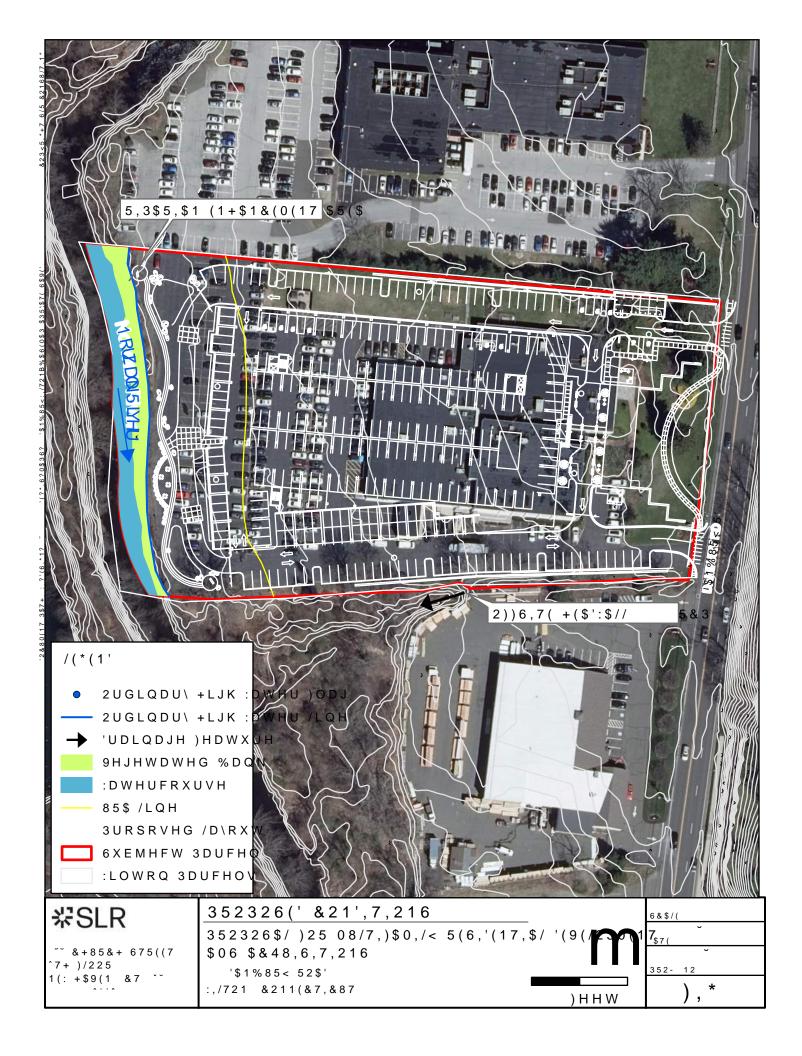








USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey


MAP LEGEND			MAP INFORMATION		
Area of Interest (AOI)	m	Spoil Area	The soil surveys that comprise your AOI were mapped at		
Area of Interes		Stony Spot	1:12,000.		
Soils	â	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
Soil Map Unit	Polygons 👘	Wet Spot	Enlargement of maps beyond the scale of mapping can cause		
Soil Map Unit	_ines	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Soil Map Unit	Points	Special Line Features	contrasting soils that could have been shown at a more detailed		
Special Point Features	Water Fe		scale.		
<ul><li>Blowout</li><li>Borrow Pit</li></ul>	~	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.		
💥 Clay Spot	Transpor +++	rtation Rails	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
Closed Depres	sion 🛹	Interstate Highways	Coordinate System: Web Mercator (EPSG:3857)		
Gravel Pit	~	US Routes	Maps from the Web Soil Survey are based on the Web Mercato		
Gravelly Spot	~	Major Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
🔇 Landfill	~	Local Roads Albers equal-area conic pro	Albers equal-area conic projection, should be used if more		
👗 🛛 Lava Flow	Backgro	und	accurate calculations of distance or area are required.		
Marsh or swar		Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.		
Mine or Quarry			Soil Survey Area: State of Connecticut		
Miscellaneous			Survey Area Data: Version 22, Sep 12, 2022		
Perennial Wat	er		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
Rock Outcrop			Date(s) aerial images were photographed: Oct 21, 2022—Oct		
Saline Spot			27, 2022		
Sandy Spot			The orthophoto or other base map on which the soil lines were		
Severely Erod	ed Spot		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor		
Sinkhole			shifting of map unit boundaries may be evident.		
Slide or Slip					
🧭 Sodic Spot					



## Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Map Onit Symbol	Map Onit Name	Acres III AOI	Fercent of AOI
103	Rippowam fine sandy loam	0.5	6.6%
305	Udorthents-Pits complex, gravelly	0.9	13.2%
307	Urban land	5.3	77.0%
W	Water	0.2	3.3%
Totals for Area of Interest		6.9	100.0%







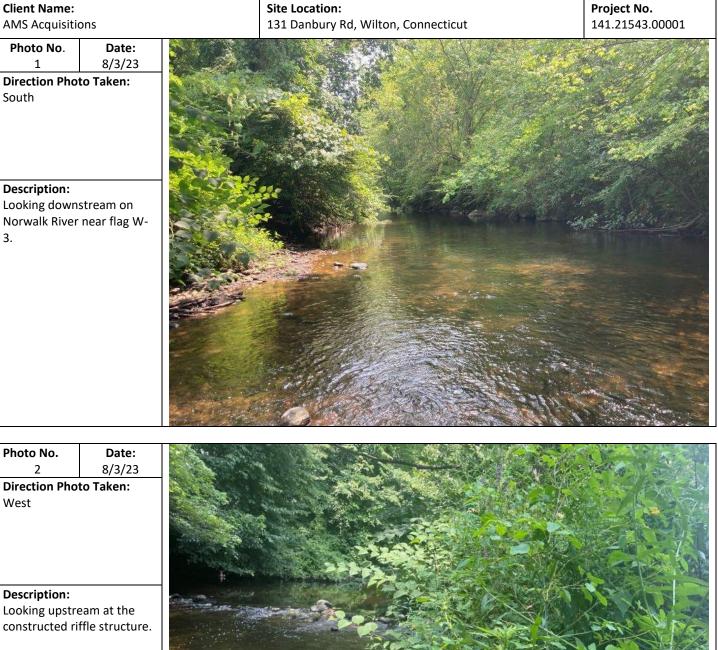
## Appendix B Photographic Log

# Wetland and Watercourse Delineation and Impact Assessment

131 Danbury Road, Wilton, Connecticut

**AMS Acquisitions** 

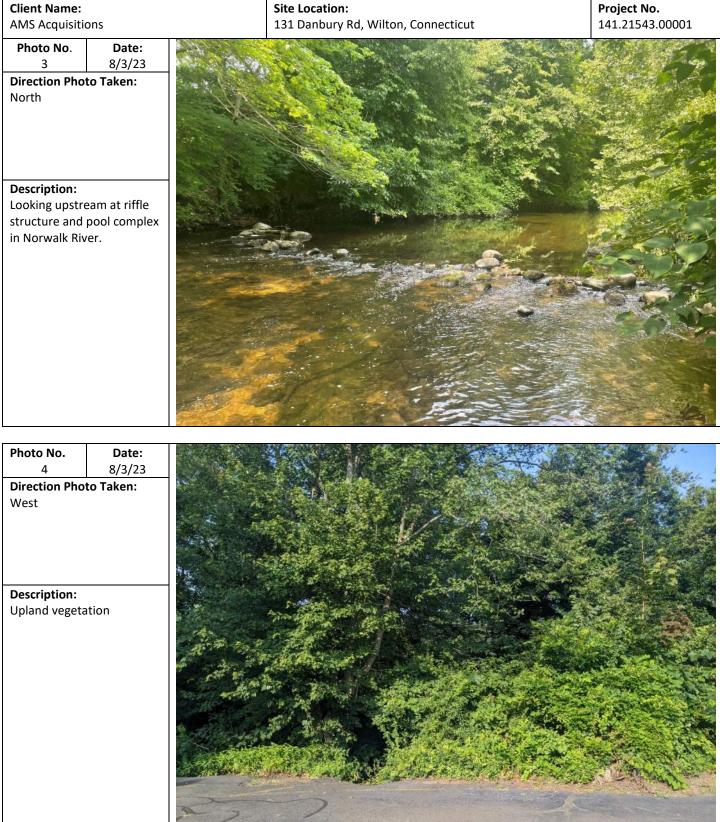
SLR Project No.: 141.21543.00001


October 23, 2023 (Revised January 5, 2023)



# 尜SL

3.


#### PHOTOGRAPHIC LOG



# 尜SL


#### PHOTOGRAPHIC LOG

## Project No.



# ₩SLR

#### PHOTOGRAPHIC LOG



Photo No. 7	Date: 8/3/23	
Direction Pho		
N/A		
Description: Invasive Asian Clam ( <i>Corbicu</i> in Norwalk Riv	la fluminea)	



## Appendix C NBBD Correspondence

# Wetland and Watercourse Delineation and Impact Assessment

131 Danbury Road, Wilton, Connecticut

**AMS Acquisitions** 

SLR Project No.: 141.21543.00001

October 23, 2023 (Revised January 5, 2023)





### 79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

Generated by eNDDB on: 8/21/2023

Mike Armstrong SLR CONSULTING US LLC 195 Church St - 7TH FL NEW HAVEN, CT 06510 marmstrong@slrconsulting.com

Subject: 131 Danbury Rd Filing # 100080 NDDB – New Determination Number: 202306018

Expiration Date: 8/21/2025

Based on current data maintained by the Natural Diversity Database (NDDB) and housed in the DEEP ezFile portal, no extant populations of Federal or State Endangered, Threatened or Special Concern species (RCSA Sec. 26-306) are known to occur within the project area delineated for the Building and Infrastructure Development (including stormwater discharge associate with construction) / New Residential - single lot, 131 Danbury Rd.

This NDDB – New determination may be utilized to fulfill the Endangered and Threatened Species requirements for state-issued permit applications, licenses, registration submissions, and authorizations. However, please be aware of the following limitations and conditions:

- This determination does not preclude the possibility that listed species may be encountered on site. Should this occur, a report must be submitted to the Natural Diversity Database promptly and additional action may be necessary to remain in compliance with certain state permits. Please fill out the <u>appropriate survey form</u> and follow the instructions for submittal.
- If your project involves preparing an Environmental Impact Assessment, this NDDB consultation and determination should not be substituted for conducting biological field surveys assessing on-site habitat and species presence.
- This determination applies only to the project as described in the submission and summarized at the end of this letter. Please re-submit an updated Request for Review if the project's scope of work and/or timeframe changes, including if work has not begun by 8/21/2025.

The NDDB – New determination for the 131 Danbury Rd at , as described in the submitted information and summarized at the end of this document is valid for two years from the date on this letter.

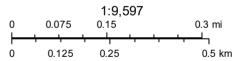
Natural Diversity Database information includes all information regarding listed species available to us at the time of the request. This information is a compilation of data collected over the years by the

Department of Energy and Environmental Protection's Natural History Survey and cooperating units of DEEP, land owners, private conservation groups and the scientific community. This information is not necessarily the result of comprehensive or site-specific field investigations. Current research projects and new contributors continue to identify additional populations of species and locations of habitats of concern, as well as, enhance existing data. Such new information is incorporated into the Database and accessed through the ezFile portal as it becomes available.

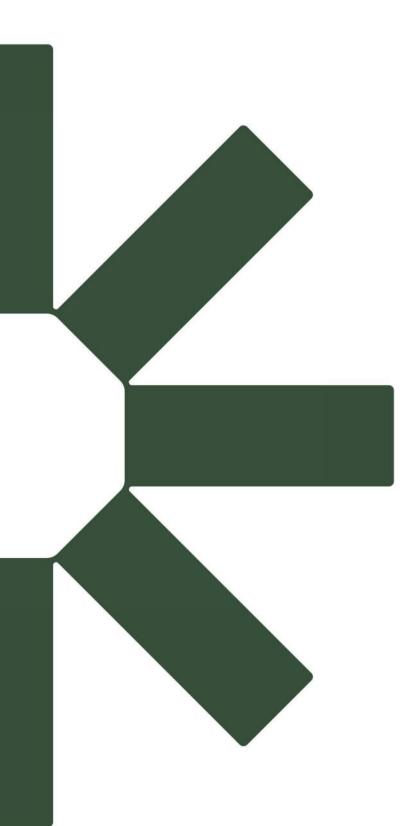
This letter is computer generated and carries no signature. If however, any clarification is needed, or if you have further questions, please contact the following:

CT DEEP Bureau of Natural Resources Wildlife Division Natural Diversity Database 79 Elm Street, 6th floor Hartford, CT 06106-5127 (860) 424-3011 <u>deep.nddbrequest@ct.gov</u>

Please reference the Determination Number provided in this letter when you e-mail or write. Thank you for submitting your project through DEEP's ezFile portal for Natural Diversity Database reviews.


Application Details:

Project involves federal funds or federal permit:	No		
Project involves state funds, state agency action, or relates to CEPA request:	No		
Project requires state permit, license, registration, or authorization:	No		
DEEP enforcement action related to project:			
Project Type:	Building and Infrastructure Development (including stormwater discharge associate with construction)		
Project Sub-type:	New Residential - single lot		
Project Name:	131 Danbury Rd		
Project Description:			


## 131 Danbury Rd Map







Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community



Making Sustainability Happen



January 5, 2024

Mr. Ryan Sutherland, AIA LEED AP BD&C Director of Design and Development AMS Acquisitions One Bridge Plaza North, Suite 840 Fort Lee, NJ 07024

SLR Project No.: 141.21543.00001

### RE: Preliminary Geotechnical Engineering Report Proposed Multifamily Development 131 Danbury Road Wilton, Connecticut

Dear Mr. Sutherland,

SLR International Corporation (SLR) is pleased to submit our preliminary geotechnical engineering report for the proposed multifamily development located at 131 Danbury Road in Wilton, Connecticut. Refer to Figure 1 – Locus Plan in Appendix 1 for the general location of the project.

We understand the project is in the early stages of development, and as such, we have performed a limited geotechnical study to preliminarily characterize the subsurface conditions at the site, identify key geotechnical constraints, and provide preliminarily geotechnical design and construction consideration and recommendations for the project.

Our recommendations are based in part on guidance from the 2022 Connecticut State Building Code, which includes the 2021 International Building Code (IBC) and the 2022 Connecticut Amendments. Design recommendations are based on Allowable Stress Design (ASD) Methods.

### **Site Description and Proposed Construction**

The proposed multifamily development will be constructed on a 4.75-acre parcel, with an apartment complex to the north, Danbury Road to the east, a private business to the south, and the Norwalk River to the west. Site grades slope slightly upward from elevation (El.) 140± along the western property line to El. 149± along the eastern property line. The site currently consists of an approximate 41,500±-square-foot building on the eastern side of the parcel and a large parking lot at the rear of the building. Both the existing building and parking lot will be demolished as part of this project.

We understand that the proposed multifamily project will involve the construction of single, approximately 82,700-square-foot, four-story, rectangularly shaped building with a finished floor at El. 157.5. Associated parking will be at grade and located beneath the first floor and around the perimeter of the proposed building. Finished grades of the parking area beneath the proposed building range from El. 146 to El. 144. The project will also include three retaining walls that vary in length and height.

### **Regional Geology**

According to published surficial geology data (1:24,000 scale, Surficial Geologic Map of the Norwalk North Quadrangle, Connecticut, Elizabeth H. London, 1984), the subsurface material at

the site is mapped as Norwalk River area deposits, which is described as "chiefly beds of sand and gravel, which locally overlie sand in the bedrock basin."

According to published bedrock geology data (1:24,000 scale, Bedrock Geology of the Norwalk North Quadrangle, Connecticut, Richard L. Kroll, 1967-1969), the bedrock at the site is mapped as felsic gneiss. The felsic gneiss is described as "medium- to coarse-grained, poorly- to well-foliated, gray-to-buff gneiss, composed of plagioclase, quartz, microline, muscovite, and biotite, with accessory opaques, chlorite, apatite, garnet, zircon and sillimanite."

### **Subsurface Explorations**

On December 12 and 13, 2023, SLR observed ten borings (SLR-1 through SLR-10) to explore the subsurface conditions around the proposed development and various infiltration systems and stormwater basins. The borings were performed by SITE, LLC and were located by SLR using a handheld Global Positioning System (GPS) and line of sight from existing site features. The approximate boring locations are shown on Figure 2 – Subsurface Exploration Location Plan Existing Conditions and Figure 3 – Subsurface Exploration Location Plan Proposed Conditions in Appendix 1.

Hollow-stem auger drilling methods were used to advance the borings to depths ranging between approximately 11.3± and 32.0± feet below existing grades. Representative samples were obtained from the borings by split-barrel sampling procedures in general accordance with American Society for Testing and Materials (ASTM) Specification D-1586. Logs of the borings are included in Appendix 2. Soil samples were classified in accordance with the Burmister Soil Classification System, which is included at the end of Appendix 2.

The split-barrel sampling procedure uses a standard 2-inch-outside-diameter (O.D.) split-barrel sampler that is driven into the bottom of the boring with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler the middle 12 inches of a normal 24-inch penetration is recorded as the Standard Penetration Resistance Value (N). The blows are indicated on the boring logs at their depth of occurrence and provide an indication of the consistency or relative density of the material.

### **Subsurface Conditions**

The generalized subsurface profile at the site as interpreted from the subsurface exploration data generally consists of asphalt or topsoil/subsoil over fill (where encountered), over organic sand and silt (where encountered), over sand (where encountered), over sand and gravel to the depths explored. More detailed descriptions of the subsurface materials encountered are provided below:

<u>Asphalt</u> was encountered at the surface of Borings SLR-1 through SLR-3 and SLR-5 through SLR-8 and is approximately 3 to 4 inches thick.

**Topsoil** was encountered at the surface in Borings SLR-4, SLR-9, and SLR-10 and is approximately 0.5 to 2.5 feet thick. The topsoil generally consists of loose to medium dense, dark brown, fine to medium sand, some silt, trace organic matter. A stratum of subsoil was encountered below the topsoil in Boring SLR-9 and extends to approximately 3.5± feet below existing grades. The subsoil generally consists of loose, light brown, fine to medium sand and silt, trace organic matter.

<u>**Fill**</u> was encountered below the asphalt in Borings SLR-1 through SLR-3 and SLR-5 through SLR-8 and extends to approximately  $1.0\pm$  to  $5.0\pm$  feet below existing grades. The fill generally consists of loose to dense, brown to gray-brown, fine to coarse sand, some to and fine to coarse gravel, trace silt.



**Organic Sand and Silt** was encountered below the fill in Borings SLR-1 through SLR-3, SLR-6, and SLR-7 and below the topsoil in Boring SLR-4. The organic sand and silt layer extends to approximately 3.5± to 8.5± feet below existing grades and generally consists of very loose to medium dense, brown to black, fine to medium sand, little to and organic silt, trace to little fine gravel, trace organic matter.

<u>Sand</u> was encountered below the fill or organic sand and silt in Borings SLR-1 and SLR-5 through SLR-7 and extends to approximately  $3.0\pm$  to  $7.0\pm$  feet below existing grades. The sand generally consists of loose to medium dense, gray-brown, fine to medium sand, little silt, trace fine gravel.

**Sand and Gravel** was encountered below the sand or organic sand and silt in each boring and is at least 5.0± to 31.5± feet thick. The sand and gravel generally consists of medium dense to very dense, gray to brown, fine to coarse sand, little to and fine to coarse gravel, trace to little silt.

<u>**Groundwater**</u> was encountered in each boring during drilling at depths ranging from  $3.5\pm$  to  $9.0\pm$  feet below existing grades, or between approximately El.  $137.7\pm$  to El.  $139.5\pm$ . Groundwater levels may vary depending on factors such as season, precipitation, drought, construction activity, and other conditions, which may be different from those at the time of these observations.

### **Implications of Subsurface Conditions**

The existing surficial materials, fill, and organic sand and silt are not suitable for support of the proposed structure as it was likely placed in an uncontrolled manner and contains constituents that would result in unacceptable postconstruction settlements. We recommend that the proposed structure be supported by foundations that develop their capacity in the natural soils or compacted granular fill (CGF) over this material.

Foundation loads were not available for the preparation of this report, but the foundation (e.g., type and size) for the structure should be based on its respective geometry and the loads that must be supported. For proposed low-rise structures, we anticipate that shallow foundations bearing on the natural soils will be sufficient. However, for mid- to high-rise structures with larger foundation loads, shallow foundations bearing on improved natural soils or deep foundations that develop their capacity in the dense to very dense natural sand and gravel soils may be required.

The scope of this preliminary geotechnical study is limited, and a final design geotechnical study should be performed. The final design study should include additional explorations in the area of SLR-4 and within the existing building footprint following demolition to further define the limits of the thick organic sand and silt deposit and to confirm encountered subsurface conditions, respectively. Below are our initial geotechnical recommendations based on this limited study.

### **Initial Geotechnical Analyses and Recommendations**

### **Shallow Foundations**

If appropriate, the proposed structure can be supported by conventional shallow spread footing foundations over a prepared subgrade of undisturbed natural soils or CGF over this material. Where CGF is used beneath the proposed footings, we recommend that it be placed 1 foot beyond the edge of the footings and at a one horizontal to one vertical (1H:1V) slope down and away from the footings to the top of the recommended bearing stratum.

At this point, we preliminarily recommend a net allowable bearing pressure of 4 kips per square foot (2.0 tsf) for spread footings bearing on the natural granular soils or CGF over this material. We anticipate this bearing pressure will limit total and differential postconstruction settlements to 1 inch and ½ inch, respectively. Settlements should occur as the loads are applied and be



complete at the end of construction. We recommend a maximum coefficient of friction of 0.55 between footings and the recommended bearing stratum.

For higher foundation loads, ground improvement may be used to improve the relative stiffness and load-carrying capacity of the natural soils, and thus, a higher net allowable bearing capacity may be realized. Ground improvement might be achieved by either installing rammed aggregate piers or a rigid inclusion system. The method of ground improvement should be selected and designed based on the foundation loads that need to be supported and other project considerations.

Exterior footings should be constructed at a minimum depth of 42 inches below final grades to protect against frost. For interior footings, a minimum depth of 12 inches should be maintained below the proposed bottom of the concrete floor slab and the top of footings. The minimum and maximum isolated footing size should be 2.5 and 12 feet, respectively. The minimum and maximum wall footing width should be 1.5 to 6 feet, respectively.

### **Deep Foundations**

If foundation loads dictate, the proposed building can be supported by deep foundations such as driven piles (e.g., concrete, steel pipe) or drilled micropiles. The deep foundations should be sized appropriately for the anticipated loading and spaced a minimum of three diameters apart center to center. Deep foundations should be designed to have enough geotechnical and structural capacity to resist the applied compressive, tension, and lateral loads while limiting total and differential postconstruction settlements to 1 inch and ½ inch, respectively. We recommend horizontal deflections be limited to ½ inch.

### **Lateral Earth Pressures**

Foundation or site retaining walls with unbalanced loading should be designed to resist lateral earth pressures. Based on the anticipated finish floor elevation and underneath parking lot elevations, we anticipate foundation walls with unbalanced loading up to approximately 11.5 feet. For walls that are braced at the top (e.g., foundation walls), we recommend they be designed to resist an equivalent at-rest static horizontal fluid pressure equal to 54 pounds per square foot (psf) (based on  $\Phi = 35^{\circ}$ , c = 0 psf,  $K_0 = 0.43$ , and  $\gamma = 125$  pounds per cubic foot [pcf]). For walls that are allowed to rotate (e.g., site retaining walls), we recommend they be designed to resist an equivalent active horizontal pressure equal to 34 psf (based on  $\Phi = 35^{\circ}$ , c = 0 psf,  $K_a = 0.27$ , and  $\gamma = 125$  pcf).

These values assume no unbalanced hydrostatic pressures (i.e., free-draining backfill and/or weep holes for drainage), sloped backfill, seismic forces, or traffic surcharge loads. We recommend using a traffic surcharge load of 250 psf and a pedestrian surcharge load of 75 psf. We do not recommend the use of passive pressure against the base of the walls.

Where calculated earth pressure is less than 200 psf, the minimum earth pressure value should be increased to 200 psf to account for stress created by compaction near the walls. Walls subject to other live or dead loads must also be designed for an additional uniform lateral pressure over the entire height of the wall equal to use at least 0.33 times the surcharge.

### Seismic Site Class and Liquefaction Potential

The average Standard Penetration Test "N" value extrapolated over a 100-foot depth in the area of the proposed building is 21 blows per foot, which results in a Site Class D (Stiff Soil) per the IBC.

According to the 2022 Connecticut State Building Code for Wilton, Connecticut,  $S_s$  is 0.241g and  $S_1$  is 0.057g.

Based on the standard penetration test results, estimated depth to groundwater, soil classifications, and expected peak ground acceleration at this locale, it is our opinion that the site soils are not prone to liquefaction.

### Laboratory Testing

Laboratory testing was performed by Tri-State Materials Testing Lab, LLC of Berlin, Connecticut, on representative soil samples collected from the subsurface explorations. The test results will be used to classify and define the hydraulic conductivity of the in-situ soils that are planned to remain for the infiltration systems and the stormwater basins.

The testing performed included gradation analyses, soil unit weight, and permeability. Soil unit weight was completed on the samples to establish approximate in-situ parameters to complete the permeability tests. The results of the laboratory testing are summarized below and included in Appendix 3.

Boring	Depth, ft	Approximate Elevation	Soil Type	Unit Weight, pcf	Permeability, cm/sec (in/hr)
SLR-2	3 – 4	138.5 – 137.5	Organic Sand & Silt	106.0	2.5x10 ⁻⁴ (0.8)
SLR-5	5 – 7	137.3 – 135.3	Sand & Gravel	122.7	7.1x10 ⁻⁴ (2.5)
SLR-6	5 – 7	138.2 – 136.2	Sand & Gravel	120.3	2.9x10 ⁻³ (10.6)
SLR-7	3 – 5	141.5 – 139.5	Fill	122.6	5.8x10 ⁻⁴ (2.1)
SLR-8	5 – 7	141.2 – 139.2	Sand & Gravel	120.4	3.0x10 ⁻³ (10.9)

pcf = pounds per cubic foot

### **Materials and Compaction Requirements**

Existing fill that does not contain deleterious material may be potentially suitable for reuse as CGF or as ordinary fill in nonload-bearing areas. Materials proposed for reuse should be free of ice or frost, weak compressible soils should be acceptable to the geotechnical engineer and satisfy project requirements, and laboratory testing should be performed to establish gradation and moisture-density requirements that should be confirmed by field testing.

CGF for use as structural fill should consist of inorganic soil that is free of clay, loam, ice and snow, tree stumps, roots, and other organic matter and graded within the following limits:

Sieve Size	Percent Finer by Weight
5 inches	100
3 ½ inches	90 - 100
1 ½ inches	55 – 100
1/4 inch	25 – 60
No. 10	15 – 45
No. 40	5 – 25
No. 200	0 – 12

Crushed stone for use below foundation should consist of sound, durable rock that is graded within the following limits:

Sieve Size	Percent Finer by Weight
1 inch	100
¾ inch	90 – 100
1/2 inch	20 – 55
3/8 inch	0 – 15
No. 4	0-5

We recommend a minimum in-place dry density of 95 percent as per ASTM D1557 for material placed below concrete slabs and 92 percent for material placed behind foundation walls and earth retaining structures. Materials should be placed within 2 percent of their optimum moisture content. We recommend a maximum loose lift thickness of 12 inches.

## **Construction Considerations**

### **Site Preparation**

Asphalt, topsoil/subsoil, fill, organic sand and silt, and any other deleterious surficial materials must be stripped or excavated during site preparation within the footprint of the proposed building. Asphalt, topsoil/subsoil, and other deleterious surficial materials must be stripped or excavated during site preparation in the areas of the perimeter parking. Excavated existing fill and natural soils should be stockpiled for reuse as backfill or ordinary fill. Where existing soils is present at final subgrade levels, the exposed subgrades should be proof rolled with a large double-drum roller. Materials disturbed during excavation should be undercut to undisturbed material and backfilled with CGF.

### **Subgrade Preparation**

Final subgrades should be free of water, ice, frozen soil, and loose soils prior to placement of additional fill mater. We recommend excavations in soil be conducted using a smooth-edged excavator bucket for final excavations to help protect the subgrade, followed by proof compaction of the exposed subgrade.

Fill and construction materials should be placed as soon as possible after preparation so that disturbance of bearing materials does not occur. Should the materials at bearing level become disturbed, the affected materials should be removed and replaced with CGF or crushed stone. A 4-inch-thick layer of crushed stone may be used to protect subgrades that are expected to be open for an extended period.

### **Deep Foundations**

If deep foundations are considered, they should be installed using adequately sized construction equipment and be installed within approximately 2 percent of vertical and within 3 inches of plan locations. For concrete or steel piles, hammer blows should be recorded at 1-foot intervals for each pile. For micropiles, the reinforcing steel shall not be more than ³/₄ inches from the indicated center of the pile. Pile depths, grout volume for micropiles, and other applicable information should also be recorded during installation.

We recommend a load test be performed on a sacrificial deep foundation element in general accordance with ASTM D1143-07 "Standard Test Methods for Deep Foundations Under Static Axial Compressive Load" to confirm that the allowable design capacities and predicted settlements meet the project specifications.



### Demolition

The existing building will be demolished as part of site preparation. All existing substructures (i.e., existing building foundations, utilities, etc.) must be removed from beneath the proposed building footprint. Spread footings should be removed in their entirety, and driven piles, if present, should be cut down at least 4 feet below grade so they do not conflict with the new foundations. Where previous foundations conflict with proposed foundations, the previous foundations must be removed. All traces of demolition debris should be removed in a legal manner off site from within 10 feet beyond the proposed building footprint.

Foundations may potentially be left in place below proposed pavements, provided they are at least 4 feet below pavement grades and do not conflict with utilities. Utilities should be rerouted as necessary to prevent conflicts. If underground utilities are to be abandoned in place below pavements, they should be grouted to prevent future collapse.

### **Temporary Excavations**

Temporary excavations may be required for foundation construction. All excavations should be sloped or shored in accordance with local, state, and federal regulations, including Occupational Safety and Health Administration (OSHA) (29 CFR Part 1926) excavation trench safety standards.

Where excavations can be sloped, they should be sloped in accordance with OSHA requirements for a Class "C" soil, which can be cut at a maximum of one vertical to one horizontal (1V:1H), up to a maximum excavation depth of 20 feet. These recommendations assume no surcharge load (i.e., stockpiles, construction equipment, etc.) at the top of the excavations or seepage (e.g., cuts below the groundwater table).

We expect that all excavations will be able to be sloped in accordance with OSHA requirements, but in the case it is not possible, a temporary earth retaining system (TERS) will be required. The TERS should be selected by the contractor and designed by a professional engineer registered in the State of Connecticut.

### Dewatering

Based on the proposed construction, groundwater may be encountered near foundation elevations. We expect that control of the groundwater and surface water runoff can be accomplished with sumps and/or grading to low points. A crushed stone drainage blanket over the bottom of the excavation will facilitate dewatering. The contractor is ultimately responsible for selecting dewatering means and methods for maintaining subgrades in an undisturbed condition.

## **Construction Documents and Quality Control**

If changes are made to the location or type of structure, the recommendations in this report will need to be reviewed and may be subject to revision. We recommend that SLR make field observations of excavations and foundation preparation to monitor actual conditions and compliance with our recommendations and project specifications. Specifically, we recommend field observation of footing subgrade, fill placement and compaction, and deep foundation installation if chosen. We can also assist in classifying material on site for segregation and/or mixing for reuse on site.

## Limitations

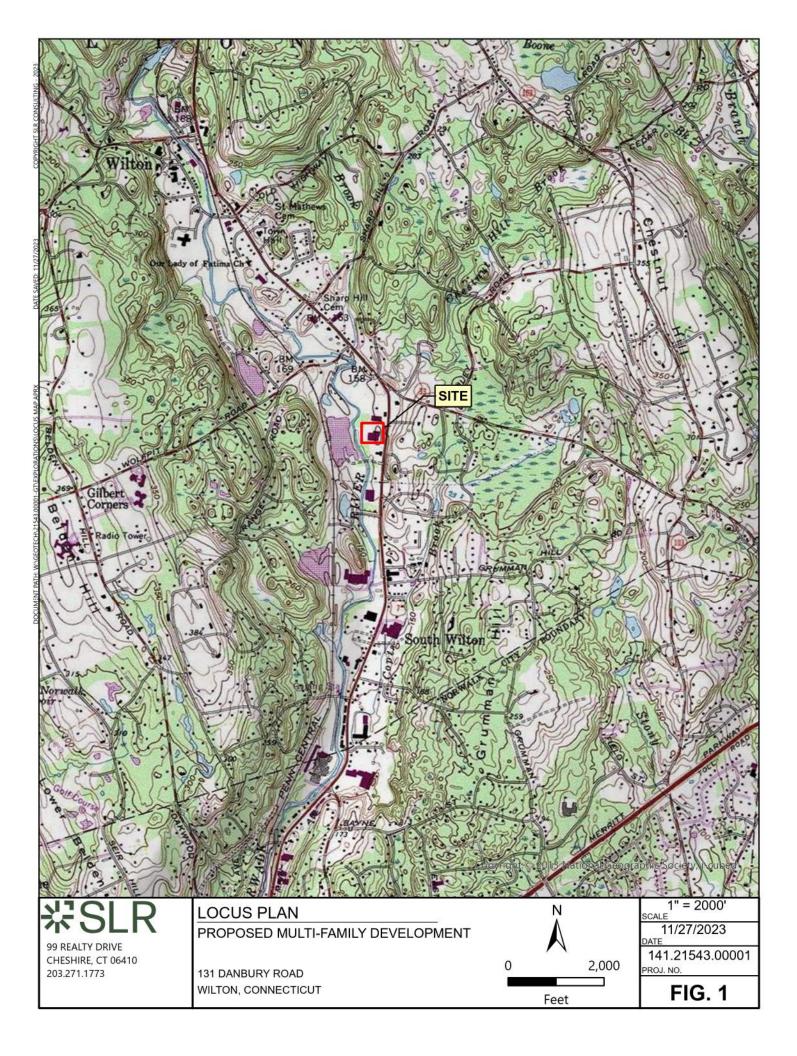
This report is subject to the limitations included in Appendix 4.

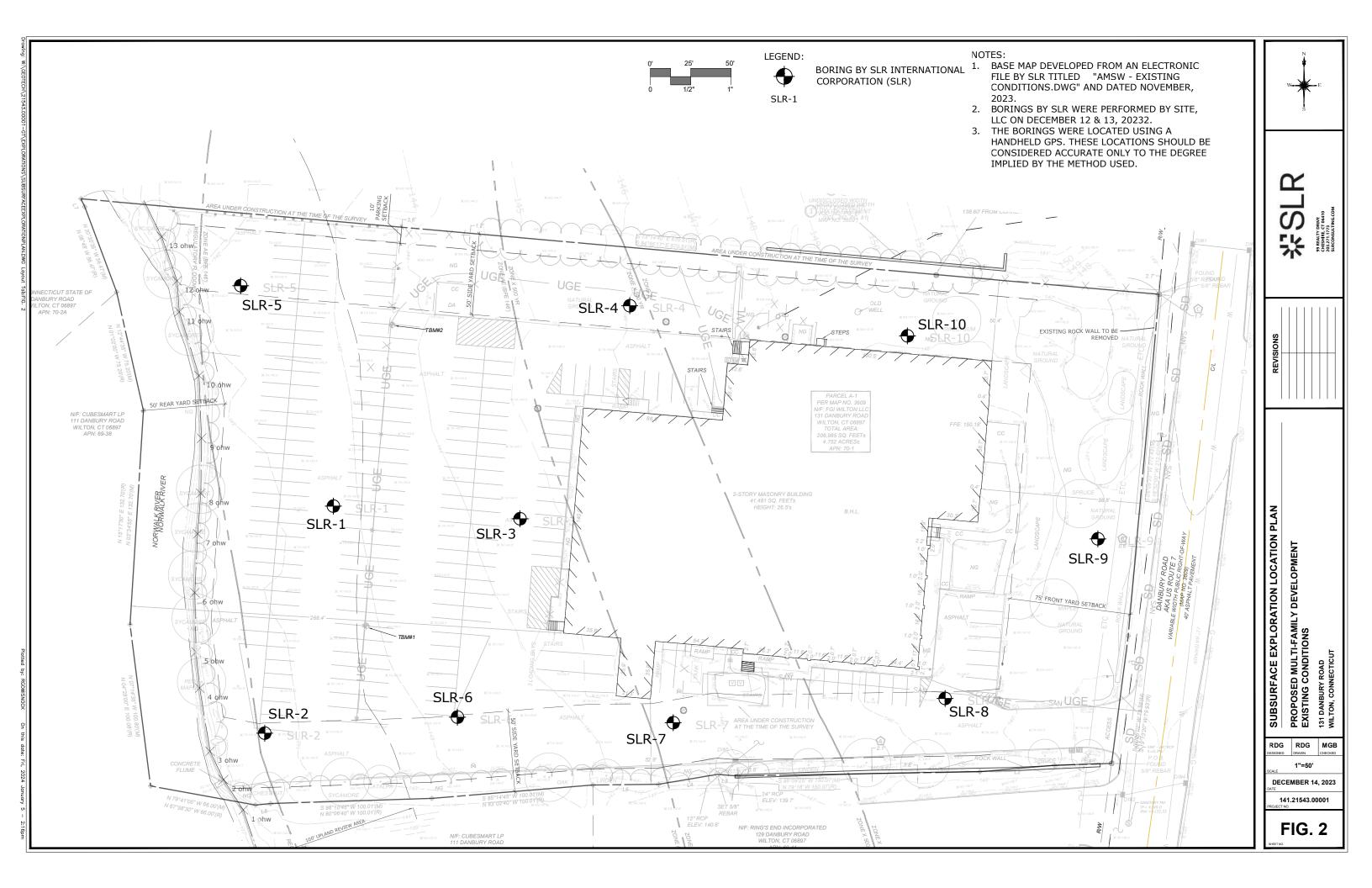
Thank you for the opportunity to be of service. Please feel free to call either of the undersigned if you have questions.

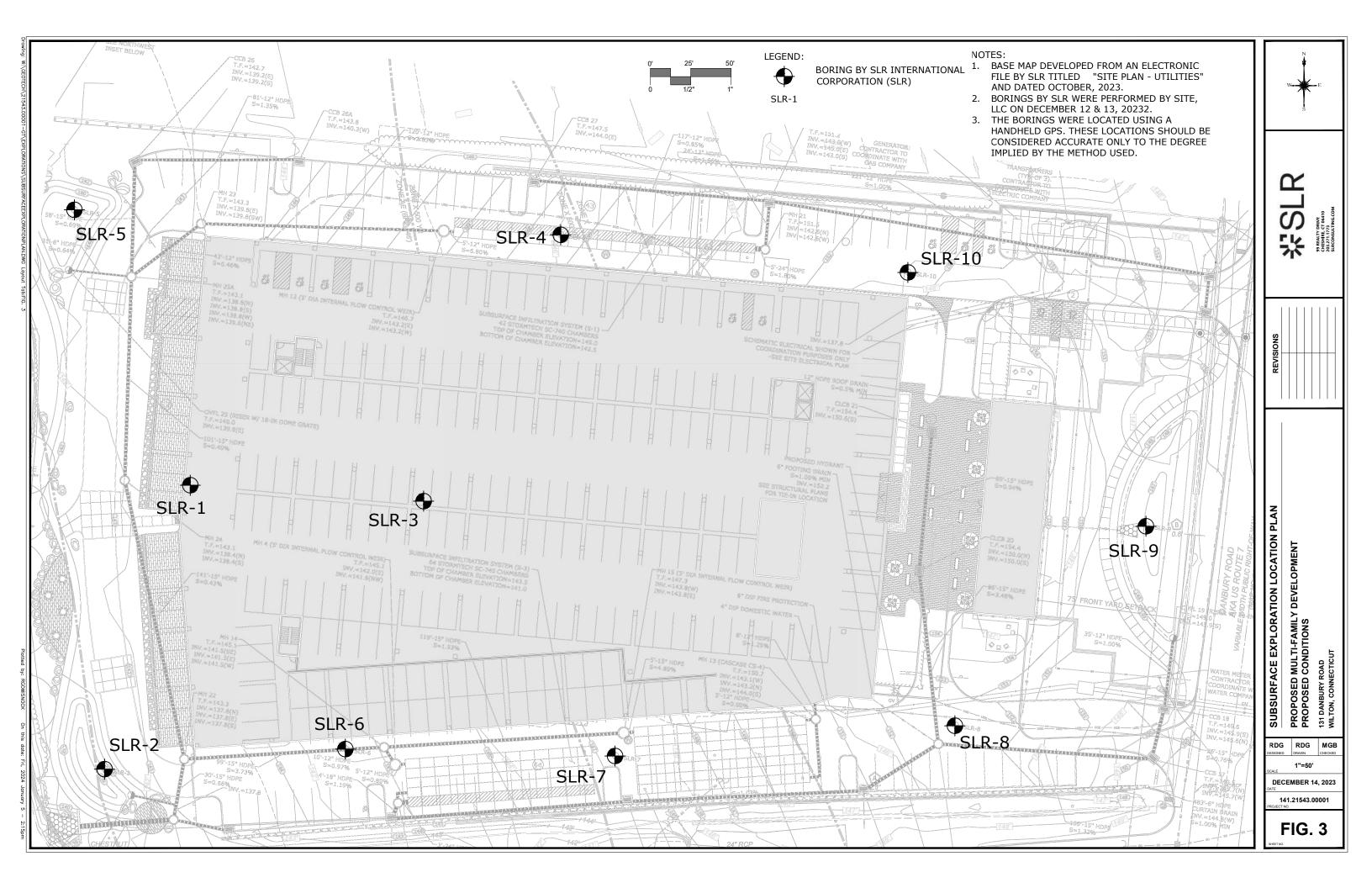
Regards,

#### **SLR International Corporation**

Robert D. Gowisnock Jr. Associate Geotechnical Engineer rgowisnock@slrconsulting.com


Call. They


Carl W. Thunberg, PE Principal Geotechnical Engineer <u>cthunberg@slrconsulting.com</u>


Attachments: Appendix 1 – Figures Appendix 2 – Boring Logs Appendix 3 – Laboratory Test Results Appendic 4 – Limitations

21543.00001.j424.ltr.docx

APPENDIX 1 FIGURES







APPENDIX 2 BORING LOGS

					BC	DRIN	G LC	)G					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPN	1ENT	BORING NO .:	SLR-1	SHEET	: 1 OF 2		
2	SI	D	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
	r OL			141.21543.00		- ,		FOREMAN: J.					
SLR	International C	Corporation	CLIENT:	AMS ACQUIS					R. GOWISNOCK				
99 Re 203.2	ality Drive, Chesh 71.1773   ww.slrco	ire, CT 06410	DATE:	DECEMBER					RFACE ELEVATION: ±1	42 5'			
EQUIPN		AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D		12.0	TYPE OF RIG:		
TYPE		HSA	-	SAMELEIX	-	DATE	ТІМЕ		( )		TRACK W/ AUTC	намме	:P
	(INI )	2 1/4	-	1 3/8	-	2023-12-12	7:00 AM		±4.8'		RIG MODEL:		
HMR. W			-	140	-	2023-12-12	7.00 Alvi		14.0				
		-	-								CME-55 LCX		
пик. <i>г</i> /	ALL (IN.)	-	-	30	-					-			~
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM				ON-DESCRIPT	ION SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
				Top 3": ASPH				_		0.3'	ASPHALT	142.2'	
1			4	4				e to coarse Grav some fine to co	vel, trace Silt. arse Gravel, trace Silt.		FILL		1
2	S-1	8	2	Bottom 3": Da					el, trace Organic	2.0'	· ·	140.5'	
2	0-1	0	3	Matter.							ORGANIC SAND		
3			nic SILT.	3.5'	& SILT	139.0'							
4	S-2	15			SAND								
-	02	10		4.5' 4.8'	<u></u> -	138.0'							
5			race Silt.	4.0	G.W.T. 🔻	137.7							
6	S-3	14											
7			25	4									
8				]									
				-									
9				1									
10			10	S 4: Vorudon	oo grov fino i	to ocoroo SAN		to coarse Grave	al little Cilt				
	0.4	10	13 23	5-4. Very den	ise, gray, inte	IU CUAISE SAN	iD, some line	to coarse Grav					
11	S-4	16	31										
12			29	$\frac{1}{2}$									
13				1									
10				-							SAND & GRAVEL		
14				4							SAND & GRAVEL	-	
15				1									
			10 15	S-5: Very den	se, gray, fine	to coarse SAN	ID, some fine	to coarse Grav	el, little Silt.				
16	S-5	10	45										
17			22	4									
				1									
18				1									
19				4									
20				1									
20			6	S-6: Very den	se, gray, fine	to coarse SAN	ID and fine to	coarse GRAVE	L, trace Silt.				
21	S-6	8	10 42	1									
22			19	1									
	_			4									
Remark	s: 1. Soil clas	sified from aug	er cuttings.	I	NON-PLAS	TIC (SPT-N)	PLAST	TC (SPT-N)	SAMPLE TYPE	<u> </u>	PROPORT	IONS	
					0-4 = VERY LOO	DSE	0-2 = VERY S	OFT			trace = <10%		
					4-10 = LOOSE 10-30 = MEDIUN	I DENSE	2-4 = SOFT 4-8 = MEDIUN	И	S = SPLIT SPOON UP = UNDISTURBED PIST	ON	little = 10% - 20% some = 20% - 35%		
					30-50 = DENSE		8-15 = STIFF		UT = UNDISTURBED THIN		and = 35% - 50%		
					50+ = VERY DE	NSE	15-30 = VERY 30 + = HARD	STIFF					
							30 + = MARD						

					BC	ORIN	G LC	)G					
-			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	1ENT	BORING NO.:	SLR-1	SHEET	T: 2 OF 2	-	_
2	<b>SI</b>	P	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
1		_1\	PROJ. NO:	141.21543.00	001			FOREMAN: J.	DEANGELIS				
	nternational C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
	lity Drive, Cheshi 1.1773   ww.slrco		DATE:	DECEMBER					RFACE ELEVATION: ±	142.5'			
EQUIPM	ENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D		-	TYPE OF RIG:		
ГҮРЕ		HSA	_	SS	-	DATE	TIME	-	WATER DEPTH		TRACK W/ AUTO	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-12	7:00 AM		±4.8'		RIG MODEL:		
HMR. W		-	-	140	-				-				
	ALL (IN.)	_	_	30	-						CME-55 LCX		
				00	SOIL A	AND ROCK CI	ASSIFICATI	ON-DESCRIPT	ION	Ξ		N	¥
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM					SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
24													
				-									
25			12	S-7: Very den	se, gray, fine	to coarse SAN	ID and fine to	coarse GRAVE	L, trace Silt.				1
26	S-7	14	30										
			23 13	-									
27				1							SAND & GRAVEL	_	
28				4									
29				1									
23				1									
30			7	S-8: Medium	dense, brown,	fine to coarse	SAND and fi	ne to coarse GI	RAVEL, trace Silt.				
31	S-8	12	8										
			15 15	-						32.0'		110.5'	
32						Bottom	of Exploration	±32.0'					ľ
33				$\frac{1}{2}$									
34				1									
34				-									
35				1									
36				1									
				1									
37				1									1
38				4									
39				1									1
33				4									
40				1									
41				]									
, -				1									
42				1									
43				$\frac{1}{2}$									
44				1									
44				4									
45				1									
				1			T				ī		
emark	5:				NON-PLAS 0-4 = VERY LOO	TIC (SPT-N)	PLAST 0-2 = VERY S	IC (SPT-N)	SAMPLE TYPE C = ROCK CORE		PROPORT trace = <10%	IONS	
					4-10 = LOOSE		2-4 = SOFT		S = SPLIT SPOON		little = 10% - 20%		
					10-30 = MEDIUN 20.50 = DENSE		4-8 = MEDIUN 8-15 - STIEE	Λ			some = 20% - 35%		
					30-50 = DENSE 50+ = VERY DE		8-15 = STIFF 15-30 = VERY	STIFF	UT = UNDISTURBED THIN	WALL	and = 35% - 50%		
							30 + = HARD						

SELER         PROJECT:         PROJECT: <t< th=""><th></th><th></th><th></th><th></th><th></th><th>B</th><th>JRIN</th><th>GL</th><th>JG</th><th></th><th></th><th></th><th></th><th></th></t<>						B	JRIN	GL	JG					
BLR         Resultant Operation Minimum State State State         PROJ. Mol.         14/12454.00001         PROF.MAIL:         DEVANCELIS           BLR         MADEEN         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           COUPNENT:         AUGEX         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           COUPNENT:         AUGEX         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           SEED UNJ         2 14/1         -         13/8         -         DATE         WATER DEPTH (F1)         TACK W. AUTO-HAME           SEED UNJ         2 14/1         -         13/8         -         DATE         WATER DEPTH (F1)         TACK W. AUTO-HAME           MIR. FYLLD(N)         2 -         -         30         -         DATE         WATER DEPTH (F1)         CME 55 LCX           MIR. FYLLD(N)         2 -         -         30         -         DATE         MIR 4000CK         STRATUM         STRATUM <th>_</th> <th></th> <th></th> <th>PROJECT:</th> <th>PROPOSED</th> <th>MULTI-FAMIL</th> <th>Y DEVELOPM</th> <th>IENT</th> <th>BORING NO.:</th> <th>SLR-2</th> <th>SHEET</th> <th>T: 1 OF 1</th> <th>-</th> <th></th>	_			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO.:	SLR-2	SHEET	T: 1 OF 1	-	
BLR         Resultant Operation Minimum State State State         PROJ. Mol.         14/12454.00001         PROF.MAIL:         DEVANCELIS           BLR         MADEEN         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           COUPNENT:         AUGEX         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           COUPNENT:         AUGEX         CASING         SAMPLEN         CORRENT IS. 2000H SUMPACE LEVATION: 14/1.5           SEED UNJ         2 14/1         -         13/8         -         DATE         WATER DEPTH (F1)         TACK W. AUTO-HAME           SEED UNJ         2 14/1         -         13/8         -         DATE         WATER DEPTH (F1)         TACK W. AUTO-HAME           MIR. FYLLD(N)         2 -         -         30         -         DATE         WATER DEPTH (F1)         CME 55 LCX           MIR. FYLLD(N)         2 -         -         30         -         DATE         MIR 4000CK         STRATUM         STRATUM <td>2</td> <td>291</td> <td>R</td> <td>LOCATION:</td> <td>131 DANBUR</td> <td>Y ROAD, WIL</td> <td>TON, CONNE</td> <td>CTICUT</td> <td>CONTRACTO</td> <td>R: SITE, LLC</td> <td></td> <td></td> <td></td> <td></td>	2	291	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
Build Provide Conversion of Table State Sta				PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
BULE         DATE:         DECEMBER 12, 202         COUNDATES DEFACE LEVATION; 4:41.5         TYPE OF BIG.           TYPE         FISA         -         38         -         DATE         TME         WATES DEFTH (F1,)         TRACK W/ AUTOHAMME           SIZE (0,N)         2 14         -         130         -         DATE         TME         WATES DEFTH (F1,)         TRACK W/ AUTOHAMME           MRR. WT (LB,)         -         1         0         2023-12:12         8.0 AM         =.3.7         MI MODEL           MRR. WT (LB,)         -         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0				CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
Calculation         Database         Description         Description         Description         Description         TRACK WAUTO*AMME           SEE (0 (W)         2,14         -         138         -         2023-12-12         830.AM         4.3.7         MIR MODE:	99 Rea 203.27	ality Drive, Chesh 1.1773   ww.slrcc	nre, CT 06410	DATE:	DECEMBER	12, 2023			GROUND SUI	RFACE ELEVATION: ±1	41.5'			
BILE ID (IN.)         2 1/4         .         1 38         .         2023-12-12         8 30 M         5.7         MRL STUE (IN.)         CME-55 LCX           MRR. FALL (IN.)         -         .         140         -         .         140         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .	EQUIPM	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRC	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
SIGE ID (N)         2 1/4         .         1 3/8         .         2023-12-12         8.0 AM         4.3.7         NIG MODEL: CME-66 LCX           MRR. FUL (N)         .         .         140         .         .         .         .         CME-66 LCX           Depth (PT)         MAMER         RECOVERY         BLOWS PER *1         SOL AND ROCK CLASSIFICATION DESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         E         DEpth (PT)         SOL AND ROCK CLASSIFICATION CESCRIPTION         E         DEpth (PL)         DEpth (PL)         DEpth (PL)         DEpth (PL)         DEpth (PL)         DEpth (PL) </td <td>ТҮРЕ</td> <td></td> <td>HSA</td> <td>-</td> <td>SS</td> <td>-</td> <td>DATE</td> <td>TIME</td> <td></td> <td></td> <td></td> <td>TRACK W/ AUTO</td> <td>HAMME</td> <td>ER</td>	ТҮРЕ		HSA	-	SS	-	DATE	TIME				TRACK W/ AUTO	HAMME	ER
HUR. FALL (IN.)         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-12	8:30 AM				RIG MODEL:		
NHR. FAIL (N)         -         -         30         -         Image: Comparison of the comment of the	HMR. W	T (LB.)	_	-	140	-						1		
Depth (PT)         SAMPLE NUMBER         BECOVERY (N)         BLOWS PER 6'         SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         Eff. (E) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         Eff. (E) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (B) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (B) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (B) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (B) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (B) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS         If (C) (SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS <thif (c)<br="">(SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTIC STATUST</thif>			_	-		-						CME-55 LCX		
Image: Second			DEGOVERY			SOIL A	AND ROCK CL		I ON-DESCRIPT	ION	Ξa		× -	¥
Image: Second	-				BUDM						EPT (;		ELEV	Remark
Image: Section of 10 Caray, fine to coarse SAND, some fine to coarse Gravel, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND, some Organic Sit, little fine Gravel.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, trace Sit.         Image: Section of 10 Caray, fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse SAND and fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse GraveL, fine Sit.         Image: Section of 10 Caray, fine to coarse GraveL, finte Sit. <thima< td=""><td>. ,</td><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td>5. CORF3 0</td><td>ENGINEERS</td><td></td><td></td><td></td><td></td><td>-</td></thima<>	. ,		. ,					5. CORF3 0	ENGINEERS					-
2         S-1         16         2         0         000000000000000000000000000000000000	4						rse SAND, sor	me fine to co	arse Gravel, tra	ce Silt.				-
2         S-1         16         6           3         2         S-2         14         6         S-2         14         6           4         S-2         14         6         S-2         14         6         S-2         14         6           5         S-2         14         6         5         S-2         14         6         S-2         0.WT.         137.8'           6         S-3         15         9         9         S-2         16         0.00         S-2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.0	1				S-1: Loose, b	lack, fine to me	edium SAND,	some Organi	c Silt, little fine	Gravel.				
3         3         3         3         2         8.NT           4         S:2         14         2         5         Count 1: 20         Count 2: 20         Count 1: 20	2	S-1	16		-							ORGANIC SAND		
S-2         14         2         S-2         Modum dense, Top 10". Black, fine to medium SAND; some Organic Sit, trace Sit.         4.0         137.5           S         2         14         3         8         15         137.5           S         3         115         9         9         3-3         15         19           S         3         115         19         23         3-4         12         10           S         4.12         10         7         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -														
4         S.2         14         8           5         14         8           6         S.3         15         10           7         10         23         14           8         S.4         12         10           9         10         7         10           10         7         11         S.4           11         S.5         16         20           12         20         11         S.5           12         20         11         S.5           12         20         S.5         Dense, gray, fine to coarse SAND and fine to coarse GRAVEL, little Sit.           13         11         S.5         Dense, gray, fine to coarse SAND and fine to coarse GRAVEL, little Sit.           14         20         10         12.0'         12.0'           13         11         11         11         12.0'         12.0'           14         11         11         11         12.0'         12.0'           14         11         11         11         11         12.0'           15         16         10         11         12.0'         12.0'           14	3-			2	S-2: Medium	dense, Top 10	": Black, fine to	o medium SA	ND, some Orga	anic Silt, trace fine Grave	el 3.7'	G.W.T. 🔻	137.8'	
Image: state in the the state in the state in the state in the state in t	4	S-2	14		Bottom 4": Gr	ray, fine to coa	rse SAND, sor	me fine to co	arse Gravel, tra	ce Silt.	4.0'		137.5'	'
Image: Same sector of the sector of					-									
6         S-3         15         23 14           7         10         11         S-4         Medium dense, gray, fine to coarse SAND and fine to coarse GRAVEL, trace Sit.         SAND & GRAVEL           8         S-4         12         10         7         7         7         7           9	5				S-3: Dense, g	gray, fine to coa	arse SAND an	d fine to coai	se GRAVEL, tra	ace Silt.				
7         114 10 5-4         S-4: Medium dense, gray, fine to coarse SAND and fine to coarse GRAVEL, trace Sit.           9	6	S-3	15											
S-4         10 19 10 10         S-4: Medium dense, gray, fine to coarse SAND and fine to coarse GRAVEL, trace Sitt.         SAND & GRAVEL           9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
8       S-4       12       19       10       7         10       7       7       7       7       7         11       S-5       16       20       12.0'       12.0'       12.0'         12       20       8       Bottom of Exploration ±12.0'       12.0'       12.0'       12.0'         13       1       1       1       1       1       12.0'       12.0'       12.0'         14       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	7				S-4: Medium	dense, gray, fi	ne to coarse S	SAND and fin	e to coarse GR/	AVEL, trace Silt.				
Bottom of Exploration ±12.0'         SAPLE Field         12.0'         129.5'           11         S-5         16         20         12.0'         129.5'           12         20         Bottom of Exploration ±12.0'         12.0'         129.5'           13         20         Bottom of Exploration ±12.0'         12.0'         129.5'           14         20         12.0'         12.0'         129.5'           14         20         12.0'         12.0'         129.5'           14         20         12.0'         12.0'         12.0'           14         20         20         12.0'         12.0'         12.0'           15         20         20         12.0'         12.0'         12.0'         12.0'           14         20         20         20         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12.0'         12	8	S-4	12			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						SAND & GRAVEL		
9         11         S-5: Dense, gray, fine to coarse SAND and fine to coarse GRAVEL, little Silt.           11         S-5         16         20           12         20         Bottom of Exploration ±12.0'         12.0'         12.0'           13         1         1         10         12.0'         12.0'         12.0'           14         1         1         1         1         12.0'         12.0'         12.0'           14         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Ű	0 4	12											
11       S-5       16       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120	9			7	$\frac{1}{2}$									
11       S-5       16       120       120       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'	10				1									
11       S-5       16       15       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'       12.0'	10				S-5: Dense, g	gray, fine to coa	arse SAND an	d fine to coar	se GRAVEL, lit	tle Silt.				
12         20         12.0'         12.9.5'           13         14         15         14         15         16         17           16         17         18         19         10         10         10         10           20         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <t< td=""><td>11</td><td>S-5</td><td>16</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	11	S-5	16	_	-									
Bottom of Exploration ±12.0'           13         Image: Construction ±12.0'           14         Image: Construction ±12.0'           15         Image: Construction ±12.0'           16         Image: Construction ±12.0'           16         Image: Construction ±12.0'           17         Image: Construction ±12.0'           18         Image: Construction ±12.0'           19         Image: Construction ±12.0'           20         Image: Construction ±12.0'           21         Image: Construction ±12.0'           22         Image: Construction ±12.0'           23         Image: Construction ±12.0'           24         Image: Construction ±12.0'           25         Image: Construction ±12.0'           26         Image: Construction ±12.0'           27         Image: Construction ±12.0'           28         Image: Construction ±12.0'           29         Image: Construction ±12.0'           20         Image: Construction ±12.0'           21         Image: Construction ±12.0'           22         Image: Construction ±12.0'           23         Image: Construction ±12.0'           24         Explore to the tool ±12.0'           24         Explore to the tothe to the t	40										12.0'		129.5'	,
14       15       10       10         15       16       10       10         16       10       10       10         17       10       10       10         18       10       10       10         19       10       10       10         20       10       10       10         21       10       10       10         22       10       10       10         24       10       10       10         25       10       10       10         10       10       10       10         24       10       10       10         25       10       10       10         10       10       10       10       10         10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	12						Bottom of	of Exploration	1±12.0'					1
15       16         16       17         17       18         18       19         20       10         21       10         22       10         21       10         22       10         19       10         20       10         21       10         21       10         21       10         22       10         23       10         24       10         10       10         04 = VERY LOOSE       0-2 = VERY SOFT         C = ROCK CORE       trace = <10%	13				4									
15       16         16       17         17       18         18       19         20       10         21       10         22       10         21       10         22       10         19       10         20       10         21       10         21       10         21       10         22       10         23       10         24       10         10       10         04 = VERY LOOSE       0-2 = VERY SOFT         C = ROCK CORE       trace = <10%														
16         Image: cuttings.         NON-PLASTIC (SPT-N)         PLASTIC (SPT-N)         SAMPLE TYPE         PROPORTIONS           19         Image: cuttings.	14				1									
17       18         18       19         20       10         21       10         22       10         21       10         22       10         21       10         22       10         23       10         24       10         25       10         10       10         10       10         10       10         10-30 = MEDIUM DENSE       18         4-8       MEDIUM         10-30 = MEDIUM DENSE       4-8         4-8       MEDIUM         10-30 = MEDIUM       10-30         10-30 = MEDIUM       10-30 </td <td>15</td> <td></td> <td></td> <td></td> <td>$\frac{1}{2}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	15				$\frac{1}{2}$									
17       18         18       19         20       10         21       10         22       10         21       10         22       10         21       10         22       10         23       10         24       10         25       10         26       10         27       10         28       10         29       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10	10													
18       Image: Construction of the second sec	10				]						1			1
19       10       10         20       10       10         21       10       10         22       10       10         21       10       10         22       10       10         21       10       10         22       10       10         21       10       10         22       10       10         24       10       10         25       10       10         26       10       10         27       10       10         28       10       10         29       10       10         20       10       10         21       10       10         22       10       10         24       10       10         25       10       10         26       10       10         27       10       10         28       10       10         29       10       10         20       10       10         20       10       10         29       10       10	17				┫						1			1
19       10       10         20       10       10         21       10       10         22       10       10         21       10       10         22       10       10         21       10       10         22       10       10         21       10       10         22       10       10         24       10       10         25       10       10         26       10       10         27       10       10         28       10       10         29       10       10         20       10       10         21       10       10         22       10       10         24       10       10         25       10       10         26       10       10         27       10       10         28       10       10         29       10       10         20       10       10         20       10       10         29       10       10					1						1			1
20       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21 <td< td=""><td>18</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td></td<>	18				1						1			1
21	19				4									
21					1									
22	20				1						1			1
NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%	21				4						1			1
NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%					1						1			1
0-4 = VERY LOOSE         0-2 = VERY SOFT         C = ROCK CORE         trace = <10%           4-10 = LOOSE         2-4 = SOFT         S = SPLIT SPOON         little = 10% - 20%           10-30 = MEDIUM DENSE         4-8 = MEDIUM         UP = UNDISTURBED PISTON         some = 20% - 35%	22				1						1			1
0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%			- :(') (r				710 (007 **	<b>—</b> •••					10115	
4-10 = LOOSE         2-4 = SOFT         S = SPLIT SPOON         little = 10% - 20%           10-30 = MEDIUM DENSE         4-8 = MEDIUM         UP = UNDISTURBED PISTON         some = 20% - 35%	Remarks	s: 1. Soil clas	sified from auge	er cuttings.									IONS	
30-50 = DENSE 8-15 = STIFF UT = UNDISTURBED THINWALL and = 35% - 50%							DENSE		м					
							NSE		STIEF	UT = UNDISTURBED THIN	WALL	and = 35% - 50%		
50+ = VERY DENSE 15-30 = VERY STIFF 30 + = HARD						JUH = VERY DE	NJE		SIIFF					

Bottom 9": Brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt.       5     S-1: Medium dense, Top 17": Brown, fine to coarse SAND and fine to coarse GRAVEL,       2     S-1       20     11						B	JRIN	GL	JG					
B.B. Reservational Corporation RTMSPHT 2: Advanced in the control SAMD, some fine to coates Gravel, Inte Sit.         PRO. Not. 141 (2145-80001         PROPERATE: 10 ESCENDER 12 2023         GROUNDWATER DEPTH (FT.)         TYPE 0F Rig: TRACK WALTCOMMAND SIZE ID (N)         TYPE 0F Rig: 200PMENT:         Advances         COREPAGE         CROUNDWATER DEPTH (FT.)         TYPE 0F Rig: TRACK WALTCOMMAND SIZE ID (N)         TYPE 0F Rig: 200PMENT:         TYPE 0F Rig: 200PMENT:				PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO.:	SLR-3	SHEET	: 1 OF 2		
B.B. Reservational Corporation RTMSPHT 2: Advanced in the control SAMD, some fine to coates Gravel, Inte Sit.         PRO. Not. 141 (2145-80001         PROPERATE: 10 ESCENDER 12 2023         GROUNDWATER DEPTH (FT.)         TYPE 0F Rig: TRACK WALTCOMMAND SIZE ID (N)         TYPE 0F Rig: 200PMENT:         Advances         COREPAGE         CROUNDWATER DEPTH (FT.)         TYPE 0F Rig: TRACK WALTCOMMAND SIZE ID (N)         TYPE 0F Rig: 200PMENT:         TYPE 0F Rig: 200PMENT:	· · ·	251	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
Bit Market 1:         CLIENT:         AUS ACCUSTIONS         IMPECTOR:         IMPECTOR:         CONSISTOR           EQUIPMENT:         AUGER         CASING         SAMPLER         CONTE         TIME         WATER DEPTH         TRACK WA UTO-HAMAGE           EQUIPMENT:         AUGER         CASING         SAMPLER         CONTE         TIME         WATER DEPTH         TRACK WA UTO-HAMAGE           SEE D (N)         2 1/4         1 36         2 2231/21         110 AU         = 6.3         CRE: 55 LOX           MRR. FALL (INK)         -         -         140         -         160         CRE: 55 LOX           Port         SUMMON CONCLASSIFICATION DESCRIPTION         E.G. STRATUN         CRE: 55 LOX         CRE: 56 LOX           Port         SUMMON CONCLASSIFICATION DESCRIPTION         E.G. STRATUN         CRE: 56 LOX         CRE: 56 LOX           Port         SUMMON CONCLASSIFICATION DESCRIPTION         E.G. STRATUN         CRE: 56 LOX         CRE: 56 LOX           Port         SUMMON CONCLASSIFICATION DESCRIPTION         E.G. STRATUN         CRE: 56 LOX         CRE: 56 LOX           Port         SUMMON CONCLASSIFICATION DESCRIPTION         E.G. STRATUN         S.G. STRATUN         CRE: 56 LOX           Port         S.S. Modum drans, Top 17': Brown, fine to coanse SAND and Organ				PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
Date:         DLATE:         DECEMBER 12, 2023         OROUND NURFACE ELEVATION: ::14.3"         TYPE OF BIG:           TYPE         HSA         -         SS         -         DATE         TWE         FRANCE         TYPE OF BIG:				CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
Construction         Product         Ordered of the set of	203.27	1.1773   ww.slrco	nsulting.com	DATE:	DECEMBER	12, 2023			GROUND SUF	RFACE ELEVATION: ±1	44.3'			
SIZE ID (IN.)         2 1/4         -         138         -         2023-12-12         100 Aut         -         -         -         -         140         -         -         -         -         140         -         -         -         -         140         -         -         -         -         140         -         -         -         -         -         140         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>EQUIPM</td> <td>ENT:</td> <td>AUGER</td> <td>CASING</td> <td>SAMPLER</td> <td>COREBRL.</td> <td></td> <td>GRO</td> <td>UNDWATER D</td> <td>EPTH (FT.)</td> <td></td> <td>TYPE OF RIG:</td> <td></td> <td></td>	EQUIPM	ENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
SIZE ID (IN)         2 1/4         1         138         2023-12-12         11:00 AK         =6.3"         HIG MODEL: CME-55 LCX           MRR. FALL (IN)         -         -         140         -         -         CME-55 LCX           Depit ID SAMPLE (FT)         NUMBER         RECOVERY         BLOWS         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (MODEL:         If ID 37.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (PT)         If ID 37.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (MODEL:         If ID 37.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (PT)         If ID 37.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (MODEL:         If ID 37.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         E         STRATUM (PT)         If ID 36.0         STRATUM (PT)         If ID 36.0         STRATUM (PT)         If ID 36.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         E         If ID 36.0         SOLL AND ROCK CLASSIFICATION-DESCRIPTION         If ID 36.0         SOLL AND R	TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	R
HIR.FALL (N)         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""><td>SIZE ID</td><td>(IN.)</td><td>2 1/4</td><td>-</td><td>1 3/8</td><td>-</td><td>2023-12-12</td><td>11:00 AM</td><td></td><td>±6.3'</td><td></td><td>RIG MODEL:</td><td></td><td></td></t<>	SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-12	11:00 AM		±6.3'		RIG MODEL:		
HMR. FALL (IN)         -         -         30         -         Image: Control of the co	HMR. W	T (LB.)	-	-	140	-								
Image: Top 2: ASPHALT.         Top 2: ASPHALT.         Set Medium dense. Top 17: Brown, fine to coarse GRAVEL, race Sit.         Set.         ASPHALT         1440           1         5         5         5         111         trace Sit.         5         1440         FILL         5         1440         5         1440         5         1440         15         15         5         1440         15         16         14         15         16         14         15         16         16         16         17         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138	HMR. FA	ALL (IN.)	-	-	30	-						CME-55 LCX		
Image: Second	Depth	SAMPLE	RECOVERY	BLOWS		SOIL A	ND ROCK CL	ASSIFICATI	ON-DESCRIPT	ION	ΕŢ	STRATUM	× ¬	ark
Image: Top 2: ASPHALT.         Top 2: ASPHALT.         Set Medium dense. Top 17: Brown, fine to coarse GRAVEL, race Sit.         Set.         ASPHALT         1440           1         5         5         5         111         trace Sit.         5         1440         FILL         5         1440         5         1440         5         1440         15         15         5         1440         15         16         14         15         16         14         15         16         16         16         17         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138.0         138	-				BURN	IISTER SYSTI	EM (SOIL) U.S	6. CORPS OF	ENGINEERS	SYSTEM (ROCK)	E E		E E	Remark
Image: Second							. ,			. ,		ASPHALT	144.0'	
2       S-1       20       11       areas Sit.       Bottom 3: Dark hown, fine to coarse SAND, some Organic Sit.       2.3'       14.8'         4       S-2       8       4       52: Medium dense, dark brown-black, fine to coarse SAND, and Organic Sit. T, little       2.3'       14.8'         5       2.8       4       3       5-2'       Medium dense, for p10': Light brown, fine to coarse SAND, some Sit.       6.0'       3.8.1.T         6       S-3       20       14       14.8'       135.5'         6       S-3       20       14       10'       130.5'         7       20       14       10'       130.5'       130.5'         8       20       14       10'       130.5'       130.5'         10       2.4       16'       10'       15'       16'       10'         11       S-4       16'       17'       11'       16'       10'       10'         14       16'       17'       11'       16'       15'       10'       10'       10'         14       16'       10'       10'       10'       10'       10'       10'         16'       S-5'       20       6'       6'       6'	1				4	,			,					1
2         S-1         20         9         Bottom 3*: Dark brown, fine to coarse SAND, some Organic Silt.         2.5         141.8           3         4         S-2         8         8         15         5         2.0         6         15         5         2.0         141.8         0         0         8         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         130.5*         <						dense, Top 17	": Brown, fine	to coarse SA	ND and fine to o	coarse GRAVEL,		FILL		
3         15         5-2: Medium dense, dark brown-black, fine to coarse SAND and Organic SLT, little         ORCANIC SAND & SILT,           4         5:2: Medium dense, Top 10°: Light brown, fine to coarse SAND, some Sit.         6: 0.0         0: 0.0           5         3:3: 20         7.         Botion 10°: Brown, fine to coarse SAND, some Sit.         6: 0.0         0: 0.0           6         5:3: 3         20         7.4         12         0: 0.0         0: 0.0           7         1         12         0: 0.0         0: 0.0         0: 0.0         0: 0.0           8         1         12         0: 0.0         0: 0.0         0: 0.0         0: 0.0           10         2: 0.0         10: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0           11         5:4         15         16: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0           12         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0         0: 0.0	2	S-1	20			ark brown, fine	to coarse SAN	ND, some Org	ganic Silt.		2.5'		141.8'	
4         S-2         8         9         1me Gravel.         8.SILT           6         S-3         20         7         Bettom 10°: Brown, fine to coarse SAND, some Silt.         6.0         6.3         6.0         133.5           6         S-3         20         7         Bettom 10°: Brown, fine to coarse SAND, some fine to coarse Gravel, little Silt.         6.0         6.3         C.W.T.         133.5           7         10         10         S-4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Silt.         6.0         C.W.T.         133.0           11         S-4         15         10         S-4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Silt.         SAND & GRAVEL         SAND & GRAVEL           12         10         10         S-4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Silt.         SAND & GRAVEL         SAND & GRAVEL           14         15         16         16         S-5: Medium dense, gray, fine to coarse SAND, ittle fine Gravel, trace Silt.         SAND & GRAVEL         SAND & GRAVEL           15         20         6         10         5-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.         SAND & GRAVEL         SAND & GRAVEL           21         S-6         10 <t< td=""><td>3</td><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[</td><td></td><td></td><td></td></t<>	3		ļ								[			
4         5-2         8         4         4         139.5'           6         5-3         20         7         Bottom 10': Brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         6.0'         139.5'           7         12         12         12         139.5'         6.3'         9         100         5.4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         6.0'         139.5'           10         10         5.4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         6.0'         139.5'           11         5.4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         5.4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         SAND & GRAVEL           14         15         17         11         11         11         11           14         15         15         5.5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Sit.         SAND & GRAVEL         SAND & GRAVEL           18         10         10         5.4: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Sit.         SAMPLE TYPE         PROPORTIONS           21         S-6         10         10         10         10         10           22         7						uense, dark br	own-black, fine	e to coarse S	AND and Organ	IIC SILI, IITTIE	1			
S         3         S-3:         20         7         Bottom 10°:         Environment         Bottom 10°:         Bottom 10':         Bottom 10':         Bottom 10'	4	S-2	8								4.8'		139.5'	
6         S-3         20         7         Bottom 10°: Brown, fine to coarse SAND, some fine to coarse Gravel, little Silt.         6.0°         138.3           7         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11<	5		ļ		S-3: Madium	dense Top 10	": Light brown	fine to coorr		Silt				
8       14         7       12         8       12         9       10         10       10         11       S-4         15       15         16       3         17       11         18       11         19       10         10       10         11       S-5         20       6         17       16         18       16         19       10         10       5-5: Medium dense, gray, fine to coarse SAND, ittle fine Gravel, trace Sit.         18       10         19       10         10       10         11       S-6         10       10         11       5-6: Medium dense, gray, fine to coarse SAND, ittle fine Gravel, trace Sit.         19       10         10       5-6         10       5         11       5-6         10       5         10       5         10       5         10       5         10       5         10       5         10		•									6.0'		138.3	
A         A         A         A         A         A         A         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         A         B         B         A         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B	6	S-3	20	14								G.W.T. 💙		
3       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	7			12										
a       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -														
10       10       10       10       10       10       10       10       10       10       11       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 <td< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	8													
11       S-4       15       10       S-4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         12       11       15       17         13       11       11       11         14       11       11         15       11       11         16       S-5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Sit.       SAND & GRAVEL         16       S-5       20       6         17       16       16         18       16       16         19       10       10         20       7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Sit.         21       S-6       10       10         19       10       10       10         21       S-6       10       5-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Sit.         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%	9		ļ	ļ	ł						1			
11       S-4       15       10       S-4: Dense, gray-brown, fine to coarse SAND, some fine to coarse Gravel, little Sit.         12       11       15       17         13       11       11       11         14       11       11         15       11       11         16       S-5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Sit.       SAND & GRAVEL         16       S-5       20       6         17       16       16         18       16       16         19       10       10         20       7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Sit.         21       S-6       10       10         19       10       10       10         21       S-6       10       5-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Sit.         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%														
11       S-4       15       17         12       11       11         13       11       11         14       11       11         15       16       S-5       20       6         16       S-5       20       6       8         17       16       16       16       16         19       10       16       16       16         20       7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.       SAND & GRAVEL         18       10       10       5       5       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.       PA-PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         P4 = VERY LOOSE       P-2 = VERY SOFT       C = ROCK CORE       trace = <10%	10				S-4: Dense, g	ray-brown, fin	e to coarse SA	ND, some fir	ne to coarse Gra	avel, little Silt.	1			
12       11         13       14         14       15         15       3         16       S-5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Silt.         16       S-5         17       16         19       16         20       7         21       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace =<10%	11	S-4	15								1			
13       Image: Sample of the section of	12				1						1			
14       -       -       -       -       SAND & GRAVEL         15       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	12										1			
15       3       3       5-5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Silt.       SAND & GRAVEL         16       5-5       20       6       8       16         17       16       16       16       16       16         18       16       16       16       16       16         19       10       10       10       10       10       10         20       7       5-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.       SAMPLE TYPE       PROPORTIONS         21       S-6       10       10       5       7       10       10         22       7       10       5       7       10       10       10       10         22       7       10       10       5       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	13				ł						1			
15       3       3       5-5: Medium dense, gray, fine to coarse SAND, little fine Gravel, trace Silt.       SAND & GRAVEL         16       5-5       20       6       8       16         17       16       16       16       16       16         18       16       16       16       16       16         19       10       10       10       10       10       10         20       7       5-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.       SAMPLE TYPE       PROPORTIONS         21       S-6       10       10       5       7       10       10         22       7       10       5       7       10       10       10       10         22       7       10       10       5       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	14				1									
16       S-5       20       6         17       16         18       16         19       16         20       7         21       S-6         10       5         7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.         21       S-6         22       7         23       7         24												SAND & GRAVEL	-	
16       S-5       20       6         17       16         17       16         18       11         19       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         20       11         21       S-6         10       10         5       5         22       7         23       7         24       7         25       10         10       5         10       10         10       10         12       7         13       10         14       10         15       10         16       10         17       10         18       10         19       10         10       10         10 <td>15</td> <td></td> <td>ļ</td> <td>3</td> <td>S-5: Medium</td> <td>dense, gray, fi</td> <td>ne to coarse S</td> <td>AND, little fir</td> <td>ne Gravel, trace</td> <td>Silt.</td> <td></td> <td></td> <td></td> <td></td>	15		ļ	3	S-5: Medium	dense, gray, fi	ne to coarse S	AND, little fir	ne Gravel, trace	Silt.				
17       8         17       16         18       10         19       10         20       7         21       S-6         10       5         7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%	16	S-5	20			-					1			
17       18       19       10         19       10       10         20       7       S-6: Medium dense, gray, fine to coarse SAND, some fine to coarse Gravel, little Silt.         21       S-6       10       10         22       7       7         24       7       7         25       7       7         26       10       10         5       7       7         20       7       7         21       S-6       10       5         22       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7											1			
19       10         20       7         20       7         21       S-6         10       5         22       7         24       7         25       7         26       10         10       5         21       S-6         10       5         22       7         24       7         25       7         26       10         10       5         10       5         10       5         10       5         10       10         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10       5         10	17				t						1			
20       7         21       S-6         21       S-6         22       7         22       7         22       7         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%	18				ł						1			
20       7         21       S-6         21       S-6         22       7         22       7         22       7         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%														
21       S-6       10       10         22       10       5         22       7         Remarks: 1. Soil classified from auger cuttings.         NON-PLASTIC (SPT-N)         PLASTIC (SPT-N)       SAMPLE TYPE         PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE	19				İ									
21       S-6       10       10         22       7         22       7         Remarks: 1. Soil classified from auger cuttings.         NON-PLASTIC (SPT-N)         PLASTIC (SPT-N)       SAMPLE TYPE         PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT         C = ROCK CORE       trace = <10%	20		ļ	7	S-6: Madium	dense grov fi	ne to coarco S		fine to coarse C	ravel little Silt				
21       S-6       10       5         22       7       7         22       9       9         Remarks: 1. Soil classified from auger cuttings.         NON-PLASTIC (SPT-N)         PLASTIC (SPT-N)       SAMPLE TYPE         PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE         trace = <10%		0.0	40		S-0. Wealum	uense, yray, ll	110 LUGISE 3	, Some I	ine to coarse G					
22       22         Remarks: 1. Soil classified from auger cuttings.       NON-PLASTIC (SPT-N)       PLASTIC (SPT-N)       SAMPLE TYPE       PROPORTIONS         0-4 = VERY LOOSE       0-2 = VERY SOFT       C = ROCK CORE       trace = <10%	21	5-6	10	5	]						1			
0-4 = VERY LOOSE 0-2 = VERY SOFT C = ROCK CORE trace = <10%	22			7	ł						1			
0-4 = VERY LOOSE 0-2 = VERY SOFT C = ROCK CORE trace = <10%														
	Remarks	s: 1. Soil clas	sified from auge	er cuttings.									IONS	
							JOF		OF I					
10-30 = MEDIUM DENSE 4-8 = MEDIUM UP = UNDISTURBED PISTON some = 20% - 35%							DENSE		M		DN			
30-50 = DENSE         8-15 = STIFF         UT = UNDISTURBED THINWALL         and         = 35% - 50%           50+ = VERY DENSE         15-30 = VERY STIFF         15-30 = VERY STIFF         15-30 = VERY STIFF									STIEE	UT = UNDISTURBED THIN	WALL	and = 35% - 50%		
50+ = VERY DENSE 15-30 = VERY STIFF 30 + = HARD						JU+ = VERY DE	NJE		SHFF					

		V2	PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	ENT	BORING NO.:	SLR-3	SHEET	T: 2 OF 2		
3	<b>FSL</b>	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
			PROJ. NO:	141.21543.00	001			FOREMAN: J.	DEANGELIS				
	International Co ality Drive, Cheshi		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
203.27	1.1773   ww.slrcor	sulting.com	DATE:	DECEMBER	12, 2023			GROUND SUF	RFACE ELEVATION: ±14	14.3'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-12	11:00 AM		±6.3'		RIG MODEL:		
HMR. W	/T (LB.)	-	-	140	-						CME-55 LCX		
HMR. F	ALL (IN.)	-	-	30	-						CINIE-00 ECX		
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM				ON-DESCRIPT	ION SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
24				4									
25											SAND & GRAVEL	-	
			16 11	S-7: Medium	dense, gray, fi	ne to coarse S	AND and fine	e to coarse GRA	VEL, little Silt.				
26	S-7	6	10										
27			11			Bottom	of Exploration	+27.0'		27.0'		117.3'	
28				1									
				-									
29				1									
30				1									
24													
31				]									
32				ł									
33				1									
34				1									
35				ł									
36				1									
				-									
37				1									
38				1									
39				1									
35				Į									
40				4									
41				]									
				-									
42				1									
43				4									
44				1									
				-									
45				t									
Remark	·c·					TIC (SPT-N)	рі лет	IC (SPT-N)	SAMPLE TYPE		PROPORT	IONS	1
Nemark					0-4 = VERY LOO		0-2 = VERY S		C = ROCK CORE		trace = <10%	10110	
					4-10 = LOOSE		2-4 = SOFT				little = 10% - 20%		
					10-30 = MEDIUN 30-50 = DENSE		4-8 = MEDIUN 8-15 = STIFF	Л	UP = UNDISTURBED PISTO UT = UNDISTURBED THINV		some = 20% - 35% and = 35% - 50%		
					50+ = VERY DE		15-30 = VERY 30 + = HARD	STIFF					

					B	ORIN	G LC	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO .:	SLR-4	SHEET	T: 1 OF 1		
1	FSL	R	LOCATION:	131 DANBUR	RY ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC	1			
		_ \ \	PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
	International C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
99 Re 203.2	ality Drive, Chesh 71.1773   ww.slrcc	nire, CT 06410 onsulting.com	DATE:	DECEMBER	12, 2023			GROUND SU	RFACE ELEVATION: ±1	46.0'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
ТҮРЕ		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTC	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-12	12:45 PM		±6.8'		RIG MODEL:		
HMR. W	/T (LB.)	-	-	140	-								
HMR. F	ALL (IN.)	-	-	30	-						CME-55 LCX		
Depth	SAMPLE	RECOVERY	BLOWS		SOIL A	AND ROCK CI	ASSIFICATI	ON-DESCRIPT	ION	ΕŢ	STRATUM	> ~	ark
(FT)	NUMBER	(IN)	PER 6"	BURN	NISTER SYSTI	EM (SOIL) U.S	6. CORPS OF		SYSTEM (ROCK)	DEPTH (FT.)	DESCRIPTION	ELEV. (FT.)	Remark
			2						Silt, trace Organic	_	TOPSON		-
1	S-1	20	9	Matter.				<b>.</b> .		0.8'	TOPSOIL	145.2'	
			8	Bottom 12": E	Brown, fine to c	coarse SAND,	some fine to	coarse Gravel,	trace Silt.				
2			5	S-2: Loose, d	lark brown-blac	ck, fine to med	ium SAND, se	ome Organic Si	lt, trace fine Gravel.				
3	S-2	12	3	-									
			2										
4				1							ORGANIC SAND		
5			1	S-3. Very loo:	se, black, fine	to medium SA	ND some Or	ganic Silt			& SILT		
6	S-3	24	1					guino ont.					
0	5-5	24	2							_			
7			1	S-4: Loose. b	lack, fine to m	edium SAND.	some Organie	c Silt.		7.0'	G.W.T. 🔻	139.0	
8	S-4	20	2	, í	,	,	Ū						
, in the second s	0.	20	2	-						8.5'		137.5'	
9			/	4									
10													
			8	S-5: Medium	dense, gray, fi	ne to coarse S	SAND and fine	e to coarse GRA	AVEL, trace Silt.				
11	S-5	10	12										
12			16	$\frac{1}{2}$									
12											SAND & GRAVEL	-	
13				I									
14				$\frac{1}{2}$									
15				1									
			4	S-6: Medium	dense, gray, fi	ne to coarse S	SAND, trace fi	ne Gravel, little	Silt.				
16	S-6	18	9 11	1									
17			11			Dattor	of Exploration	+17.0'		17.0'		129.0'	
				1			of Exploration	1±17.U					
18				1									
19				4									
20				1									
20				4									
21				1									
22				1									
				-									
Remark	s:	1	1	1	NON-PLAS	TIC (SPT-N)	PLAST	TC (SPT-N)	SAMPLE TYPE	1	PROPORT	IONS	
I					0-4 = VERY LOO	DSE	0-2 = VERY S	OFT			trace = <10%		
I					4-10 = LOOSE 10-30 = MEDIUM	M DENSE	2-4 = SOFT 4-8 = MEDIUN	И	S = SPLIT SPOON UP = UNDISTURBED PIST	DN	little = 10% - 20% some = 20% - 35%		
					30-50 = DENSE		8-15 = STIFF		UT = UNDISTURBED THIN		and = 35% - 50%		
					50+ = VERY DE	NSE	15-30 = VERY 30 + = HARD	STIFF					
					I				<u> </u>		L		

					BC	JRIN	GL	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	1ENT	BORING NO.:	SLR-5	SHEET	T: 1 OF 1		
2	FSL	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
			PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
	International C	•	CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
203.27	ality Drive, Chesh 71.1773   ww.slrco	nsulting.com	DATE:	DECEMBER	12, 2023			GROUND SUI	RFACE ELEVATION: ±1	42.3'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRC	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	ER
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	12/122023	1:30 PM		±3.5'		RIG MODEL:		
HMR. W	T (LB.)	-	-	140	-						CME-55 LCX		
HMR. F/	ALL (IN.)	-	-	30	-						CIME-55 LCX		
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURN				ION-DESCRIPT	ION SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
				Top 3": ASPH			-			0.3'	ASPHALT	142.0'	-
1			4	4	own, fine to co rown, fine to c	,		oarse Gravel, tr	ace Silt.	1.0'	FILL	141.3'	1
2	S-1	20	3		,						SAND		
2	0-1	20	4	4						2 0'	GAND	120.0	,
3			6 8	S-2: Medium	dense, brown,	fine to coarse	SAND and fi	ine to coarse GI	RAVEL, trace Silt.	3.0' 3.5'	G.W.T. 🔻	139.3' 138.8'	
4	S-2	16	10	1									
			9 13										
5			14	S-3: Very der	nse, gray-brow	n, fine to coars	se SAND, sor	me fine to coars	e GRAVEL, some Silt.				
6	S-3	15	37 18	-									
7			17	1									
7			15	S-4: Dense, g	gray, fine to coa	arse SAND an	d fine to coar	rse GRAVEL, lit	tle Silt.		SAND & GRAVE	_	
8	S-4	17	15 20										
9			27	1									
3				I									
10			15	S-5: Dense, g	aray, fine to coa	arse SAND an	d fine to coar	rse GRAVEL, lit	tle Silt.				
11	S-5	24	16										
			15 11	-						12.0'		130.3'	
12						Bottom	of Exploration	1±12.0'		12.0		100.0	
13				1									
14				1									
15				ł									
16				1									
				-									
17				ţ									
18				ł									
				1									
19				1									1
20				ł									1
21				1									1
21				4									
22				ł									
				1									
Remark	s: 1. Soil clas	sified from auge	er cuttings.		NON-PLAS	TIC (SPT-N)	PLAST 0-2 = VERY S	FIC (SPT-N)	SAMPLE TYPE C = ROCK CORE		PROPOR1 trace = <10%	IONS	
					4-10 = LOOSE		2-4 = SOFT		S = SPLIT SPOON		little = 10% - 20%		
					10-30 = MEDIUN		4-8 = MEDIU				some = 20% - 35%		
					30-50 = DENSE 50+ = VERY DE		8-15 = STIFF 15-30 = VERY 30 + = HARD		UT = UNDISTURBED THIN	WALL	and = 35% - 50%		

					BC	JRIN	GL	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO.:	SLR-6	SHEET	T: 1 OF 1		
2	FSL	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
			PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
	International C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
203.27	ality Drive, Chesh 71.1773   ww.slrcc	onsulting.com	DATE:	DECEMBER	13, 2023			GROUND SU	RFACE ELEVATION: ±1	43.2'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	6:45 AM		±5.1'		RIG MODEL:		
HMR. W	/T (LB.)	-	-	140	-						CME-55 LCX		
HMR. F	ALL (IN.)	-	-	30	-						CIME-55 LCX		
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM				ON-DESCRIPT	ION SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
				Top 3": ASPH		04115			0.14	0.3'	ASPHALT	142.9'	
1			6	4	,			rse GRAVEL, tr ne to coarse GI	ace Silt. RAVEL, trace Silt.				1
2	S-1	5	5		,,				,		FILL		
_	01	Ű	7							2 0'		140.2	
3			11	S-2: Medium	dense, Top 6"	: Dark brown, t	fine to mediu	m SAND, some	Organic SILT.	3.0'	ORGANIC SAND	140.2'	
4	S-2	20	6	Bottom 14": E	Brown, fine to c	coarse SAND,	little Silt, trace	e fine Gravel.		4.0'	& SILT	139.2'	-
			7 13							5.0'	SAND G.W.T. 🔽	138.2'	
5	-		9	S-3: Medium	dense, brown,	fine to coarse	GRAVEL an	d fine to coarse	SAND, little Silt.		X		
6	S-3	12	8 10										
7			10										
,			20	S-4: Dense, b	prown-gray, fin	e to coarse GF	RAVEL and fi	ne to coarse SA	ND, little Silt.				
8	S-4	17	17 19										
9			16										
_													
10			12	S-5: Dense, b	prown, fine to c	oarse SAND a	and fine to co	arse GRAVEL,	trace Silt.				
11	S-5	15	20 19								SAND & GRAVE	-	
12			22										
12													
13													
14													
15			24	S-6: Very der	nse, brown, fine	e to coarse SA	ND and fine	to coarse GRA\	/EL, little Silt.				
16	S-6	14	34 17										
17			19							17.0'		126.2'	
					_	Bottom of	of Exploration	117.0'		1			
18				İ						1			
19										1			
										1			
20				İ.									
21				ł									
22				1						1			
Remark	s: 1. Soil clas	sified from auge	er cuttings.	I	NON-PLAS	TIC (SPT-N)	PLAST	TIC (SPT-N)	SAMPLE TYPE	I	PROPORT	IONS	
					0-4 = VERY LOO	DSE	0-2 = VERY S	OFT			trace = <10%		
					4-10 = LOOSE 10-30 = MEDIUN	I DENSE	2-4 = SOFT 4-8 = MEDIUI	и	S = SPLIT SPOON UP = UNDISTURBED PIST	ON	little = 10% - 20% some = 20% - 35%		
					30-50 = DENSE		8-15 = STIFF		UT = UNDISTURBED THIN		and = 35% - 50%		
					50+ = VERY DE	NSE	15-30 = VERY 30 + = HARD	STIFF					
					1				I				

					B	JRIN	GL	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPN	1ENT	BORING NO.:	SLR-7	SHEET	: 1 OF 1		
2	FSL	R	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC	1			
			PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
	International C ality Drive, Chesh		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
203.27	1.1773   ww.slrco	insulting.com	DATE:	DECEMBER	13, 2023			GROUND SUI	RFACE ELEVATION: ±1	44.5'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRC	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTC	HAMME	ĒR
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	8:00 AM		±5.0'		RIG MODEL:		
HMR. W	T (LB.)	-	-	140	-						CME-55 LCX		
HMR. FA	ALL (IN.)	-	-	30	-						CIVIE-00 ECX		
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURN				ON-DESCRIPT	ION SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
				Top 3.5": ASI		04115	<i>.</i> .			0.3'	ASPHALT	144.2	
1			13	4				coarse Gravel, coarse Gravel,					1
2	S-1	20	18	,	,	,		,					
-	01	20	15 13								FILL		
3			8	S-2: Medium	dense, brown,	fine to coarse	GRAVEL, ar	nd fine to coarse	e SAND, some Silt.				
4	S-2	15	7										
			9							5.0'	G.W.T. 🔻	139.5'	
5			1	S-3: Very loos	se, brown, fine	to medium SA	AND, little fine	e Gravel.			ORGANIC SAND		1
6	S-3	6	1 2							6.0'	& SIILT	138.5'	
7			11							7.0'	SAND	137.5'	
,			15	S-4: Dense, b	prown, fine to c	coarse GRAVE	L and fine to	coarse SAND,	little Silt.	[			
8	S-4	10	22 16										
9			9										
J											SAND & GRAVEL	-	
10			7	S-5: Medium	dense, brown,	fine to coarse	SAND and fi	ine to coarse GI	RAVEL, trace Silt.				
11	S-5	10	13										
			9 5							12.0'		132.5'	
12						Bottom	of Exploration	n ±12.0'					1
13													
14													
14													
15													
16				1									
17				1									1
18				ł									
19				1									
19													
20				ł									
21				1									
22				İ									
Pomoria		sified from ours					DI ACI		SAMPLE TYPE		PROPORT	IONE	L
Remark	3. 1. JUI CIAS	sified from aug	er cuttings.		0-4 = VERY LO	TIC (SPT-N)	PLAST 0-2 = VERY S	TIC (SPT-N)	C = ROCK CORE		PROPORT trace = <10%	10145	
					4-10 = LOOSE		2-4 = SOFT		S = SPLIT SPOON		little = 10% - 20%		
					10-30 = MEDIUM 30-50 = DENSE		4-8 = MEDIUI 8-15 = STIFF	М	UP = UNDISTURBED PIST UT = UNDISTURBED THIN		some = 20% - 35% and = 35% - 50%		
					50+ = VERY DE		15-30 = VERY	STIFF					
							30 + = HARD						

			PROJECT:	PROPOSED	MULTI-FAMIL			BORING NO.:		QUEET	[: 1 OF 2		
		D								SHEEL	1. I UF 2		—
7	FSL	-K		131 DANBUR		TON, CONNE	CIICUI	CONTRACTO					
SLR	International C	orporation		141.21543.00				FOREMAN: J.					
99 Re	ality Drive, Chesh 71.1773   ww.slrco	ire, CT 06410	CLIENT:	AMS ACQUIS					R. GOWISNOCK				
			DATE:	DECEMBER					FACE ELEVATION: ±1	146.2'	TYPE OF RIG:		
	IENT:	AUGER	CASING	SAMPLER	COREBRL.		r	UNDWATER D	EPTH (FT.)		-		
YPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	DHAMME	ER
SIZE ID	. ,	2 1/4	-	1 3/8	-	2023-12-13	10:00 AM		±8.3'		RIG MODEL:		
	'T (LB.)	-	-	140	-						CME-55 LCX		
IMR. F	ALL (IN.)	-	-	30	-					1		1	—
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURN				ON-DESCRIPT	ON SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Bamark
				Top 4": ASPH						0.3'	ASPHALT	145.9	
1			4	4				oarse Gravel, tra	ace Silt. RAVEL, trace Silt.	1.0'	FILL	145.2	4
_	<b>.</b>		4 8		achae, biown,	THE TO COALSE		ne to coarse Gr					
2	S-1	14	9	1									
3			11 62	S-2: Very der	se brown fin	a to coarso CE	RAV/EL and fin	ne to coarse SA	ND trace Silt				1
4	S-2	8	50/4"	S-2. Very der	ise, biowii, iine	e lo coarse Gr		le lo coarse SA	ND, trace Sht.				
-													
5			18	S-3: Dense, b	prown, fine to c	oarse GRAVE	L and fine to	coarse SAND, I	ittle Silt.				
6	S-3	18	20 28	-									
7			26	1									
8				-							SAND & GRAVE	_	
0				1						8.3'	G.W.T. 🔽	137.9	1
9													
10			20	S-4: Verv der	nse. brown. fine	e to coarse GF	RAVEL and fir	ne to coarse SA	ND. little Silt.				
11	S-4	13	24	Í	, ,								
	0 1	10	35	-									
12			17	4									
13				1									
-										13.5'		132.7	-
14				1									
15			0	C. F. Madium	danaa Tan 40	". Drouw fine	to				SAND		
	0.5		9 9					ND, some Silt. arse GRAVEL, I	ittle Silt.	16.0'		130.2	
16	S-5	20	8	1									1
17			8	$\frac{1}{2}$									
18				1									
10				4									
19				1									1
20							10	05.115			SAND & GRAVE	-	
	_		18 23	S-6: Dense, b	prown, fine to c	oarse SAND a	and fine to co	arse GRAVEL, I	me Silt.				1
21	S-6	10	9	1									
22			10	4									
emark	s: 1 Soil clos	sified from aug	er cuttinge	1		TIC (SPT-N)		TIC (SPT-N)	SAMPLE TYPE		PROPOR		T
FIIIark	5. 1. SUI CIAS	smed from aug	er cuttings.		0-4 = VERY LOO		PLAST 0-2 = VERY S		C = ROCK CORE		PROPOR trace = <10%	10142	_
					4-10 = LOOSE		2-4 = SOFT		S = SPLIT SPOON		little = 10% - 20%		
					10-30 = MEDIUN 30-50 = DENSE		4-8 = MEDIUI 8-15 - STIEE	M	UP = UNDISTURBED PIST		some = 20% - 35%		
					30-50 = DENSE 50+ = VERY DE		8-15 = STIFF 15-30 = VERY	STIFF	UT = UNDISTURBED THIN	IWALL	and = 35% - 50%		
							30 + = HARD						

					B	ORIN	G L(	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPN	1ENT	BORING NO.:	SLR-8	SHEET	: 2 OF 2		
-	FSL	P	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
		_1 \	PROJ. NO:	141.21543.00	0001			FOREMAN: J.	DEANGELIS				
	International C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
	ality Drive, Chesh 1.1773   ww.slrco		DATE:	DECEMBER	13, 2023			GROUND SUF	RFACE ELEVATION: ±1	46.2'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	10:00 AM		±8.3'		RIG MODEL:		
HMR. W	/T (LB.)	-	-	140	-								
	ALL (IN.)	-	-	30	-						CME-55 LCX		
Depth	SAMPLE	RECOVERY	BLOWS		SOIL A	AND ROCK CI	LASSIFICATI	ON-DESCRIPT	ION	DEPTH (FT.)	STRATUM	ELEV. (FT.)	Remark
(FT)	NUMBER	(IN)	PER 6"	BURN	IISTER SYSTI	EM (SOIL) U.S	S. CORPS OF	ENGINEERS	SYSTEM (ROCK)	Ы Ш	DESCRIPTION	EL (F	Rei
				-									
24				1									
25			<u> </u>	S 7: Madium	danaa brawn	fine to coore		fina ta anaraa	GRAVEL, little Silt.		SAND & GRAVEL		
			6 10	S-7: Medium	dense, brown,	line to coarse	SAND, SOME	e line to coarse	GRAVEL, IIIIe SIII.				
26	S-7	11	16	1									
27			10			Bottom	of Exploration	±27.0'		27.0'		119.2'	
28				1			·						
				-									
29				1									
30				]									
				-									
31				1									
32				ł									
33				1									
				-									
34				ł									
35				]									
				-									
36				1									
37				ł									
38				1									
50				4									
39				ţ									
40				]									
				1									
41				1									
42				ł									
43				1									
40				4									
44	ļ			1									
45				1									
				4									
Remark	s:	1	1	1		TIC (SPT-N)		TC (SPT-N)	SAMPLE TYPE	1	PROPORT	IONS	-
I					0-4 = VERY LOO 4-10 = LOOSE	DSE	0-2 = VERY S 2-4 = SOFT	OFT	C = ROCK CORE S = SPLIT SPOON		trace = <10% little = 10% - 20%		
					4-10 = LOOSE 10-30 = MEDIUN	M DENSE	2-4 = SOFT 4-8 = MEDIUM	И	S = SPLIT SPOON UP = UNDISTURBED PIST	ON	some = 20% - 35%		
					30-50 = DENSE		8-15 = STIFF	07155	UT = UNDISTURBED THIN	WALL	and = 35% - 50%		
					50+ = VERY DE	NSE	15-30 = VERY 30 + = HARD	STIFF					

					B	ORIN	GL	JG					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO.:	SLR-9	SHEET	: 1 OF 1		
1	FSL	P	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	CTICUT	CONTRACTO	R: SITE, LLC				
			PROJ. NO:	141.21543.00	001			FOREMAN: J.	DEANGELIS				
	International C	•	CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR: R. GOWISNOCK					
99 Re 203.2	ality Drive, Chesh 71.1773   ww.slrcc	nire, CT 06410 onsulting.com	DATE:	DECEMBER	13, 2023			GROUND SUF	FACE ELEVATION: ±1	47.5'			
EQUIPN	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
TYPE		HSA	-	SS	-	DATE	TIME		WATER DEPTH		TRACK W/ AUTC	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	12:00 PM		±8.8'		RIG MODEL:		
HMR. W	/T (LB.)	-	-	140	-								
HMR. F	ALL (IN.)	-	-	30	-						CME-55 LCX		
Depth	SAMPLE	RECOVERY	BLOWS		SOIL A	AND ROCK CI	ASSIFICATI	ON-DESCRIPT	ION	H 😳	STRATUM	2.0	ark
(FT)	NUMBER	(IN)	PER 6"	BURN	ISTER SYST	EM (SOIL) U.S	. CORPS OF	ENGINEERS	SYSTEM (ROCK)	DEPTH (FT.)	DESCRIPTION	ELEV. (FT.)	Remark
			1	S-1: Loose, d	ark brown, fine	e to medium S	AND, some S	ilt, trace Organi	c Matter.			1	
1	S-1	15	2								TOPSOIL		
			2	-							TOPSOIL		
2			3		-				e Organic Matter.	2.5'		145.0'	
3	S-2	14	3					, trace Organic rse GRAVEL, tra		3.5'	SUBSOIL	144.0'	
4			20	Douoin 2 : Di						5.5		144.0	1
4				I									
5			121	S-3: Dense, b	orown, fine to c	coarse SAND a	and fine to coa	arse GRAVEL, I	ittle Silt.				
6	S-3	16	18										
	00	10	24 22										
7			22	S-4: Very der	ise, brown, fine	e to coarse SA	ND and fine t	o coarse GRAV	'EL, trace Silt.				
8	S-4	14	24	1							SAND & GRAVEL	-	
			31 27							8.8'	G.W.T. 🔻	138 7'	
9			21	1						0.0		100.7	
10			34	S. E. Von don	oo brown fin	a ta agaraa SA	ND and find t						
	S-5	15	 59	S-5. Very der	ise, diown, init	e lo coarse SA	IND and line i	o coarse GRAV	EL, intie Sin.				
11			50/4"							11.3'		136.2'	
12				ł		Bottom of	of Exploration	±11.3'					
13				1									
10				-									
14				ł									
15				]									
				-									
16		Ì		1									
17				ł									
40				1									
18				Ī									
19				ł									
20				1									
				4									
21				ţ									
22				]									
				4									
Remark	s:	<u>.                                    </u>	1		NON-PLAS	TIC (SPT-N)	PLAST	IC (SPT-N)	SAMPLE TYPE		PROPORT	IONS	1
					0-4 = VERY LOO 4-10 = LOOSE	DSE	0-2 = VERY S 2-4 = SOFT	OFT	C = ROCK CORE S = SPLIT SPOON		trace = <10% little = 10% - 20%		
					4-10 = LOOSE 10-30 = MEDIUN	M DENSE	2-4 = SOFT 4-8 = MEDIUN	Λ	UP = UNDISTURBED PIST	ON	some = 20% - 35%		
					30-50 = DENSE		8-15 = STIFF		UT = UNDISTURBED THIN	WALL	and = 35% - 50%		
					50+ = VERY DE	NSE	15-30 = VERY 30 + = HARD	STIFF					
					1				8		1		

					BC	ORIN	G LC	)G					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPN	IENT	BORING NO.:	SLR-10	SHEET	T: 1 OF 2		-
1	<b>SI</b>	P	LOCATION:	131 DANBURY ROAD, WILTON, CONNECTICUT CONTRACTOR: SITE, LLC									
		_1\	PROJ. NO:	141.21543.00	001			FOREMAN: J.	DEANGELIS				
	International C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
99 Rea 203.27	ality Drive, Chesh 1.1773   ww.slrcc	ire, CT 06410 nsulting.com	DATE:	DECEMBER				GROUND SUF	FACE ELEVATION: ±1	148 0'			
EQUIPM	ENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D	EPTH (FT.)		TYPE OF RIG:		
ТҮРЕ		HSA	_	SS	_	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	ER
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	1:30 PM		±9.0'		RIG MODEL:		
HMR. W	T (LB.)	-	-	140	-						-		
HMR. FA	ALL (IN.)	-	-	30	-						CME-55 LCX		
		DEGOVERY			SOIL A	ND ROCK CL	ASSIFICATI	ON-DESCRIPT	ION	Ξa			¥
Depth (FT)	SAMPLE NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM					SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
			1						Silt, trace Organic	0.5'	TOPSOIL		
1	S-1	15	11	Matter, trace				,					1
'	0-1	15	14	Bottom 9": Bro	own, fine to co	arse SAND ar	nd fine to coa	rse GRAVEL, lit	tle Silt.				1
2			17 29	S-2: Dense. h	rown, fine to a	oarse SAND a	and fine to co	arse GRAVEL, 1	race Silt.				
3	S-2	14	23		,								
J	0-2	14	23										
4			30	+									
5				1									
Ŭ			15	S-3: Dense, b	rown, fine to c	oarse SAND a	and fine to co	arse GRAVEL, 1	race Silt.				
6	6 S-3 16 <u>17</u> 19												
7			20	1									
				-									
8				ł									
9				1						9.0'	G.W.T. 🔽	139.0'	
Ŭ				-									
10			12	S-4: Medium	dense, brown,	fine to coarse	GRAVEL an	d fine to coarse	SAND, little Silt.				
11	S-4	16	17										
	0		15 14								SAND & GRAVEL		
12			14	ł							SAND & GRAVEL	•	
13				1									
-				4									
14				ţ									
15							o						
			10 10	୪-5: Medium	dense, brown,	tine to coarse	SAND, some	e fine to coarse	Gravel, little Silt.				
16	S-5	24	7	1									
17			5	]									
				4									
18				İ									
19				]									
				1									
20			10	S-6: Medium	dense, brown,	fine to coarse	SAND and fi	ne to coarse GF	RAVEL, trace Silt.				
21	S-6	15	16	4									1
			13 5	4									1
22				1									1
Remarks					NON DLAC		DIACT		SAMPLE TYPE		PROPORT		
vernark:	3.				NON-PLAS	TIC (SPT-N) DSE	PLAST 0-2 = VERY S	IC (SPT-N) OFT	C = ROCK CORE		PROPORT trace = <10%	10145	
					4-10 = LOOSE		2-4 = SOFT		S = SPLIT SPOON		little = 10% - 20%		
					10-30 = MEDIUN		4-8 = MEDIUN	n			some = 20% - 35%		
					30-50 = DENSE 50+ = VERY DE		8-15 = STIFF 15-30 = VERY	STIFF	UT = UNDISTURBED THIN	VALL	and = 35% - 50%		
							30 + = HARD						

					BC	ORIN	G LC	)G					
			PROJECT:	PROPOSED	MULTI-FAMIL	Y DEVELOPM	IENT	BORING NO.:	SLR-10	SHEET	: 2 OF 2		
2	<b>SI</b>	P	LOCATION:	131 DANBUR	Y ROAD, WIL	TON, CONNE	ECTICUT	CONTRACTO	R: SITE, LLC				
1			PROJ. NO:	141.21543.00	001			FOREMAN: J.	DEANGELIS				
	nternational C		CLIENT:	AMS ACQUIS	SITIONS			INSPECTOR:	R. GOWISNOCK				
	lity Drive, Cheshi 1.1773   ww.slrco		DATE:	DECEMBER					RFACE ELEVATION: ±	148.0'			
EQUIPM	IENT:	AUGER	CASING	SAMPLER	COREBRL.		GRO	UNDWATER D			TYPE OF RIG:		
ГҮРЕ		HSA	-	SS	_	DATE	TIME		WATER DEPTH		TRACK W/ AUTO	HAMME	R
SIZE ID	(IN.)	2 1/4	-	1 3/8	-	2023-12-13	1:30 PM		±9.0'		RIG MODEL:		
HMR. W		-	-	140	-								
HMR. FA	ALL (IN.)	-	-	30	-						CME-55 LCX		
	SAMPLE	RECOVERY	BL OWS		SOIL A	ND ROCK CI		ON-DESCRIPT	ION	Ξ	STRATUM	30	¥
Depth (FT)	NUMBER	RECOVERY (IN)	BLOWS PER 6"	BURM	ISTER SYSTE	EM (SOIL) U.S	S. CORPS OF	ENGINEERS	SYSTEM (ROCK)	DEPTH (FT.)	STRATUM DESCRIPTION	ELEV. (FT.)	Remark
24				-									
25				1									
23			2	S-7: Loose, b	rown, fine to c	oarse SAND,	little fine to co	arse Gravel, litt	le Silt.				
26	S-7	15	4 5	1									
27			10	1									
											SAND & GRAVEL		
28													
29				$\frac{1}{4}$									
30				1									
30			4	S-8: Medium	dense, brown,	fine to coarse	e SAND, little f	fine to coarse G	ravel, little Silt.				
31	S-8	14	6 7	1									
32			6							32.0'		116.0'	ļ
				-		Bottom	of Exploration	±32.0'					
33				1									
34				4									
35				1									
55				-									
36				1									
37				1									
				1									
38				1									
39				4									
40				1									
70				4									
41				ţ									
42				]									
,-				1									
43				1									
44				$\frac{1}{2}$									
45				1									
40				]									
emark	s:			<u> </u>	NON-PLAS	TIC (SPT-N)	PLAST	IC (SPT-N)	SAMPLE TYPE	:	PROPORT	IONS	L
					0-4 = VERY LOO		0-2 = VERY S		C = ROCK CORE		trace = <10%		
					4-10 = LOOSE 10-30 = MEDIUN	I DENSE	2-4 = SOFT 4-8 = MEDIUM	4	S = SPLIT SPOON UP = UNDISTURBED PIST	ΓΟΝ	little = 10% - 20% some = 20% - 35%		
							I						
					30-50 = DENSE		8-15 = STIFF		UT = UNDISTURBED THIN	WALL	and = 35% - 50%		

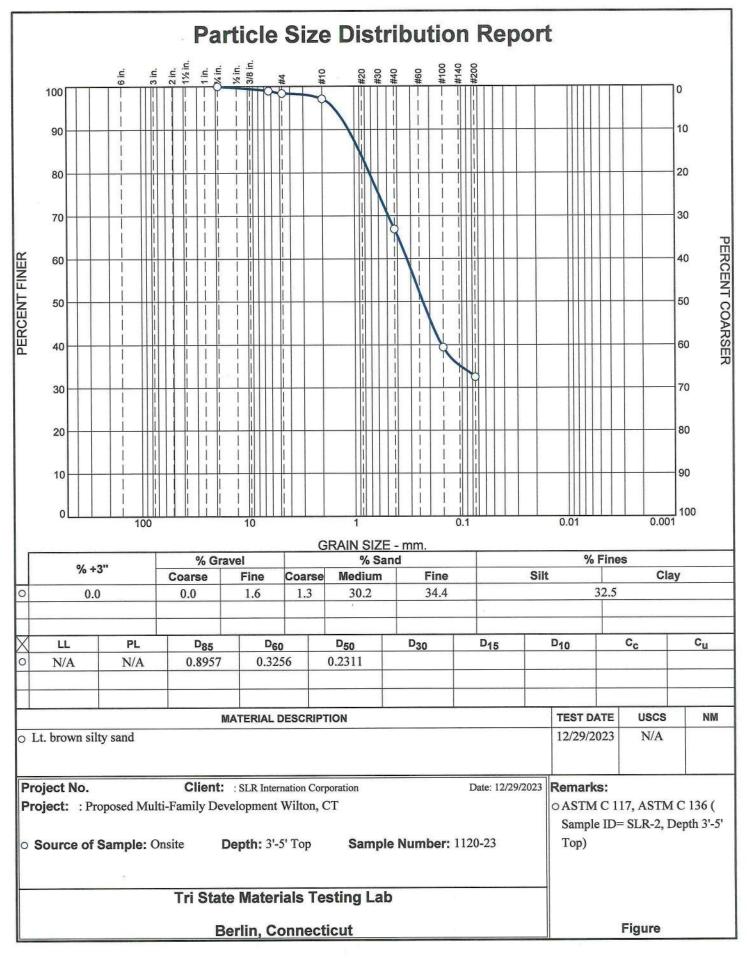
# ₩SLR

## **BURMISTER SOIL CLASSIFICATION SYSTEM**

		A. CLASSIFICATION OF SOI	L COMPONENTS		B. INDENTIF
PRINCIPAL COMPONENT	DESCRIPTIVE PARTICLE SIZE	SMALLEST DIAMETER OF ROLLED THREAD (IN.)	SIEVE SIZE	OVERALL PLASTICITY AND PLASTICITY INDEX	DESCRIPTION OF SO COMPONENTS
GRAVEL	Coarse		3/4" to 3"		
	Fine		No. 4 to 3/4"		PRINCIPAL COMPON
	Coarse		No. 10 to No. 4		GRAVEL, SAND, SIL
SAND	Medium		No. 40 to No. 10		CLAY, etc.
	Fine		No. 200 to No. 40		
				N. D. J	MINOR COMPONEN
SILT			Passing No. 200	Non-Plastic 0	and
				U	fine to coarse
				Slight	SAND, and GRAVE
Clayey Silt		1/4	Passing No. 200	1 to 5	etc.
		1/0		Low	some
SILT and CLAY		1/8	Passing No. 200	5 to 10	some Gravel, some
					etc.
CLAY and SILT		1/16	Passing No. 200	Medium	
		1,10	1 435116 100 200	10 to 20	little
				1.1.1	little Gravel, little S
Silty Clay		1/32	Passing No. 200	High 20 to 40	etc.
				20 (0 40	trace
				Very High	trace Gravel, trace S
CLAY		1/64	Passing No. 200	40 and greater	etc.
PEAT	F	Partially decomposed fibrous	- organic matter without li	iving fibers	

B. INDENTIFICATION	OF DESCRIPTION TERMS
DESCRIPTION OF SOIL COMPONENTS	PERCENTAGE OF SAMPLE BY WEIGHT
PRINCIPAL COMPONENT	
GRAVEL, SAND, SILT CLAY, etc.	50 or more
MINOR COMPONENTS	
and fine to coarse SAND, and GRAVEL, etc.	35 to 50
<b>some</b> some Gravel, some Silt, etc.	20 to 35
<b>little</b> little Gravel, little Silt, etc.	10 to 20
<b>trace</b> trace Gravel, trace Silt, etc.	1 to 10

	DEFINING PROPORTIONS	C. DEFINITION OF TERMS IDENTIFYING THE GRAD
Standard Pene		
(N value)	all fractions greater than 10 percent	fine to coarse
4	less than 10 percent fine	medium to coarse
30	less than 10 percent coarse	fine to medium
	less than 10 percent coarse and fine	medium
Standard Pene (N value)	less than 10 percent coarse and medium	fine


D. DENSITY OR CONSISTENCY				
GRANULAR SOILS				
Standard Penetration Resistance (N value) blows/foot	Relative Density			
0 - 4 4 - 10 10 - 30 30 - 50 50+	Very loose Loose Medium dense Dense Very dense			
PLAS	TIC SOILS			
Standard Penetration Resistance (N value) Blows/foot	Consistency			
0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 30+	Very soft Soft Medium Stiff Very stiff Hard			

E. GLOSSARY OF MISCELLANEOUS TERMS						
PLUS (+) NEARER THE UPPER LIMIT OF THE PROPORTION OR OVERALL PLASTICITY	ORGAINIC MATTER (EXCLUDING PEAT):					
MINUS (-) NEARER THE LOWER LIMIT OF THE PROPORTION OR OVERALL PLASTICITY	TOPSOIL - SURFICIAL SOILS THAT SUPPORT PLANT LIFE AND WHICH CONTAIN CONSIDERABLE					
NO SIGN - MIDDLE RANGE OF THE PROPORTION OR OVERALL PLASTICITY	AMOUNTS OF ORGANIC MATTER					
COBBLES - ROUNDED PIECES OR ROCK BETWEEN 3 TO 6 INCHES	DECOMPOSED VEGETATION - PARTIALLY DECOMPOSED ORGANIC MATTER WHICH RETAINS					
BOULDERS - ROUNDED PIECES OF ROCK LARGER THAN 6 INCHES	ITS ORIGIANAL CHARACTER;					
ROCK FRAGMENTS - ANGULAR PIECES OF ROCK WHICH HAVE SEPARATED	LIGNITE - IMMATURE COALS WITH LOW FIXED CARBON CONTENT GENERALLY EXHIBITING					
FROM PARENT ROCK AND ARE PRESENT IN A SOIL MATRIX	DISTINCT TEXTURE OF WOOD;					
QUARTZ - A HARD SILICA MINERAL OFTEN FOUND IN SOME GLACIAL LAYERS	HUMUS - COMPLETELY DECOMPOSED ORGANICMATTER					
<b>IRONITE</b> - CEMENTED DEPOSITS OF IRON OXIDE WITHIN A SOIL LAYER	FILL - MAN MADE DEPOSIT CONTAINING SOIL, ROCK OR FOREIGN MATTER					
CEMENTED SAND - VARIOUS SIZED AND GRAINS CEMENTED BY CALCIUM	PROBABLE FILL - SOILS WHICH CONTAIN NO VISUALLY DETECTABLE FOREIGN MATTER BUT					
CARBONATE OR OTHER MINERALS WITHIN THE SOIL DEPOSIT	WHICH ARE SUSPECT WITH RESPECT TO ORIGIN					
VARVED DEPOSITS - ALTERNATING LIGHT AND DARK LAYERS OF COHESIVE	LENSES - LAYER LESS THAN 1/2 INCH LAYERS - 1/2 TO 12 INCH THICK LAYER					
CLAYS AND SILTS DEPOSITED AS GLACIAL LAKE SEDIMENTATION	POCKET - DISCONTINUOUS LAYERS LESS THAN 12 INCHES					
FISSURED CLAYS - COHESIVE SOILS AND EXHIBITING A JOINT STRUCTURE,	STRATUM - CONTINUOUS LAYERS GREATER THAN 12 INCHES					
GENERALLY SLIGHTLY TO HIGHLY OVER CONSOLIDATED	COLOR SHADING - LIGHT OR DARK TO INIDCATE SUBSTANTIAL DIFFERENCE IN COLOR					
	MOISTURE CONDITIONS - WET, MOIST, OR DRY PER VISUAL OBSERVATION					

### APPENDIX 3 LABORATORY TEST RESULTS

			(	GRAIN SI	ZE DISTRII	BUTION	TEST	DATA			1	2/29/20
ent: : SLR	Internation	n Corporat	ion			Date: 12/29/2023						
			Developme	ent Wilton	n, CT							
cation: On	site											
pth: 3'-5' 1	Top	-	9 100 - 10			Sample	Num	<b>ber:</b> 11	120-23			
aterial Des	-	t. brown s	ilty sand									
uid Limit:						Plastic I						
CS Classifi		4				AASHTO	O Clas	sificat	ion: N/A			
Test Date: 12/29/2023 Testing Remarks: ASTM C 117, ASTM C 136 (Sample ID= SLR-2, Depth 3'-5' Top)												
server an an and a server of the		M C 117, A	ASTM C 13	66 (Samp					p)			
ested by: SC est Date: 12/29/2023 Technician: SC					Checke	a by:	IC					
			M C 136 (	Sample I	D=SIR	Denth	3'_5'	Top)				
SUTEINAINS	ASTNC	117, AS1	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	And the owner of the owner of the owner of the owner of the owner of the owner of the owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner owner	st Data (A	And in case of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loc	ATTACK AND A	Conception of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loca	1. Stateste		And the state	A MERICA
st #200 Was	sh Test Wei	ghts (grams	s): Dry Spec	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	the second second second second second second second second second second second second second second second s	31 WI CI	1/ 0	CTOOL				
56 #200 114		Birto (Branns	Tare Wt.		c - 177.10							
nus #200 fr	om wash =	32.3%										
acimon Woi	ialata											
e <mark>cimen We</mark> i ry specimer		) = 262.00										
are (gms.) =		, 202.00										
mulative pa	n tare (gms											
<b>C</b> :		Cumulati										
Sieve Opening		Weight Retained		Percer	.+	Perce	nt					
Size	5	(grams)		Passing Retained								
3/4"		0.00		100.0	5							
1/4"		2.70		99.0								
#4		4.20		98.4		1.6						
#10 #40		7.50 86.60		97.1 66.9		2.9 33.1						
#100		158.70		39.4		60.6						
#200		176.80		32.5		67.5						
'an + tare = 0 <b>tal loss (wa</b> :			sieving = 0.2	%								
tui 1055 (114	on party ope							and the second second second second second second second second second second second second second second secon				
					Res	sults		Station St.				
Cobbles		Gravel			1	Sanc		1			Fines	
	Coarse	Fine	Total	Coar		dium	Fine		Total	Silt	Clay	Total
0.0	0.0	1.6	1.6	1.3	3 30	0.2	34.4		65.9			32.5
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀		D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1546	0.231	1 (	).3256	0.7255	0.8957	1.1344	1.5511
—— Finen	ess Modulu 1.41	s										

_____ Tri State Materials Testing Lab



Checked By: IC



### TRI STATE MATERIALS TESTING LAB LLC. <u>New England Regional Office</u>

60 Woodlawn Road, Berlin CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	<b>Report:</b>	001
	99 Realty Drive	-	
	Cheshire, CT 06410		
<b>Project:</b>	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023
<b>Contractor:</b>	N/A	LAB #:	1120-23
Technician:	IC		

### LABORATORY PERMEABILITY TEST

Sample Description: Lt. brown silty sand

Source: Onsite

Sample ID: SLR-2

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	$1000 \text{ cm}^{3}$
L = length of the sample in centimeters	$\Gamma =$	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	10800 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000245522 \text{ cm/sec} = 2.5 \times 10^{-4} \text{ cm/sec or } 0.8 \text{ inch/hour}$ 

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others.

### TSMT www.tristate-testing.com



## TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	001-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	001-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
<b>Contractor:</b>	SLR International Corporation	Sample #	1120-23
Technician:	I.C	Sample ID	SLR-2

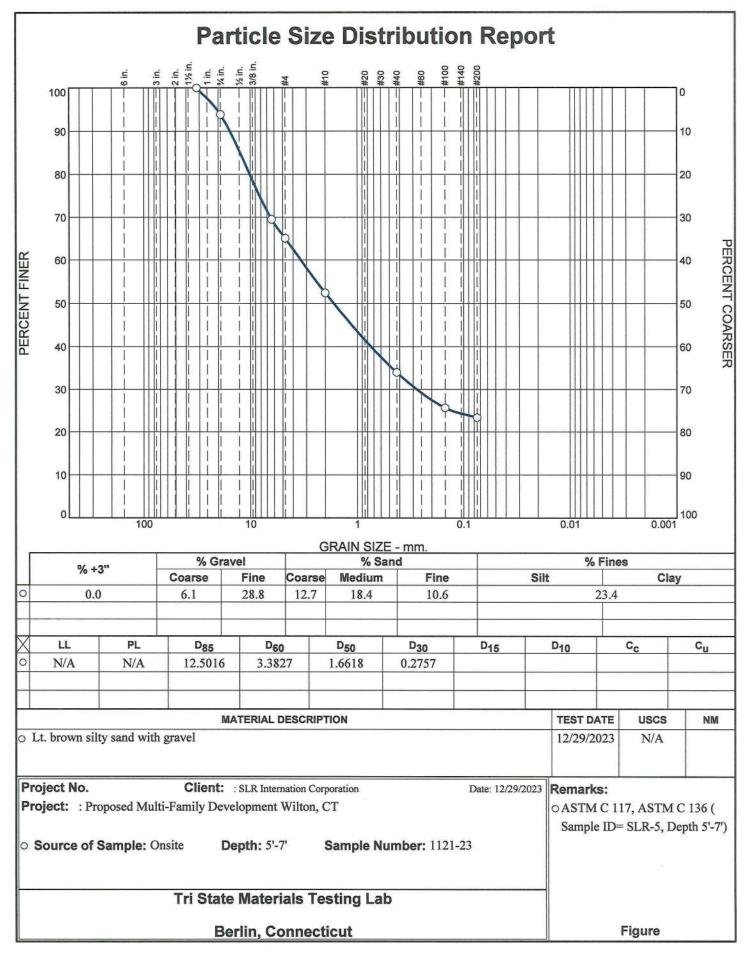
### SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1120-23	Lt. brown silty sand	0.005451389 [ft3]	0.57611 lbs.	106.0 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

### GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

<b>ation:</b> On <b>pth:</b> 5'-7'	site					Sample N	lumber: 1	21-23			
aterial Des	cription: L	t. brown si	lty sand v	vith grave	1						
uid Limit:						Plastic Li		NT/A			
JSCS Classification: N/A Test Date: 12/29/2023					AASHIO	Classificat	ion: N/A				
	arks: ASTN	M C 117, A	STM C 1	36 ( Sam	ole ID= SI	R-5, Dep	oth 5'-7')				
sted by: S						Checked					
st Date: 12		Technic									
st remarks	ASTM C	117, AST	M C 136		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	and the second second second	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
* #200 \Wa	ch Tost Wei	ahte (arome	h Dry Spo		st Data (A	STM C11	7 & C136)		Statistics of		
st #200 vva	sh Test Wei	gnts (grams	Tare Wt		e = 320.60						
			1.41.42.414								
nus #200 fr	om wash = 2	23.2%									
ecimen We	ights										
	n+tare (gms.	) = 417.40									
are (gms.) =	0.00										
mulative pa	n tare (gms	.) = 0.00									
		Cumulativ	/e								
Sieve	-	Weight		Dorcor		Dorcon					
Opening Size	5	Retained (grams)	I	Percent Percent Passing Retained							
1 1/4"		0.00		100.0	0	0.0	-				
3/4"		25.60		93.9		6.1					
1/4" #4		127.20 145.60		69.5 65.1		30.5 34.9					
#4		143.60		52.4		47.6					
#40		275.60		34.0		66.0					
#100		310.10		25.7		74.3					
#200	- 0 1	319.70	laulas – 0	23.4		76.6					
	Tare = 0 l sh+pan/spe			2%							
	arri harri oh a		.270								
					Res	sults					
Cobbles		Gravel				Sand			ett.	Fines	
0.0	Coarse	Fine	Total			dium	Fine	Total	Silt	Clay	Total
0.0	6.1	28.8	34.9	12.	7   18	8.4	10.6	41.7			23.4
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2757	0.7428	1.6618	3.3827	10.1656	12.5016	15.5889	20.4709
]											



Checked By: IC



## TRI STATE MATERIALS TESTING LAB LLC. New England Regional Office

60 Woodlawn Road, Berlin CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

-State materials lesung			
Client:	SLR International Corporation	<b>Report:</b>	002
	99 Realty Drive	-	
	Cheshire, CT 06410		
<b>Project:</b>	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023
<b>Contractor:</b>	N/A	LAB #:	1121-23
<b>Technician:</b>	IC		

### LABORATORY PERMEABILITY TEST

Sample Description: Lt. brown silty sand with gravel

Source: Onsite

Sample ID: SLR-5

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	$1000 \text{ cm}^3$
L = length of the sample in centimeters	L =	6.985 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	5100 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000714901 \text{ cm/sec} = 7.1 \times 10^{-4} \text{ or } 2.5 \text{ inch/hour}$ 

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others.

### TSMT www.tristate-testing.com



## TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	02-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	002-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
<b>Contractor:</b>	SLR International Corporation	Sample#:	1121-23
Technician:	I.C	Sample ID	SLR-5

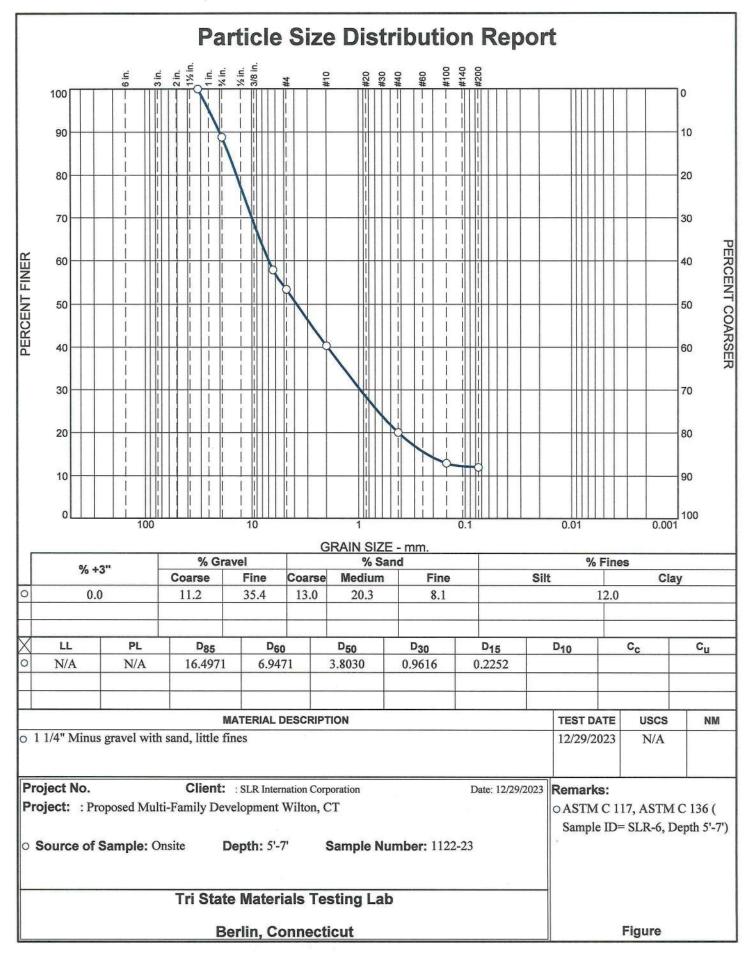
### SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1121-23	Lt. brown silty sand with gravel	0.007494213 [ft3]	0.92020948 lbs.	122.7 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

### GRAIN SIZE DISTRIBUTION TEST DATA

terial Des uid Limit: CS Classifio	N/A		us gravel v	with sand,		Plastic Lir	nit: N/A Classificat	ion: N/A			
t Date: 12		/ <b>x</b>					classificat	1011.11771			
		M C 117, .	ASTM C 1	36 ( Samj							
sted by: SO at Date: 12		Technic	cian: SC			Checked	by: IC				
			ГМ С 136 (	Sample	D= SLR-6	. Depth 5	'-7')				
					st Data (A	a later in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
t <b>#200</b> Was	sh Test We	ights (gram	s): Dry Spe	and the second second second second							
			Tare Wt	. = 0.00							
nus #200 fro	om wash =	11.9%									
cimen Wei		1 - 207 60									
y specimen re (gms.) =		.) = 297.00									
nulative pa	n tare (gm	5.) = 0.00									
		Cumulat									
Sieve		Weigh		120		1201 12					
Opening		Retaine		Percer		Percent					
Size		(grams		Passin	g	Retained	d				
1 1/4" 3/4"		0.00		100.0 88.8		0.0 11.2					
1/4"		125.20		57.9		42.1					
#4		138.60	)	53.4		46.6					
#10		177.50		40.4		59.6					
#40		237.80		20.1		79.9					
#100 #200		259.00 261.80		13.0 12.0		87.0 88.0					
	Tare = 0		sieving = 0.3			88.0					
		ecimen) = 1									
				and the second second			And the second				
					Res	ults		Service and			
		Gravel				Sand				Fines	
Cabblac	Coarse	Fine	Total	Coar	se Med	lium	Fine	Total	Silt	Clay	Total
Cobbles	11.2	35.4	46.6	13.	0 20	.3	8.1	41.4			12.0
Cobbles		D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0	D10	10	20	0.9616	1.9502	3.8030	6.9471	13.8803	16.4971	20.0000	25.0607
	D ₁₀	0.2252	0.4210			2 2020	60/71	12 0002	1 16 4071	1 20 0000	1 25 0607

_____ Tri State Materials Testing Lab



Checked By: IC

TSMT Tri-State Materials Testing	TRI STATE MATERIALS TESTING I <u>New England Regional Office</u> 60 Woodlawn Road, Berlin CT 06037 • Tel: 203-94		)3-949-7735	
Client:	SLR International Corporation	<b>Report:</b>	003	
	99 Realty Drive			
	Cheshire, CT 06410			
<b>Project:</b>	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023	
Contractor:	N/A	LAB #:	1122-23	
Technician:	IC			

### LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with sand, little fines

Source: Onsite

Sample ID: SLR-6

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	$1000 \text{ cm}^3$
L = length of the sample in centimeters	$\Gamma =$	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	900 sec
h = difference in head manometers,	h =	60 cm

K = 0.00294626 cm/sec =  $2.9 \times 10^{-3}$  or 10.6 inch/hour

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others



## TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	03-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	003-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
<b>Contractor:</b>	SLR International Corporation	Sample #:	1122-23
Technician:	I.C	Sample ID	SLR-6

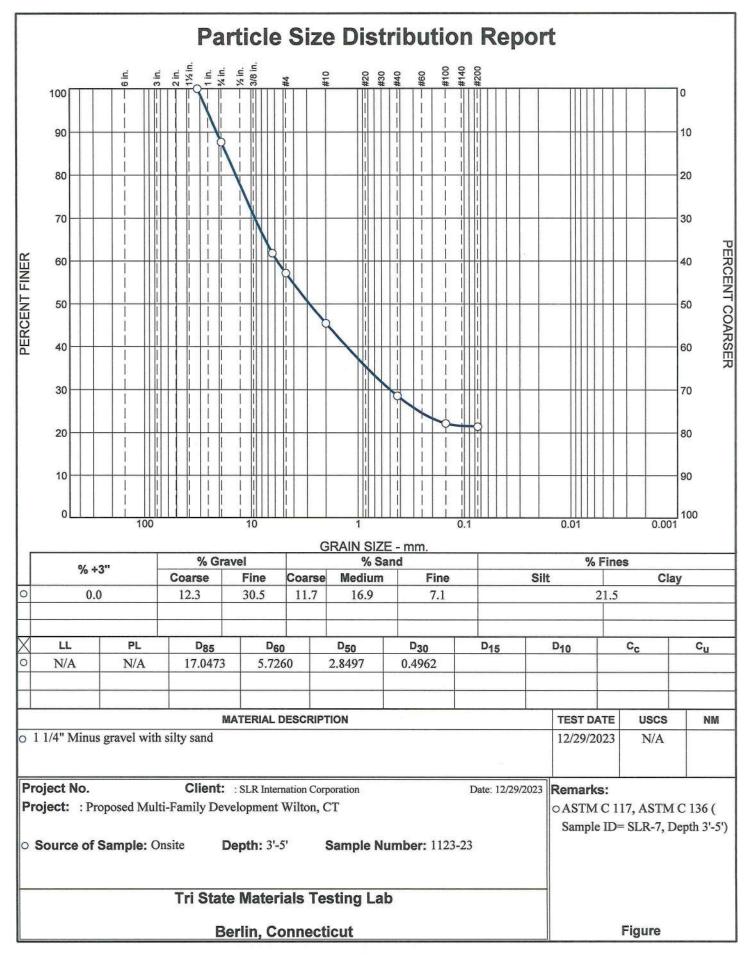
### SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1122-23	1 ¼" Minus gravel with sand, little fines	0.005451389 [ft3]	0.65609569 lbs.	120.3 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

#### GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

												_	,,
ient: : SLR Internati	on Cornorat	tion			1	Date: 12	1/20	9/2023					
oject: : Proposed M			ent Wilto	n CT		Date: 12		14045					
cation: Onsite	uni-i anniy	Developii		n, 01									
epth: 3'-5'						Sample Number: 1123-23							
Material Description: 1 1/4" Minus gravel with silty sand													
2	1 1/4 191111	us graver	with sitty s	sanu		Plastic L	Incl	te NI/A					
quid Limit: N/A	1.4									NT/A			
SCS Classification: N					ŀ	AASHTO		assirica	ατιοι	1: N/A			
est Date: 12/29/2023			26/0	1 10	OL	D 7 D	.1	21 51					
esting Remarks: AS	IM C 117, A	ASIMC	136 (Samj			100	-	25.1					
ested by: SC					C	Checked	i by	y: IC					
est Date: 12/29/2023													
est remarks: ASTM	C 117, AST	M C 136			State of the local division in the	Charles and the second second							
			Sieve Te			STM C11	178	& C136	5)		All Antes		
ost #200 Wash Test W	eights (grams		cimen+Tar t. = 0.00	e = 239	9.20								
inus #200 from wash	= 21.2%												
ecimen Weights	- 1 000 50												
Ory specimen+tare (gm	s.) = 303.50												
are (gms.) = 0.00													
umulative pan tare (gn	ns.) = 0.00												
	Cumulati	ve											
Sieve	Weight	t											
Opening	Retaine	d	Percer										
Size	(grams)	)	Passin	Passing Retained									
1 1/4"	0.00		100.0	100.0 0.0									
3/4"	37.40		87.7		12.3								
1/4"	115.80		61.8		38.2								
#4 #10	129.90 165.50		57.2 45.5			42.8 54.5							
#40	216.60		28.6			71.4							
#100	236.00		22.2			77.8							
#200	238.30		21.5			78.5							
Pan + tare = 0 Tare = 0	Loss during		.3%										
otal loss (wash+pan/sp	ecimen) = 2	1.2%											
				Print B	Dere	allan	1	14 C 14	12				
		and the second state of the		State of the second	Resu	unts	1000				No. Contraction		The American
	Gravel					Sand		11				Fines	
Cobbles Coarse	Fine	Total	Coar	se	Medi			ne	Т	otal	Silt	Clay	Total
					111121010-22-04						Jint	City	
0.0 12.3	30.5	42.8	11.	/	16.	.9	1	.1	3	5.7			21.5
D ₅ D ₁₀	D ₁₅	D ₂₀	D ₃₀	D4(	0	D ₅₀		D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.4962	1.26	95	2.8497	,	5.726	0	13.9139	17.0473	20,9925	25.8227
Fineness Modul 4.18	us		0.4962	1.26	95	2.8497	'	5.726	0	13.9139	17.0473	20.9925	25.8227
			T	te Me	otoria	ale Tee	tin	alah					



Checked By: IC

TSMT Tri-State Materials Testing	TRI STATE MATERIALS TESTING I <u>New England Regional Office</u> 60 Woodlawn Road, Berlin CT 06037 • Tel: 203-94		)3-949-7735	
Client:	SLR International Corporation 99 Realty Drive	Report:	004	
	Cheshire, CT 06410			
<b>Project:</b>	Proposed Multi-Family Development Wilton, CT	Date:	12-29-2023	
<b>Contractor:</b>	N/A	LAB #:	1123-23	
Technician:	IC			

### LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with silty sand

Source: Onsite

Sample ID: SLR-7

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	$1000 \text{ cm}^3$
L = length of the sample in centimeters	L =	5.08 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	4500 sec
h = difference in head manometers,	h =	60 cm

 $K = 0.000589252 \text{ cm/sec} = 5.8 \text{ x}10^{-4} \text{ or } 2.1 \text{ inch/hour}$ 

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others



# TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	04-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	004-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
<b>Contractor:</b>	SLR International Corporation	Sample #:	1123-23
Technician:	I.C	Sample ID	SLR-7

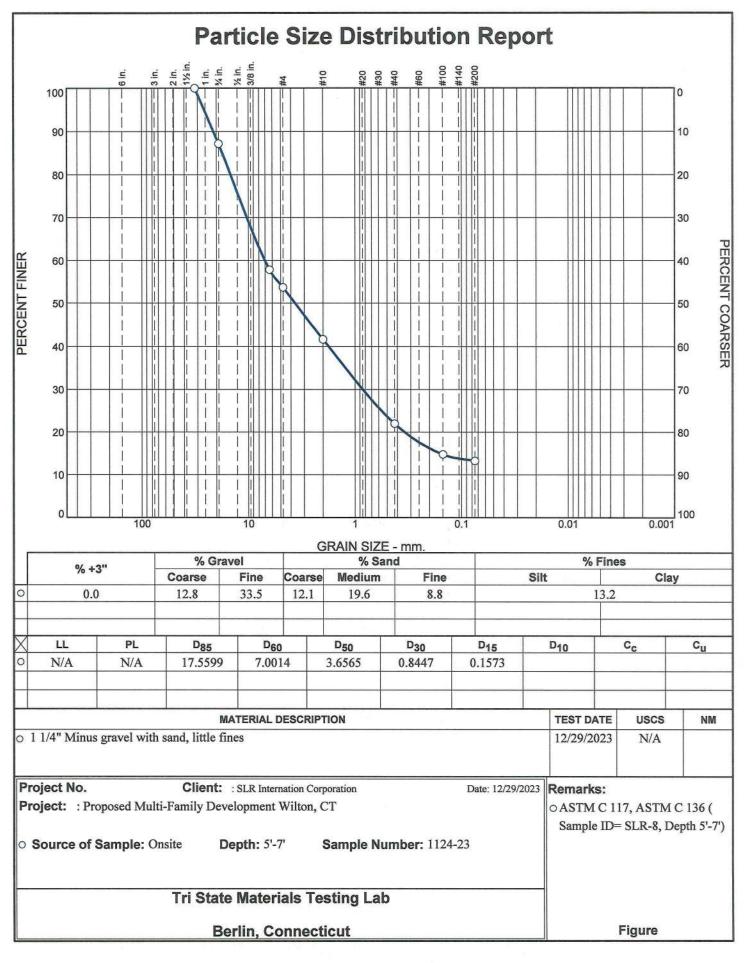
## SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume of	Mass of Soil	Density
		measure		
1123-23	1 ¼" Minus gravel with silty sand	0.005451389 [ft3]	0.66844158 lbs.	122.6 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.


Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

### GRAIN SIZE DISTRIBUTION TEST DATA

12/29/2023

uid Limit: ]	N/A		us gravel v	vith sand,	little fines	Plastic Lin	nit: N/A				
CS Classific		A				AASHTO (	Classificati	on: N/A			
st Date: 12 sting Rema	한 같은 것 같은 것은 것 같은 것이 같은 것 같은 것	M C 117	ASTM C 1	36 ( Samr	le ID= SI	R-8 Dent	h 5'-7')				
sted by: SC		M C 117,1	ISTIN C I	50 ( Sump		Checked b					
st Date: 12		Technic	cian: SC								
st remarks		2117, AST	TM C 136	(Sample I	D= SLR-	8, Depth 5	-7')				
						STM C117	the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in the local division in	A Standard Sta			a Maria
st #200 Was	h Test Wei	ights (gram	s): Dry Spe	cimen+Tare	e = 355.80						
			Tare Wt	= 0.00							
nus #200 fro	m wach -	12 10/									
nus #200 inc	nn wasn =	15.170									
ecimen Wei	ghts										
ry specimen	+tare (gms	.) = 409.40									
are (gms.) =	0.00										
mulativo na	a taro lama	-0.00									
mulative pai	i tare (gins										
Sieve		Cumulati Weight									
Opening		Retaine		Percen	t	Percent					
Size		(grams		Passing		Retained					
1 1/4"		0.00	22	100.0		0.0					
3/4"		52.60		87.2		12.8					
1/4"		172.40		57.9		42.1					
#4 #10		189.50 238.90		53.7 41.6		46.3 58.4					
#40		319.30		22.0		78.0					
#100		348.90		14.8		85.2					
#200 an + tare = 0	Taxe = 0	355.20		13.2		86.8					
tal loss (was				170							
	n pantop										
		1			Re	sults				The strategy	
1		Creat				Cand				Fines	
Cobbles	Castra	Gravel		Caar	No.	Sand	Tino	Total	Silt		Total
	Coarse	Fine	Total				Fine		Silt	Clay	
0.0	12.8	33.5	46.3	12.		9.6	8.8	40.5			13.2
		D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
D ₅	D ₁₀		20	-30	-40	-50	-60	-80	- 85	-90	-95



Checked By: IC



### LABORATORY PERMEABILITY TEST

Sample Description: 1 1/4" Minus gravel with sand, little fines

Source: Onsite

Sample ID: SLR-8

Method: ASTM D2434 (Constant Head)

k = QL/Ath

Where k = Coefficient of permeability

Q = quantity of water discharged,	Q =	$1000 \text{ cm}^3$
L = length of the sample in centimeters	L =	6.985 cm
A = cross-sectional area of the specimen,	A =	31.93 cm ²
t = total time for discharge, in seconds	t =	1200 sec
h = difference in head manometers,	h =	60 cm

K = 0.00303833 cm/sec = 3.0 x10⁻³ or 10.9 inch/hour

The permeability (k) of the sample was tested at approx. 92% of the maximum dry density.

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC

Paul J. Hessel, P.E.

The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT. TSMT accepts no liability for work executed by others



# TRI STATE MATERIALS TESTING LAB, LLC.

New England Regional Office

60 Woodlawn Road • Berlin, CT 06037 • Tel: 203-949-7733 • Fax: 203-949-7735

Client:	SLR International Corporation	Report:	05-23
	99 Realty Drive Cheshire, CT 06410	Unit Weight	005-23
Project:	Proposed Multi-Family Development Wilton, CT	Date:	12/29/2023
<b>Contractor:</b>	SLR International Corporation	Sample #:	1124-23
Technician:	I.C	Sample ID	SLR-8

### SOIL UNIT WEIGHT

Formula: M=(G-t)/V M=bulk density of the aggregate, kg/m3 [lb./ft3] G=mass of the aggregate plus the measure, kg [lb.] T=mass of the measure, kg [lb.] V=volume of the measure, m3 [ft3] V= π r²h

Sample #	Material	Volume	Mass of Soil	Density
1124-23	1 ¼" Minus gravel with sand, little fines	0.007495659 [ft3]	0.9025725 lbs.	120.4 lb./ft3

Reported To: SLR International Corporation

Submitted By: Tri State Materials Testing Lab, LLC.

Paul J. Hessel, P.E.

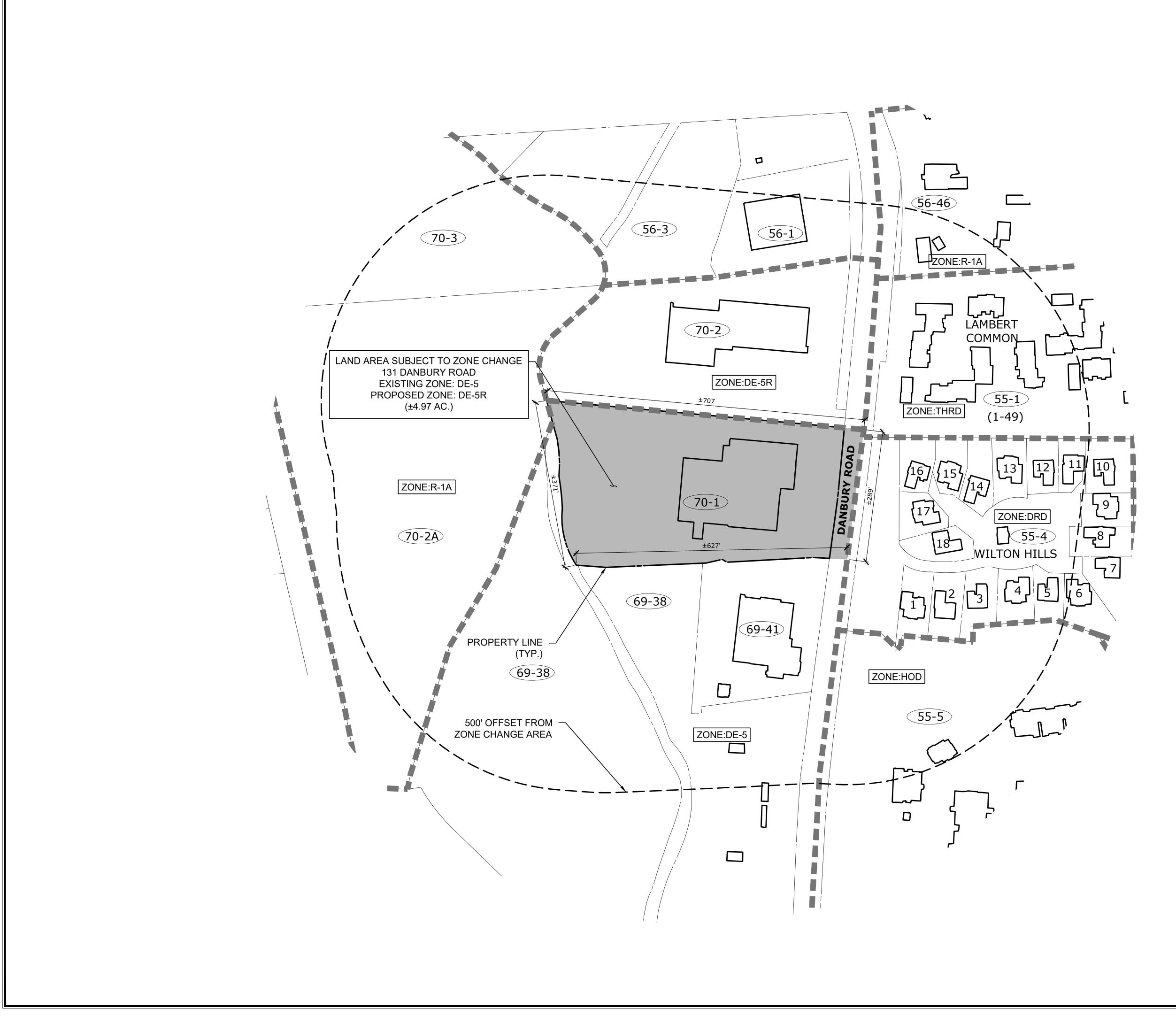
The above data is the property of the client. No reproduction of the above data without the sole permission of TSMT Lab, LLC. TSMT Lab, LLC accepts no liability for work executed by others.

APPENDIX 4 LIMITATIONS

# Limitations

This report has been prepared for the exclusive use of AMS Acquisitions in a manner consistent with generally accepted professional consulting principles and practices for the same locality under similar conditions. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.


The services described in this report were performed consistent with generally accepted geotechnical engineering principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third Party is at such party's sole risk.

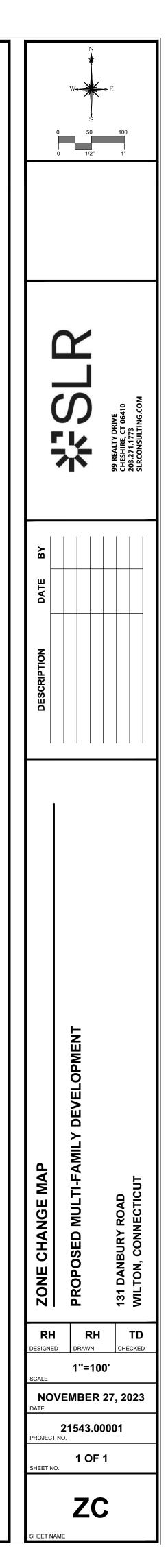
Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames and project parameters indicated. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.


The conclusions and recommendations in this report are invalid if:

- The assumed design loads change;
- The structures are relocated;
- The report is used for adjacent or other property or buildings;
- If grades, ground water levels, or both, change between the issuance of this report and construction; or
- Any other change is implemented that materially alters the project from that proposed when this report was prepared.

The exploration logs do not provide a warranty of the conditions that may exist at the entire site. The extent and nature of subsurface soil and groundwater variations may not become evident until construction begins. Variations in soil conditions between borings could possibly exist between or beyond the points of exploration or groundwater elevations may change, both of which may require additional studies, consultation, and possible design revisions. **Any person associated with this project who observes conditions or features of the site or surrounding areas that are different from those described in this report should report them immediately to the company for consideration and evaluation. This report was prepared solely for the use of our client and should be reviewed in its entirety.** 








SUBJECT PROPERTY PROPERTY LINE PROPERTY LINE EXISTING ZONE LINE

500' OFFSET FROM ZONE CHANGE AREA AREA OF ZONE CHANGE

ASSESSOR'S MAP AND LOT NUMBER



#### LIST OF NEIGHBORING PROPERTY OWNERS WITHIN 500'

131 Danbury Road (11/15/23)

	MBLU	Site Address	Owner Name	Mailing Address	Mailing City	Mailing State	Mailing Zip
			PEREIRA NORBERTO NARCIZO & PEREIRA				
1	55-1-1	1 LAMBERT COMMON	MARIA REGINA	1 LAMBERT COMMON	WILTON	СТ	06897-0000
2	55-1-2	2 LAMBERT COMMON	KELEPECZ SONYA	2 LAMBERT COMMON	WILTON	СТ	06897-0000
			AVGERINOS MICHAEL AND LINDA LIVING				
3	55-1-3	3 LAMBERT COMMON	TRUST	3 LAMBERT COMMON	WILTON	СТ	06897-0000
4	55-1-4	4 LAMBERT COMMON	RHODES OLGA L	4 LAMBERT COMMON	WILTON	СТ	06897-0000
5	55-1-5	5 LAMBERT COMMON	BRILL ROBERTA SODEN	5 LAMBERT COMMON	WILTON	СТ	06897-0000
6	55-1-6	6 LAMBERT COMMON	MELATO DENISE	6 LAMBERT COMMON	WILTON	СТ	06897-0000
7	55-1-7	7 LAMBERT COMMON	FARLEY IRENE R	7 LAMBERT COMMON	WILTON	СТ	06897-0000
8	55-1-8	8 LAMBERT COMMON	LUPINSKY ANNA	8 LAMBERT COMMON	WILTON	СТ	06897-0000
9	55-1-9	9 LAMBERT COMMON	BELLOVIN BENJAMIN &	9 LAMBERT COMMON	WILTON	СТ	06897-0000
10	55-1-10	10 LAMBERT COMMON	GUNDERSON BARRY	10 LAMBERT COMMON	WILTON	СТ	06897-0000
11	55-1-11	11 LAMBERT COMMON	GIBBON CAROL	11 LAMBERT COMMON	WILTON	СТ	06897-0000
			DA CONCEICAO MIRYAM D & LOPES				
12	55-1-12	12 LAMBERT COMMON	MELANIE MARIE	12 LAMBERT COMMON	WILTON	СТ	06897-0000
13	55-1-13	13 LAMBERT COMMON	RITCH MARIE TRUSTEE	13 LAMBERT COMMON	WILTON	СТ	06897-0000
14	55-1-14	14 LAMBERT COMMON	WERBLOOD SHERRILL L	14 LAMBERT COMMON	WILTON	СТ	06897-0000
15	55-1-15	15 LAMBERT COMMON	DEVINE CAROL A	224 HOMELAND ST	FAIRFIELD	СТ	06825-0000
16	55-1-16	16 LAMBERT COMMON	QIAN WEIDONG	16 LAMBERT COMMON	WILTON	СТ	06897-0000
17	55-1-17	17 LAMBERT COMMON	TZANOS REBECCA	17 LAMBERT COMMON	WILTON	СТ	06897-0000
18	55-1-18	18 LAMBERT COMMON	DEMPSEY ELIZABETH KIMBALL TR	18 LAMBERT COMMON	WILTON	СТ	06897-0000
19	55-1-19	19 LAMBERT COMMON	MACLAINE MEREDITH ANNE MUNRO	19 LAMBERT COMMON	WILTON	СТ	06897-0000
20	55-1-20	20 LAMBERT COMMON	ZAPPALA PHYLLIS F TRUSTEE	18 BUTTONBALL LA	WESTON	СТ	06883-0000
21	55-1-21	21 LAMBERT COMMON	CHO MIYOUNG	21 LAMBERT COMMON	WILTON	СТ	06897-0000
22	55-1-22	22 LAMBERT COMMON	CANZONETTI RICHARD & EDITH	22 LAMBERT COMMON	WILTON	СТ	06897-0000
23	55-1-23	23 LAMBERT COMMON	SHRAGO MARSHA	23 LAMBERT COMMON	WILTON	СТ	06897-0000
24	55-1-24	24 LAMBERT COMMON	HAUSDORFF RITA H	24 LAMBERT COMMOM	WILTON	СТ	06897-0000
			KASMAN CHRISTINA MARIE & ROSENBERG				
25	55-1-25	25 LAMBERT COMMON	SAMUEL CHARLES	25 LAMBERT COMMON	WILTON	СТ	06897-0000
26	55-1-26	26 LAMBERT COMMON	KIM GUMSOOK & HWI TAE	26 LAMBERT COMMON	WILTON	СТ	06897-0000
27	55-1-27	27 LAMBERT COMMON	BURROUGHS NANCY	27 LAMBERT COMMON	WILTON	СТ	06897-0000
28	55-1-28	28 LAMBERT COMMON	KELLEY MARGARET M	28 LAMBERT COMMON	WILTON	СТ	06897-0000
29	55-1-29	29 LAMBERT COMMON	MANNIX CATHERINE J	32 DOROTHY RD	REDDING	СТ	06896-0000
30	55-1-30	30 LAMBERT COMMON	MCSWEENEY MADY E	30 LAMBERT COMMON	WILTON	СТ	06897-0000
31	55-1-31	31 LAMBERT COMMON	KEARNEY PETER A TRUSTEE	31 LAMBERT COMMON	WILTON	СТ	06897-0000
32	55-1-32	32 LAMBERT COMMON	ALIANIELLO ROCCO	32 LAMBERT COMMON	WILTON	СТ	06897-0000
33	55-1-33	33 LAMBERT COMMON	OLSON KURT & CHRISTINE	33 LAMBERT COMMON	WILTON	СТ	06897-0000

#### LIST OF NEIGHBORING PROPERTY OWNERS WITHIN 500'

			131 Danbury Roa				
	MBLU	Site Address	Owner Name	Mailing Address	Mailing City	Mailing State	Mailing Zip
			SIMPSON MARJORIE & SIMPSON SAMUEL &				
34	55-1-34	34 LAMBERT COMMON	sv	34 LAMBERT COMMON	WILTON	ст	06897-0000
35	55-1-35	35 LAMBERT COMMON	BUFANO LORI A	35 LAMBERT COMMON	WILTON	СТ	06897-0000
36	55-1-36	36 LAMBERT COMMON	LEHMAN DAVID	36 LAMBERT COMMON	WILTON	СТ	06897-0000
			EDGAR RICHARD A & EDGAR LORRAINE JEAN				
37	55-1-37	37 LAMBERT COMMON	& SV	37 LAMBERT COMMON UNIT #347	WILTON	СТ	06897-0000
38	55-1-38	38 LAMBERT COMMON	PASCARELLI JEANNETTE R	38 LAMBERT COMMOM	WILTON	СТ	06897-0000
39	55-1-39	39 LAMBERT COMMON	CIOFFI GAIL M	39 LAMBERT COMMON	WILTON	СТ	06897-0000
40	55-1-40	40 LAMBERT COMMON	DOBEY ROSLYN	40 LAMBERT COMMON	WILTON	СТ	06897-0000
41	55-1-41	41 LAMBERT COMMON	PRESTON MARY B	41 LAMBERT COMMON	WILTON	СТ	06897-0000
42	55-1-42	42 LAMBERT COMMON	ROBERTSON DENISE	42 LAMBERT COMMON	WILTON	СТ	06897-0000
43	55-1-43	43 LAMBERT COMMON	COCOZZA JOHN	43 LAMBERT COMMON	WILTON	СТ	06897-0000
44	55-1-44	44 LAMBERT COMMON	PICONE ELIZABETH TRUSTEE	44 LAMBERT COMMON	WILTON	СТ	06897-0000
45	55-1-45	45 LAMBERT COMMON	PIEDMONT KARENA	45 LAMBERT COMMON	WILTON	СТ	06897-0000
46	55-1-46	46 LAMBERT COMMON	LIN XIN YU	46 LAMBERT COMMON	WILTON	СТ	06897-0000
			SAYANTAN SARKER & MAYURI MANDLEKAR				
47	55-1-47	47 LAMBERT COMMON	JT/S	47 LAMBERT COMMON	WILTON	СТ	06897-0000
48	55-1-48	48 LAMBERT COMMON	BONDESON JANET M ESTATE OF	1034 WEST RIVER ST	MILFORD	СТ	06461-0000
49	55-1-49	49 LAMBERT COMMON	JAIPRAKASH AGARWAL & DIPKA K BEHERA	49 LAMBERT COMMON	WILTON	СТ	06897-0000
50	55-4-1	1 WILTON HILLS	KAYLOR JAMES A & KAYLOR LINDA	1 WILTON HILLS	WILTON	СТ	06897-0000
51	55-4-2	2 WILTON HILLS	SHERVIN SHAHAB	2 WILTON HILLS	WILTON	СТ	06897-0000
52	55-4-3	3 WILTON HILLS	BLOCK JOSEPH & LOIS	3 WILTON HILLS	WILTON	СТ	06897-0000
53	55-4-4	4 WILTON HILLS	PICCHIONE FRANK L	4 WILTON HILLS	WILTON	СТ	06897-0000
			RAMAMOORTHY KAUSHIK &				
54	55-4-5	5 WILTON HILLS	MUTHUKRISHNAN AARTHIE	5 WILTON HILLS	WILTON	СТ	06897-0000
55	55-4-6	6 WILTON HILLS	DHAYAFULE MITHUN	6 WILTON HILLS	WILTON	СТ	06897-0000
56	55-4-7	7 WILTON HILLS	PARK JOO HYOUNG	7 WILTON HILLS	WILTON	СТ	06897-0000
57	55-4-8	8 WILTON HILLS	WRIGHT-WARREN HOLLIS E	8 WILTON HILLS	WILTON	СТ	06897-0000
58	55-4-9	9 WILTON HILLS	RAMSEY DARYL	9 WILTON HILLS	WILTON	СТ	06897-0000
59	55-4-10	10 WILTON HILLS	BILOKIN FEDIR & GANNA	10 WILTON HILLS	WILTON	СТ	06897-0000
60	55-4-11	11 WILTON HILLS	RZEPKA FRED	25250 ROCKSIDE RD	BEDFORD HEIGHTS	ОН	44146-0000
61	55-4-12	12 WILTON HILLS	GJURAJ LUSHE	12 WILTON HILLS	WILTON	СТ	06897-0000
			THOMAS, CHARLES CALVIN & THOMAS				
62	55-4-13	13 WILTON HILLS	BETTY WELLS	13 WILTON HILLS	WILTON	СТ	06897-0000
63	55-4-14	14 WILTON HILLS	GANDHI TIMSY & VINAY	14 WILTON HILLS	WILTON	СТ	06897-0000
64	55-4-15	15 WILTON HILLS	SCHOPICK ANDREW M	15 WILTON HILLS	WILTON	СТ	06897-0000

			131 Danbury Roa	ad (11/15/23)			
	MBLU	Site Address	Owner Name	Mailing Address	Mailing City	Mailing State	Mailing Zip
65	55-4-16	16 WILTON HILLS	TSUI TAK KWAN	16 WILTON HILLS	WILTON	СТ	06897-0000
66	55-4-17	17 WILTON HILLS	STOLPEN ADAM D	17 WILTON HILLS	WILTON	СТ	06897-0000
67	55-4-18	18 WILTON HILLS	RUDNICKI MICHELE A	18 WILTON HILLS	WILTON	СТ	06897-0000
68	55-5	116 DANBURY RD	REIF III DANBURY ROAD LLC	230 PARK AVE	NEW YORK	NY	10169-0000
69	56-1	149 DANBURY RD	RING'S END INC	160 AVON ST	STRATFORD	СТ	06615-0000
70	56-2	153 DANBURY RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
71	56-3	159 DANBURY RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
72	56-45	156 DANBURY RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
73	56-46A-BC	DANBURY RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
74	69-38	111 DANBURY RD	CUBESMART LP C/O PTA-CS#831	PO BOX 320099	ALEXANDRIA	VA	22320-0000
75	69-41	129 DANBURY RD	RING'S END INCORPORATED	160 AVON ST	STRATFORD	СТ	06615-0000
				ATTN: RYAN SUTHERLAND, 1 BRIDGE			
76	70-1	131 DANBURY RD	AMS ACQUISITIONS	PLAZA NORTH, SUITE 840	FORT LEE	NJ	07024
77	70-2	141 DANBURY RD	FDSPIN 141 DR LLC	1 NORTH WATER ST SUITE 100	NORWALK	СТ	06854-0000
78	70-3	17 WOLFPIT RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
79	70-2A	DANBURY RD	CONNECTICUT STATE OF	2800 BERLIN TPKE	NEWINGTON	СТ	06131-0000
80	55-1	1-49 LAMBERT COMMON	THE PROPERTY GROUP OF CT, INC.	25 CRESCENT STREET	STAMFORD	СТ	06906
81	55-4	1-18 WILTON HILLS	4 WILTON HILLS	4 WILTON HILLS	WILTON	СТ	06897
82	AGENT		REDNISS & MEAD, INC.	22 FIRST STREET	STAMFORD	СТ	06905

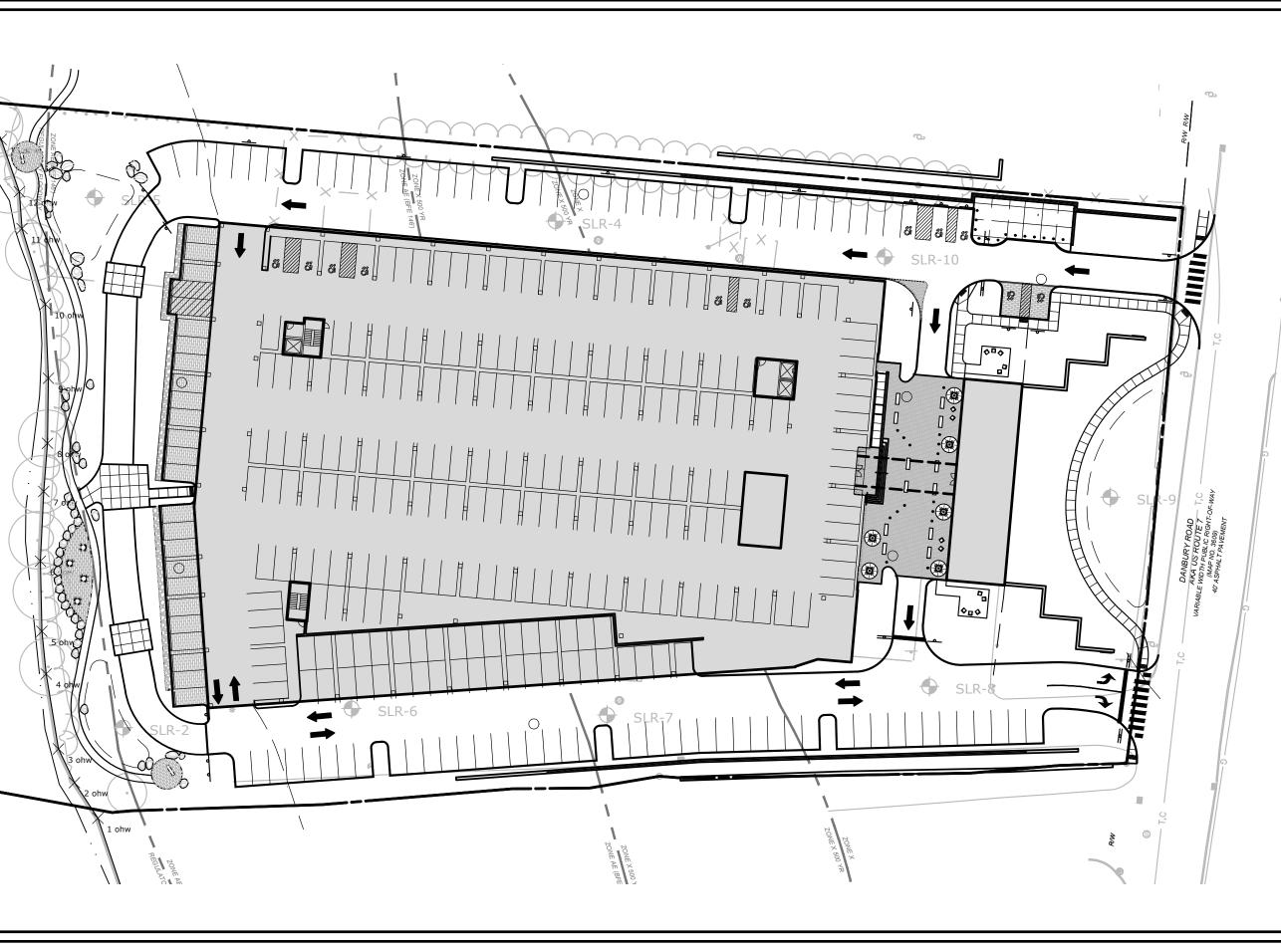
#### LIST OF NEIGHBORING PROPERTY OWNERS WITHIN 500'

# PROPOSED MULTI-FAMILY DEVELOPMENT

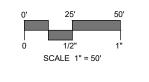
# **GENERAL NOTES**

- 1. PROPERTY AND TOPOGRAPHIC INFORMATION COMPILED FROM A MAP ENTITLED, "ALTA/NSPS LAND TITLE SURVEY, 131 DANBURY ROAD, FAIRFIELD COUNTY, WILTON, CONNECTICUT 06897", PREPARED BY: BLEW & ASSOCIATES, P.A., SCALE: 1"=30'.
- 2. NORTH ARROW, BEARINGS AND COORDINATES ARE BASED UPON THE CONNECTICUT COORDINATE SYSTEM (NAD 1983). ELEVATIONS, CONTOURS AND BENCH MARK ARE BASED UPON (NAVD 1988).
- 3. INFORMATION REGARDING THE LOCATION OF EXISTING UTILITIES HAS BEEN BASED UPON AVAILABLE INFORMATION AND MAY BE INCOMPLETE, AND WHERE SHOWN SHOULD BE CONSIDERED APPROXIMATE. THE LOCATION OF ALL EXISTING UTILITIES SHOULD BE CONFIRMED PRIOR TO BEGINNING CONSTRUCTION. CALL "CALL BEFORE YOU DIG", 1-800-922-4455. ALL UTILITY LOCATIONS THAT DO NOT MATCH THE VERTICAL OR HORIZONTAL CONTROL SHOWN ON THE PLANS SHALL IMMEDIATELY BE BROUGHT TO THE ATTENTION OF THE ENGINEER FOR RESOLUTION.
- 4. SLR INTERNATIONAL CORPORATION ACCEPTS NO RESPONSIBILITY FOR THE ACCURACY OF MAPS AND DATA WHICH HAVE BEEN SUPPLIED BY OTHERS.
- 5. ALL UTILITY SERVICES ARE TO BE UNDERGROUND. THE EXACT LOCATION, MEANS OF CONSTRUCTION, AND SIZE OF ELECTRIC, TELEPHONE, AND CABLE TELEVISION ARE TO BE DETERMINED BY THE RESPECTIVE UTILITY COMPANIES
- 6. ALL DIMENSIONS AND ELEVATIONS SHALL BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
- 7. SEDIMENT AND EROSION CONTROL MEASURES AS DEPICTED ON THESE PLANS AND DESCRIBED WITHIN THE SEDIMENT AND EROSION CONTROL NARATIVE SHALL BE IMPLEMENTED AND MAINTAINED UNTIL PERMANENT COVER AND STABILIZATION IS ESTABLISHED. ALL SEDIMENT AND EROSION CONTROL MEASURES SHALL CONFORM TO THE "GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL, CONNECTICUT - 2002". AND IN ALL CASES BEST MANAGEMENT PRACTICES SHALL PREVAIL
- 8. ALL DISTURBED AREAS SHALL RECEIVE A MINIMUM OF 6" TOPSOIL, AND BE SEEDED WITH GRASS, AS SHOWN ON THE PLANS.
- 9. ALL PROPOSED CONTOURS AND SPOT ELEVATIONS INDICATE FINISHED GRADE.
- 10. ALL CONSTRUCTION MATERIALS AND METHODS SHALL CONFORM TO THE TOWN OF WILTON REQUIREMENTS AND TO THE APPLICABLE SECTIONS OF THE STATE OF CONNECTICUT DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR ROADS, BRIDGES, AND INCIDENTAL CONSTRUCTION, FORM 819 AND ADDENDUMS.
- THE PLANS REQUIRE A CONTRACTOR'S WORKING KNOWLEDGE OF LOCAL. MUNICIPAL, WATER AUTHORITY, AND STATE CODES FOR UTILITY SYSTEMS. ANY CONFLICTS BETWEEN MATERIALS AND LOCATIONS SHOWN, AND LOCAL REQUIREMENTS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE EXECUTION OF WORK. THE ENGINEER WILL NOT BE HELD LIABLE FOR COSTS INCURRED TO IMPLEMENT OR CORRECT WORK WHICH DOES NOT CONFORM TO LOCAL CODE.
- 12. ALL FUEL, OIL, PAINT, OR OTHER HAZARDOUS MATERIALS USED DURING CONSTRUCTION SHOULD BE STORED IN A SECONDARY CONTAINER ABOVE THE FLOOD LIMITS OF THE NORWALK RIVER AND REMOVED TO A LOCKED INDOOR AREA WITH AN IMPERVIOUS FLOOR DURING NON-WORK HOURS.
- 13. COMPLIANCE WITH THE PERMIT CONDITIONS IS THE RESPONSIBILITY OF BOTH THE CONTRACTOR AND THE PERMITTEE.
- 14. ANY PROPOSED STRUCTURES AND LANDSCAPE FEATURES WITHIN THE FLOODWAY SHALL BE CERTIFIED BY AN ENGINEER TO WITHSTAND CALCULATED BASE FLOOD VELOCITIES.
- 15. THE PROJECT SITE SHALL REMAIN CLEAN OF TRASH AND DEBRIS AT ALL TIMES. ADEQUATE TRASH STORAGE FACILITIES SHALL BE PROVIDED AND EMPTIED ON A ROUTINE BASIS AND AS NEEDED. TRASH SHALL NOT BE STORED WITHIN THE LIMITS OF THE 100-YEAR FLOOD. 16. A CTDOT ENCROACHMENT PERMIT IS REQUIRED FOR ALL WORK WITHIN THE ROUTE 7 RIGHT OF WAY.
- 17. ANY FILL MATERIAL NEEDED IN THE REGULATED AREAS WILL BE CLEAN, NATIVE TOPSOIL AND GRANULAR MATERIALS.

# ZONING DATA TABLE


	DE-5R REQUIRED	PROPOSED
LOT AREA	3 ACRES MINIMUM	4.75 ACRES
FRONTAGE	150 FT. MINIMUM	292 FT.
FRONT YARD	75 FT. MINIMUM	75 FT.
SIDE YARD	50 FT. MINIMUM (EACH)	51.9 FT.
REAR YARD	100 FT. MINIMUM	114.2 FT.
SITE COVERAGE	75% MAXIMUM	70%
BUILDING HEIGHT	55 FT. (4 STORIES) MAXIMUM* 65 FT. (4.5 STORIES) MAXIMUM	55 FT. (4 STORIES) 65 FT. (4.5 STORIES)
BUILDING COVERAGE	40% MAXIMUM (82,794 SF)	40% (82,684 SF)
PARKING SETBACK	10 FT. MINIMUM	10 FT.
NORWALK RIVER PARKING SETBACK	60 FT. MINIMUM	66.5 FT.
NORWALK RIVER BUILDING SETBACK	80 FT. MINIMUM	85.5 FT.
PARKING	1 SPACE/ONE-BEDROOM UNIT, 2 SPACES FOR 2+ BEDROOM UNIT (321 SPACES)	321***
*AN ADDITIONAL 10' MAY BE	PERMITTED TO ACCOMODATE AN ADDITION	AL ONE-HALF STORY
**UNIT MIX CONSISTS OF 95	ONE-BEDROOM, 105 TWO-BEDROOM, AND	8 THREE-BEDROOM UNITS
**UNIT MIX CONSISTS OF 95 ONE-BEDROOM, 105 TWO-BEDROOM, AND 8 THREE-BEDROOM UNITS ***NOT INCLUDING 22 TANDEM SPACES. PARKING TOTAL CONSISTS OF 310 STANDARD SPACES, 8 HANDICAP ACCESSIBLE SPACES, AND 3 VAN SPACES.		




Know what's **below. Call** before you dig. www.cbyd.com

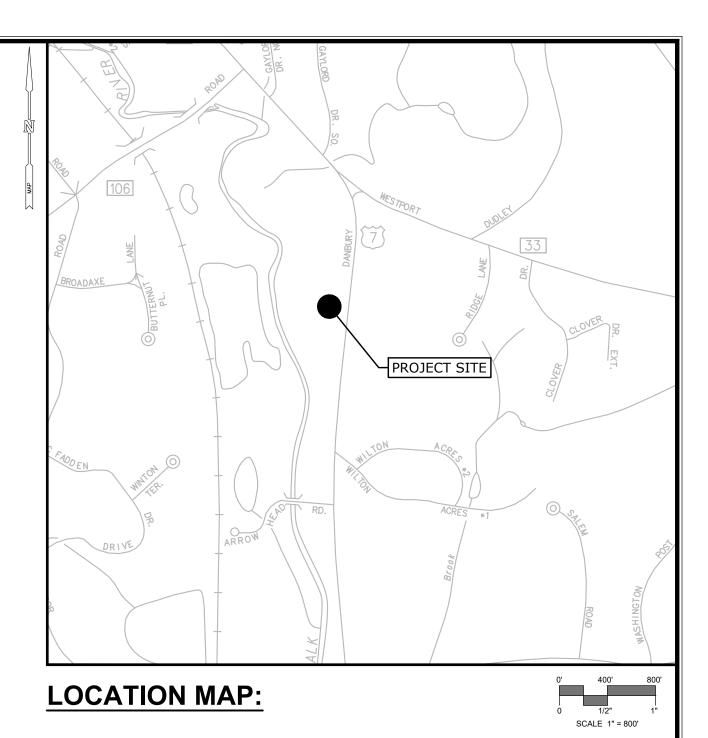
# 131 DANBURY ROAD WILTON, CONNECTICUT

21543.00001 OCTOBER 23, 2023 REVISED: NOVEMBER 27. 2023 REVISED: JANUARY 9, 2024



**PROJECT SITE VICINITY MAP:** 




# **PREPARED BY:**



# **PREPARED FOR:**

AMS ACQUISITIONS ONE BRIDGE PLAZA NORTH, SUITE 840 FORT LEE, NJ 07024





# **LIST OF DRAWINGS**

<u>LIJI</u>		AVVING5
NO.	NAME	TITLE
01		TITLE SHEET
02	NL	NOTES AND LEGEND
03	EX	EXISTING CONDITIONS
04	SP	SITE VICINITY PLAN
05	LA	SITE PLAN - LAYOUT
06	LS	SITE PLAN - LANDSCAPING
07	GR	SITE PLAN - GRADING
08	UT	SIRE PLAN - UTILITIES
09	SE-1	SEDIMENT AND EROSION CONTROL PLAN
10	SE-2	SEDIMENT AND EROSION CONTROL SPECIFICATIONS AND DETAILS
11	SD-1	SITE DETAILS
12	SD-2	SITE DETAILS
13	SD-3	SITE DETAILS
14	SD-4	SITE DETAILS
15	SD-5	SITE DETAILS
16	SD-6	SITE DETAILS
17	SD-7	SITE DETAILS
18	ABG	COMBINED AVERAGE BUILDING GRADE
19	FP	FLOODPLAIN EARTHWORK
20	EW	PROPOSED SITE EARTHWORK
21	VH-1	VEHICLE TURNING MOVEMENT - FIRE TRUCK
22	VH-2	VEHICLE TURNING MOVEMENT - SU-30 AND 15' BOX TRUCK
23	SL-1B	SITE LIGHTING PHOTOMETRIC CALCULATION (BY APEX LIGHTING SOLUTIONS)

# LAYOUT NOTES

- 1. LAYOUT CRITERIA AND DIMENSIONS FOR BUILDINGS ARE NOT SHOWN ON THIS PLAN. ALL BUILDINGS SHALL BE LOCATED BY A CONNECTICUT LICENSED SURVEYOR AND COORDINATED WITH THE FOUNDATION PLANS SUPPLIED BY THE ARCHITECT OR THEIR CONSULTANT.
- ALL DIMENSIONS AND ELEVATIONS SHALL BE VERIFIED IN THE FIELD PRIOR TO CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
- FOR DETAILED INFORMATION PERTAINING TO PROPOSED BUILDINGS REFER TO ARCHITECTURAL AND STRUCTURAL DRAWINGS.
- IN ALL CASES IN WHICH PROPOSED ROADS, SIDEWALKS AND CURBING WILL BE TIED INTO EXISTING ROAD/SIDEWALK 4. AND/OR CURBS THE CONTRACTOR SHALL MATCH THE LINE AND GRADE OF THE EXISTING CONDITIONS.

# PLANTING NOTES

- 1. THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL UNDERGROUND UTILITIES PRIOR TO EXCAVATING PLANT PITS.
- 2. THE LANDSCAPE CONTRACTOR SHALL PROVIDE A 6" MINIMUM DEPTH OF TOPSOIL FOR ALL LAWN AREAS. WATER AS NECESSARY TO ESTABLISH TURF.
- 3. ALL PLANTING BEDS SHALL HAVE 12" MINIMUM DEPTH OF TOPSOIL
- 4. THE LANDSCAPE CONTRACTOR SHALL PROVIDE A 4" MIN. DEPTH OF SHREDDED MULCH OVER ALL PLANTING BEDS AND TREE PLANTINGS. NO DYED MULCH.
- 5. ALL PLANT MATERIAL IS SUBJECT TO INSPECTION AND APPROVAL BY THE LANDSCAPE ARCHITECT PRIOR TO AND AFTER PLANTING.
- 6. PLANT SPECIES MAY BE SUBSTITUTED BASED ON AVAILABILITY AT TIME OF PLANTING. ALL PLANT MATERIAL SUBSTITUTIONS ARE SUBJECT TO REVIEW AND APPROVAL BY THE LANDSCAPE ARCHITECT AND TOWN STAFF.
- 7. ALL PLANT MATERIALS SHALL CARRY A FULL GUARANTEE FOR A PERIOD OF ONE YEAR FROM THE DATE OF ACCEPTANCE, TO INCLUDE PROMPT TREATMENT OR REMOVAL AND REPLACEMENT OF ANY PLANTS FOUND TO BE IN AN UNHEALTHY CONDITION BY THE LANDSCAPE ARCHITECT, ALL REPLACEMENTS SHALL BE OF THE SAME KIND AND SIZE OF PLANTS SPECIFIED IN THE PLANT LIST.
- MAINTENANCE SHALL BEGIN IMMEDIATELY AFTER PLANTING AND SHALL CONTINUE UNTIL ACCEPTANCE BY THE LANDSCAPE ARCHITECT. MAINTENANCE SHALL INCLUDE WATERING, MULCHING, TIGHTENING & REPLACING OF GUYS, REPLACEMENT OF SICK OR DEAD PLANTS, RESETTING PLANTS TO PROPER GRADE OR UPRIGHT (PLUMB) POSITION, RESTORATION OF SAUCERS, AND ALL OTHER CARE NEEDED FOR PROPER GROWTH OF THE PLANTS.
- 9. WHERE A SIZE RANGE IS SPECIFIED AT LEAST 50% OF PLANTS PROVIDED SHALL BE OF THE LARGER SIZE.
- 10. CONTRACTOR TO REMOVE TREE STAKES AFTER ONE GROWING SEASON.
- 11. PLACEMENT OF PLANTS ARE APPROXIMATE AND MAY REQUIRE ADJUSTMENT IN THE FIELD BY THE OWNER.
- 12. TREES CALLED TO REMAIN TO BE EVALUATED BY AN ARBORIST TO CONFIRM THEY ARE HEALTHY.

# UTILITY NOTES

- 1. LOCATIONS OF ALL EXISTING UTILITIES ARE APPROXIMATE.
- 2. MAINTAIN 10' HORIZONTAL OR 18" VERTICAL SEPARATION BETWEEN SANITARY SEWER AND WATER SERVICE LATERALS.
- 3. INSTALLATION OF WATER AND SANITARY SEWER SHALL CONFORM TO THE TOWN OF WILTON WATER POLLUTION CONTROL AUTHORITY RULES AND REGULATIONS.
- 4. INSTALL CLEANOUT 5' FROM FACE OF BUILDING
- 5. COORDINATE WITH RESPECTIVE UTILITY COMPANIES AND COMPLY WITH THEIR RESPECTIVE REQUIREMENTS.
- 6. ALL CATCH BASINS SHALL HAVE A 4 FOOT SUMP.
- 7. ALL EXISTING UTILITIES ON SITE TO BE REMOVED
- 8. AFTER A FLOOD EVENT, THE BASINS AND STORM STRUCTURES SHALL BE INSPECTED AND ANY ACCUMULATED DEBRIS SHALL BE REMOVED.
- 9. ALL HDPE PIPE SHALL BE ADS N-12 HDPE.
- 10. CONTRACTOR SHALL COORDINATE WITH EVERSOURCE AND EVERSOURCE PERSONNEL SHALL BE PRESENT FOR ANY WORK NEAR THE EXISTING EVERSOURCE TRANSMISSION LINE IN DANBURY ROAD.

# **EROSION CONTROL NOTES, CONTRACTOR RESPONSIBILITIES**

- 1. SEDIMENT AND EROSION CONTROLS SHALL BE INSPECTED AT LEAST ONCE A WEEK AND WITHIN 24 HOURS OF THE END OF A STORM WITH A RAINFALL AMOUNT OF 0.5 INCH OR GREATER. A LOG OF SUCH INSPECTIONS SHALL BE MAINTAINED AT THE SITE.
- 2. THE SEDIMENT AND EROSION CONTROL PLAN SHALL BE MODIFIED BY THE CONTRACTOR AT THE DIRECTION OF THE ENGINEER AND THE TOWN'S DESIGNATED REPRESENTATIVE AS NECESSITATED BY CHANGING SITE CONDITIONS
- 3. INSPECTION OF THE SITE FOR EROSION SHALL CONTINUE FOR A PERIOD OF THREE MONTHS AFTER COMPLETION WHEN RAINFALLS OF ONE INCH OR MORE OCCUR.
- 4. ALL DEWATERING WASTE WATERS SHALL BE DISCHARGED IN A MANNER WHICH MINIMIZES THE DISCOLORATION OF THE RECEIVING WATERS.
- 5. THE SITE SHOULD BE KEPT CLEAN OF LOOSE DEBRIS, LITTER, AND BUILDING MATERIALS SUCH THAT NONE OF THE ABOVE ENTER WATERS OR WETLANDS.
- 6. A COPY OF ALL PLANS AND REVISIONS, AND THE SEDIMENT AND EROSION CONTROL PLAN SHALL BE MAINTAINED ON-SITE AT ALL TIMES DURING CONSTRUCTION.
- 7. ALL CATCH BASIN SUMPS SHOULD BE INSPECTED AFTER CONSTRUCTION COMPLETION AND SEDIMENT REMOVED. THE SEDIMENT SHALL BE DISPOSED OF IN AN APPROVED LOCATION.

# **CONSTRUCTION SEQUENCE**

SEE CONSTRUCTION MANAGEMENT PLAN PREPARED BY AMS CONSTRUCTION MANAGEMENT LLC.

# STORMWATER MAINTENANCE PROGRAM

UPON SITE DEVELOPMENT, THERE WILL BE A NEED TO PERIODICALLY MAINTAIN STORMWATER SYSTEMS ON THE PROPERTY.

IN ORDER TO ENSURE OPTIMAL PERFORMANCE OF THE SYSTEM, THE FOLLOWING STORMWATER MAINTENANCE PROGRAM HAS BEEN ESTABLISHED. THE PROPERTY OWNER WILL BE RESPONSIBLE FOR IMPLEMENTATION OF THIS PROGRAM. A LOG OF ALL INSPECTIONS, CLEANING AND REPAIRS SHALL BE MAINTAINED BY THE PROPERTY OWNER AND BE AVAILABLE FOR REVIEW.

# A. CATCH BASINS/YARD DRAINS

CATCH BASINS ARE DESIGNED WITH 4-FOOT MINIMUM DEPTH SUMPS FOR THE PURPOSE OF COLLECTING COARSE SEDIMENT. ALL CATCH BASINS SHOULD BE INSPECTED TWO TIMES PER YEAR, TYPICALLY WHEN THE SITE IS SWEPT IN THE SPRING AFTER WINTER SANDING AND IN THE FALL AFTER ALL THE LEAVES HAVE FALLEN. SITE SWEEPING SHALL BE PROVIDED BETWEEN APRIL 15 AND MAY 15 EACH SPRING.

SEDIMENT SHOULD BE REMOVED WHEN IT EXTENDS TO WITHIN 6 INCHES OF THE OUTLET PIPE INVERT OR NOT LESS THAN ONCE PER YEAR. CLEANOUT WITH A VACUUM TRUCK IS GENERALLY THE BEST AND MOST CONVENIENT METHOD. THE SEDIMENT SHALL BE DISPOSED OF IN AN APPROVED OFF-SITE LOCATION IN ACCORDANCE WITH TOWN AND STATE REQUIREMENTS.

# PAVEMENT SWEEPING

THE PARKING AREA AND ROADWAY SHALL BE SWEPT ANNUALLY. SWEEPING SHOULD OCCUR IN THE SPRING AFTER WINTER SANDING, BETWEEN APRIL 15 AND MAY 15. SALT ALTERNATIVES SHALL BE USED DURING WINTER MONTHS FOR DEICING.

# PROPRIETARY HYDRODYNAMIC SEPARATOR

BEFORE BEING DISCHARGED TO THE NORWALK RIVER, STORMWATER RUNOFF FROM THE ROADWAY AND BUILDING WILL BE DIRECTED TO A HYDRODYNAMIC SEPARATOR. THIS STRUCTURE WILL REMOVE SUSPENDED SOLIDS, DEBRIS AND FLOATABLES CONSTITUENTS FROM STORMWATER. OIL, SCUM, AND SEDIMENT WILL EVENTUALLY ACCUMULATE AND CAN BE REMOVED THROUGH A MANHOLE LOCATED AT THE TOP OF THE SEPARATOR. THIS STRUCTURE WILL BE MAINTAINED YEARLY, OR MORE FREQUENTLY AS REQUIRED. THE UNIT SHOULD BE INSPECTED AND MAINTAINED IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. WASTE MATERIAL WILL BE PROPERLY DISPOSED OF OFF THE SITE.

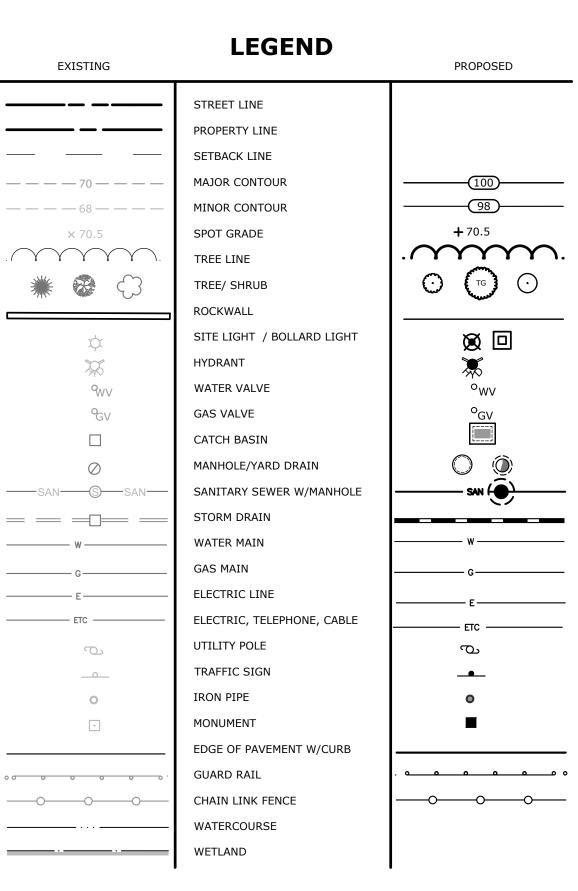
# C. UNDERGROUND DETENTION SYSTEMS

UNDERGROUND DETENTION SYSTEMS SHALL BE INSPECTED QUARTERLY AND SEDIMENT SHALL BE REMOVED AS NEEDED TO ENSURE PROPER FUNCTIONING OF STRUCTURES. AREAS OF DISTURBANCE THAT MAY BE AS A RESULT OF CLEANING SHALL BE SEEDED AND PLANTED IN ACCORDANCE WITH THE ORIGINAL PLANTING PLAN. THESE STRUCTURES WILL BE MAINTAINED YEARLY, OR MORE FREQUENTLY AS REQUIRED. WASTE MATERIAL WILL BE PROPERLY DISPOSED OF OFF-SITE.

# ISOLATOR ROW

THE ISOLATOR ROWS INTEGRATED TO THE STORMWATER CHAMBERS SYSTEMS SHOULD BE MAINTAINED IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. A COPY OF THE STORMTECH "ISOLATOR ROW O&M MANUAL" IS INCLUDED IN THE ENGINEERING REPORT. AT A MINIMUM, THE MAINTENANCE SCHEDULE SHOULD INCLUDE THE FOLLOWING:

- 1) THE ISOLATOR ROW UNIT SHALL BE COMPLETELY CLEANED OF ACCUMULATED DEBRIS AND SEDIMENTS AT THE COMPLETION OF CONSTRUCTION.
- 2) THE ISOLATOR ROW SHALL BE INSPECTED EVERY 6 MONTHS FOR THE FIRST YEAR OF OPERATION. 3) FOR SUBSEQUENT YEARS, THE INSPECTION SHOULD BE ADJUSTED BASED UPON PREVIOUS OBSERVATION OF SEDIMENT
- DEPOSITION. AT A MINIMUM, THE ISOLATOR ROW SHALL BE INSPECTED ANNUALLY. 4) IF UPON VISUAL INSPECTION THE SEDIMENT DEPOSIT ALONG THE LENGTH OF THE ISOLATOR ROW EXCEEDS 3 INCHES, CLEANOUT SHALL BE PERFORMED.
- 5) MAINTENANCE IS ACCOMPLISHED WITH THE JETVAC PROCESS.


### LAWN AND VEGETATED AREAS

VEGETATED COVER SHALL BE MAINTAINED ON ALL EARTH SURFACES TO MINIMIZE SOIL EROSION. USE IF FERTILIZER SHOULD BE MINIMIZED AND APPLIED USING PRUDENT APPLICATION PROCESSES.

### ROOF GUTTERS

REMOVE ACCUMULATED DEBRIS AND INSPECT FOR CLOGGING AND/OR DAMAGE AT LEAST ONCE A YEAR, TYPICALLY IN THE FALL AFTER THE LEAVES HAVE FALLEN. ANY DAMAGE SHOULD BE REPAIRED AS REQUIRED.

G. AFTER A FLOOD EVENT, THE BASINS AND STORM STRUCTURES SHALL BE INSPECTED AND ANY ACCUMULATED DEBRIS SHALL BE REMOVED.



# **BORING LOGS**

# <u>SLR-1</u> DEPTH=32' 0'-0.25' ASPHALT 5'-10' GROUNDWATER AT 4.8'

SLR-2	
DEPTH=12	2'
0'-0.33'	ASPHALT
0.33'-1'	GRAY, FINE 1
1'-3.8'	BLACK, FINE
3.8'-12'	GRAY, FINE 1
GROUNDV	VATER AT 3.7'
PERMEABI	LITY=0.8 INCH

SLR-3	
DEPTH=27	1
0'-0.25'	ASPHALT
0.25'-2.4'	BROWN, FINE
2.4'-3'	DARK BROWN
3'-5'	DARK BROWN
5'-6'	LIGHT BROW
6'-10'	BROWN, FINE
10'-15'	GRAY-BROWN
15'-20'	GRAY, FINE T
20'-25'	GRAY, FINE T
25'-27'	GRAY, FINE T
GROUNDW	ATER AT 6.3'

SLR-4	
DEPTH=17	
0'-0.75'	DARK BROWN
0.75'-2'	BROWN, FINE
2'-5'	DARK BROWN
5'-10'	BLACK, FINE
10'-15'	GRAY, FINE T
15'-17'	GRAY, FINE T
GROUNDW	ATER AT 10'

1
ASPHALT
BROWN, FIN
BROWN, FIN
GRAY-BROW
'ATER AT 3.5'
_ITY=2.5 INC

<u>SLR-6</u>	
DEPTH=1	7'
0'-0.25"	ASPHALT
0.25'-3'	BROWN, FINE
3'-3.5'	DARK BROWN
3.5'-5'	BROWN, FINE
5'-7'	BROWN, FINE
7'-10'	BROWN-GRAY
10'-17'	BROWN, FINE
GROUND	WATER AT 5'
PERMEAB	ILITY=10.6 INC

<u>SLR-7</u>	
DEPTH=12	ı
0'-0.3'	ASPHALT
0.3'-5'	BROWN, FINE
5'-7'	BROWN, FINE
7'-10'	BROWN, FINE
10'-12'	BROWN, FINE
GROUNDW	'ATER AT 5'
PERMEABII	ITY=2.1 INCH

SLR-8	
DEPTH=27	ı
0'-0.33'	ASPHALT
0.33'-1'	BROWN, FINE
1'-3'	BROWN, FINE
3'-5'	BROWN, FINE
5'-10'	BROWN, FINE
10'-15'	BROWN, FINE
15'-16'	BROWN, FINE
16'-25'	BROWN, FINE
25'-27'	BROWN, FINE
GROUNDW	ATER AT 8.3'
PERMEABIL	ITY=10.9 INC

SLR-9	
DEPTH=	=11.3'
0'-2.5'	DARK BROWN
2.5'-3'	BROWN, FINE
3'-11.3'	BROWN, FINE
GROUN	DWATER AT 8.8'

<u>SLR-10</u>	
DEPTH=32	ı
0'-0.5'	DARK BROW
0.5'-10'	BROWN, FIN
10'-15'	BROWN, FIN
15'-25'	BROWN, FIN
25'-32'	BROWN, FIN
GROUNDW	ATER AT 9'

BORINGS WERE PERFORMED ON DECEMBER 12, 2023, OBSERVED BY SLR CONSULTING

0.25'-1.4' GRAY-BROWN, FINE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT 1.4'-3.4' DARK BROWN, FINE TO MEDIUM SAND, LITTLE SILT, LITTLE FINE GRAVEL, TRACE ORGANIC MATTER 3.4'-5' GRAY-BROWN, FINE TO MEDIUM SAND, LITTLE SILT BROWN, FINE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT 10'-20' GRAY, FINE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, LITTLE SILT 20'-30' GRAY, FINE TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT 30'-32' BROWN, FINE TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

> TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT TO MEDIUM SAND, LITTLE SILT, SOME ORGANIC SILT, LITTLE FINE GRAVEL TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

HES/HOUR

E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT N, FINE TO COARSE SAND, SOME ORGANIC SILT N-BLACK, FINE TO COARSE SAND AND ORGANIC SILT, LITTLE FINE GRAVEL /N, FINE TO COARSE SAND, SOME SILT E TO COARSE SAND, SOME FINE TO COARSE GRAVEL, LITTLE SILT N, FINE TO COARSE SAND, LITTLE FINE GRAVEL, TRACE SILT TO COARSE SAND, LITTLE FINE GRAVEL, TRACE SILT TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

N, FINE TO MEDIUM SAND, SOME SILT, TRACE ORGANIC E TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT N-BLACK, FINE TO MEDIUM SAND, SOME ORGANIC SILT, TRACE FINE GRAVEL TO MEDIUM SAND, SOME ORGANIC SILT TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT TO COARSE SAND, TRACE FINE GRAVEL, TRACE SILT

IE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT IE TO COARSE SAND, LITTLE SILT WN, FINE TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT CHES/HOUR

E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

N, FINE TO MEDIUM SAND, SOME ORGANIC SILT E TO COARSE SAND, LITTLE SILT, TRACE FINE GRAVEL

E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

Y, FINE TO COARSE GRAVEL AND FINE TO COARSE SAND, TRACE SILT. E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

=10.6 INCHES/HOUR

E TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT

E TO MEDIUM SAND, LITTLE FINE GRAVEL E TO COARSE GRAVEL AND FINE TO COARSE SAND, TRACE SILT

E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

HES/HOUR

IE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT E TO COARSE GRAVEL AND FINE TO COARSE SAND, TRACE SILT

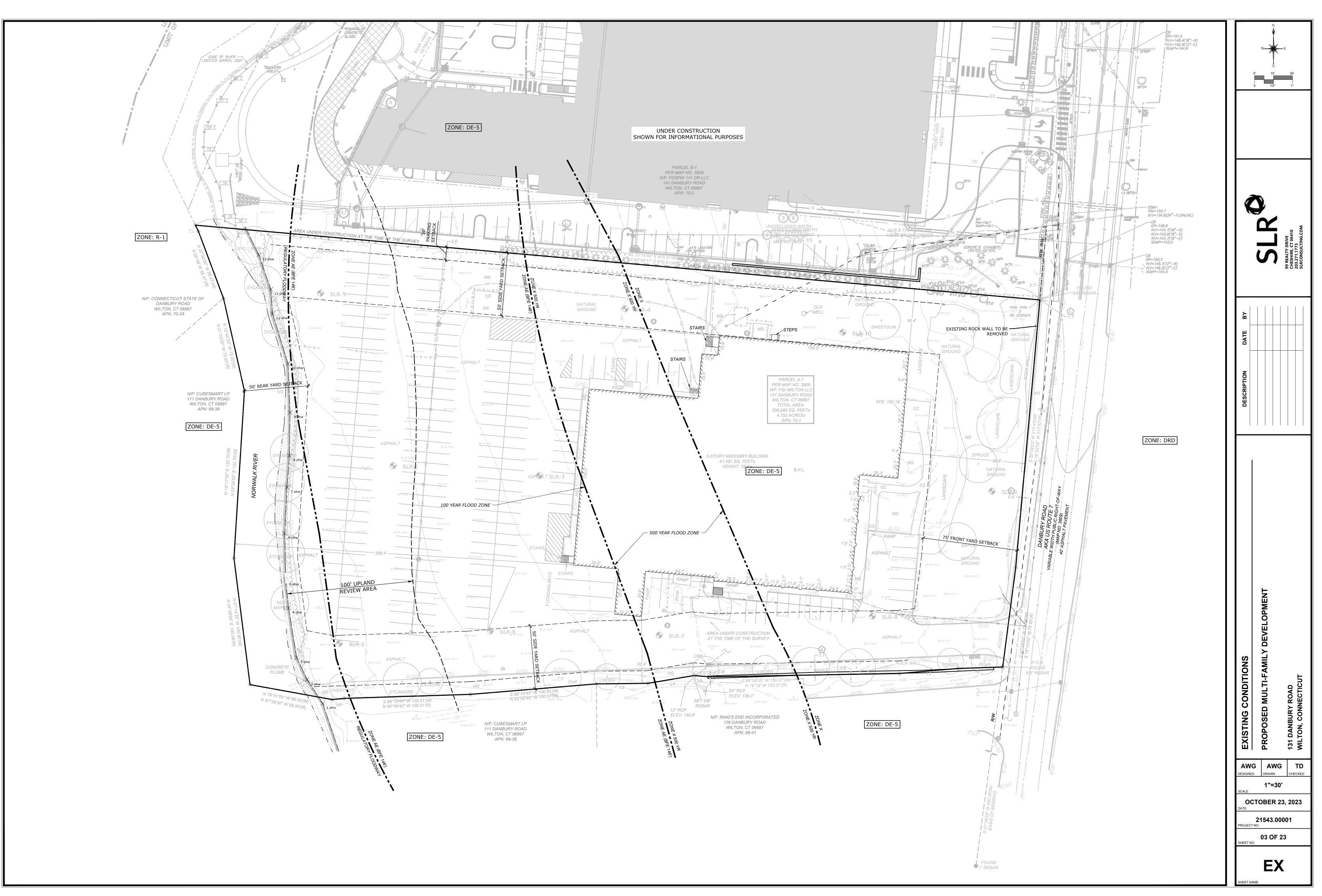
E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

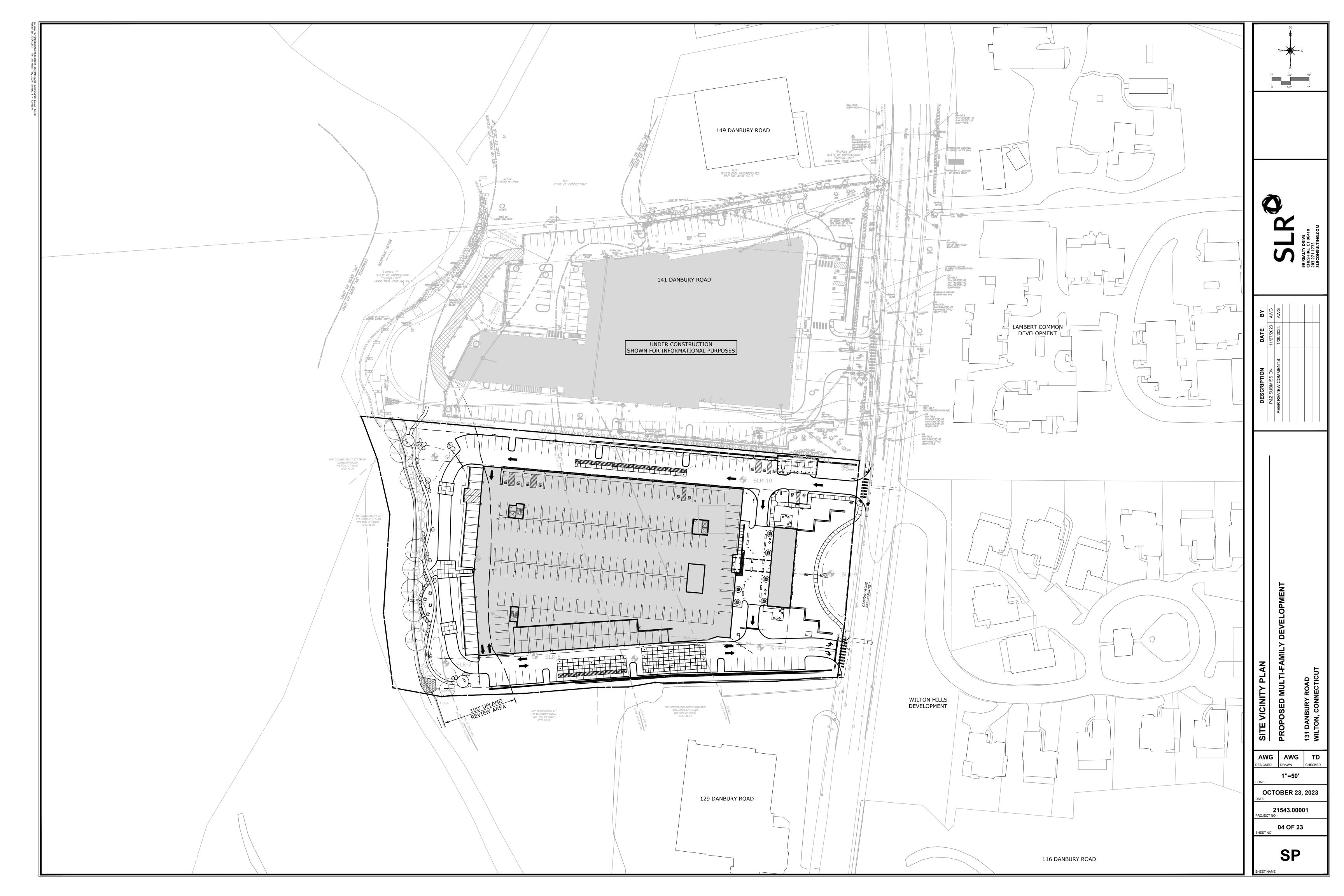
E TO COARSE GRAVEL AND FINE TO COARSE SAND, TRACE SILT E TO COARSE SAND, SOME SILT

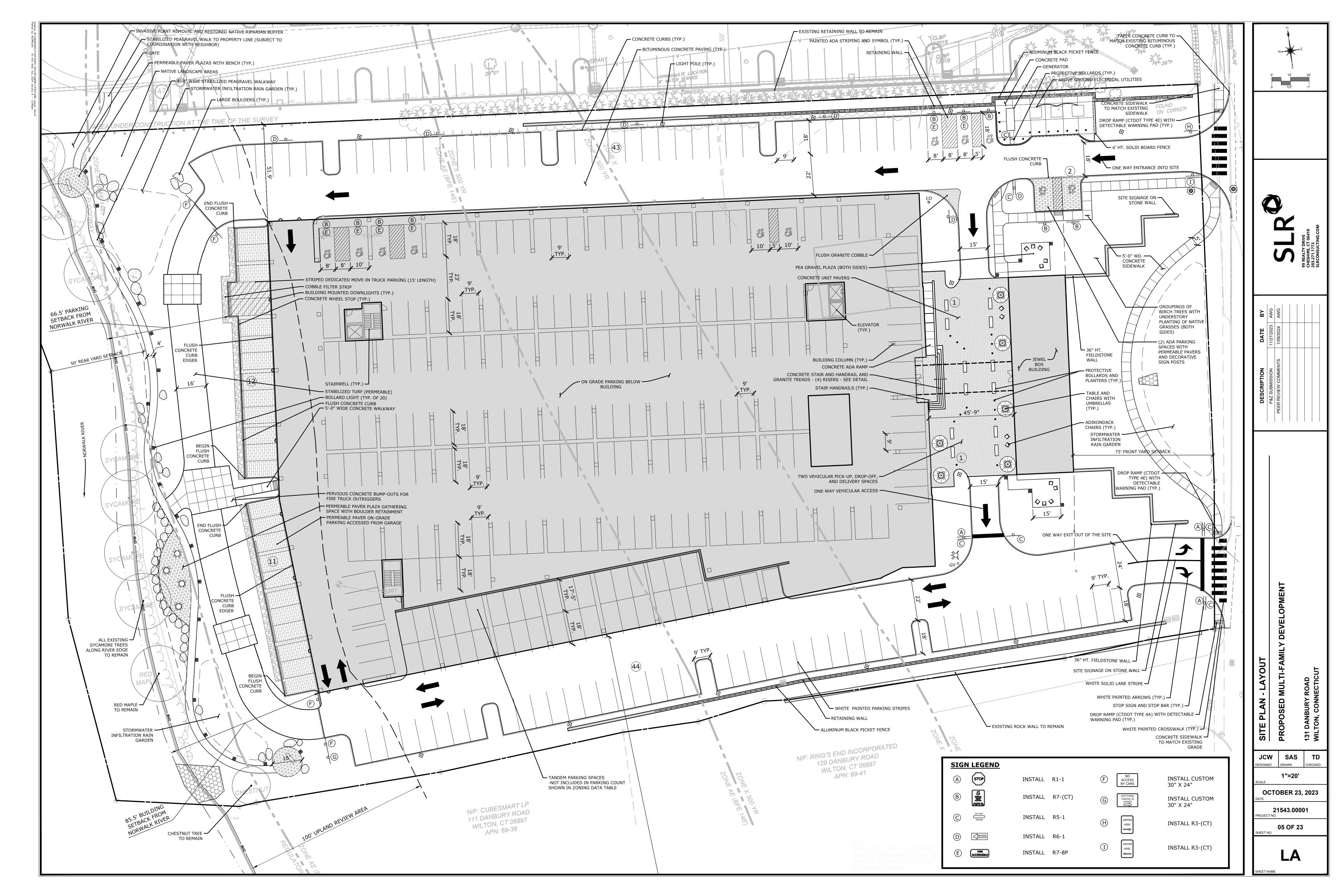
E TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT IE TO COARSE SAND, SOME FINE TO COARSE GRAVEL, TRACE SILT

NCHES/HOUR

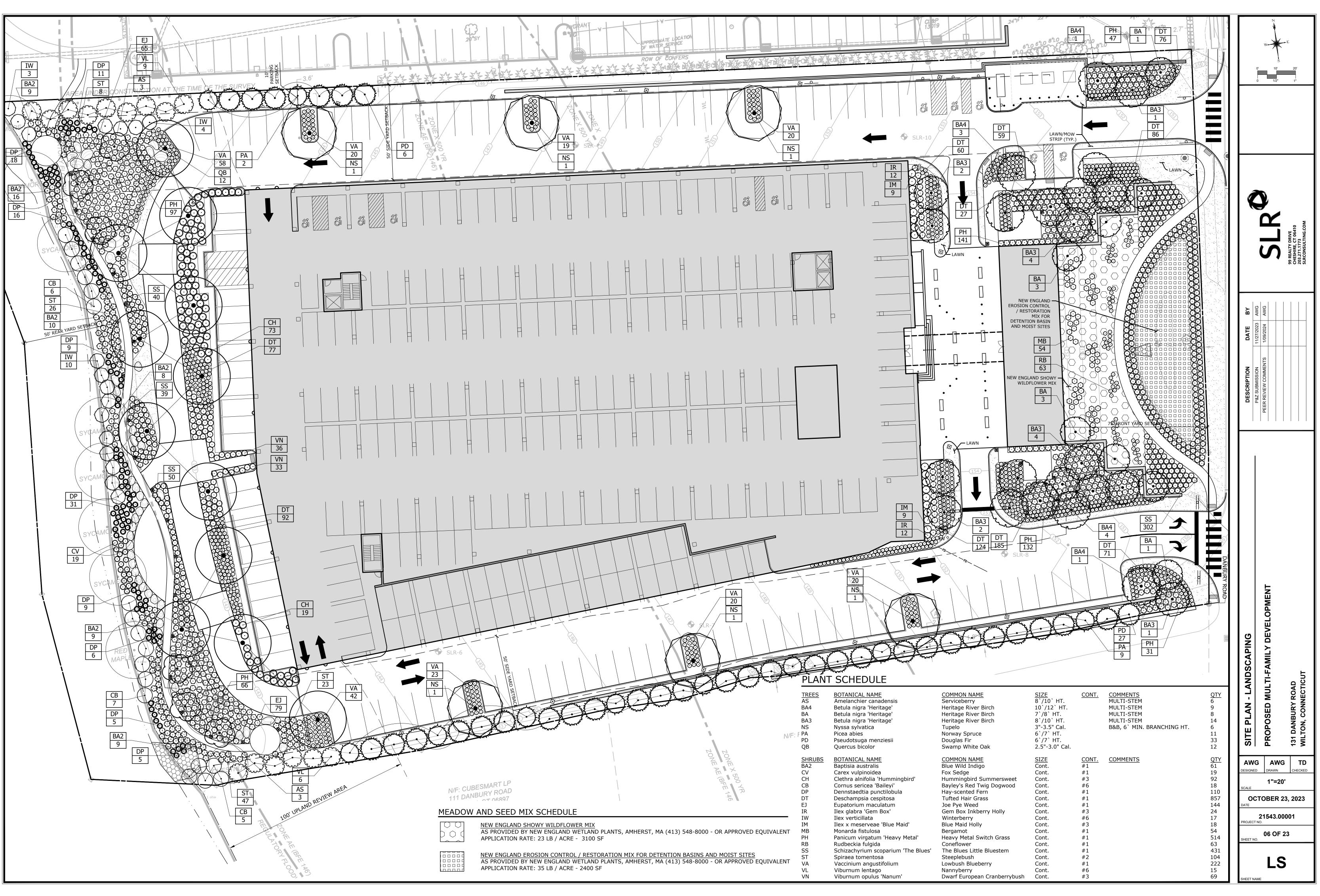
, FINE TO MEDIUM SAND, SOME SILT, TRACE ORGANIC MATTER TO MEDIUM SAND AND SILT, TRACE ORGANIC MATTER TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT


NN, FINE TO MEDIUM SAND, SOME SILT, TRACE ORGANIC MATTER, TRACE FINE L NE TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

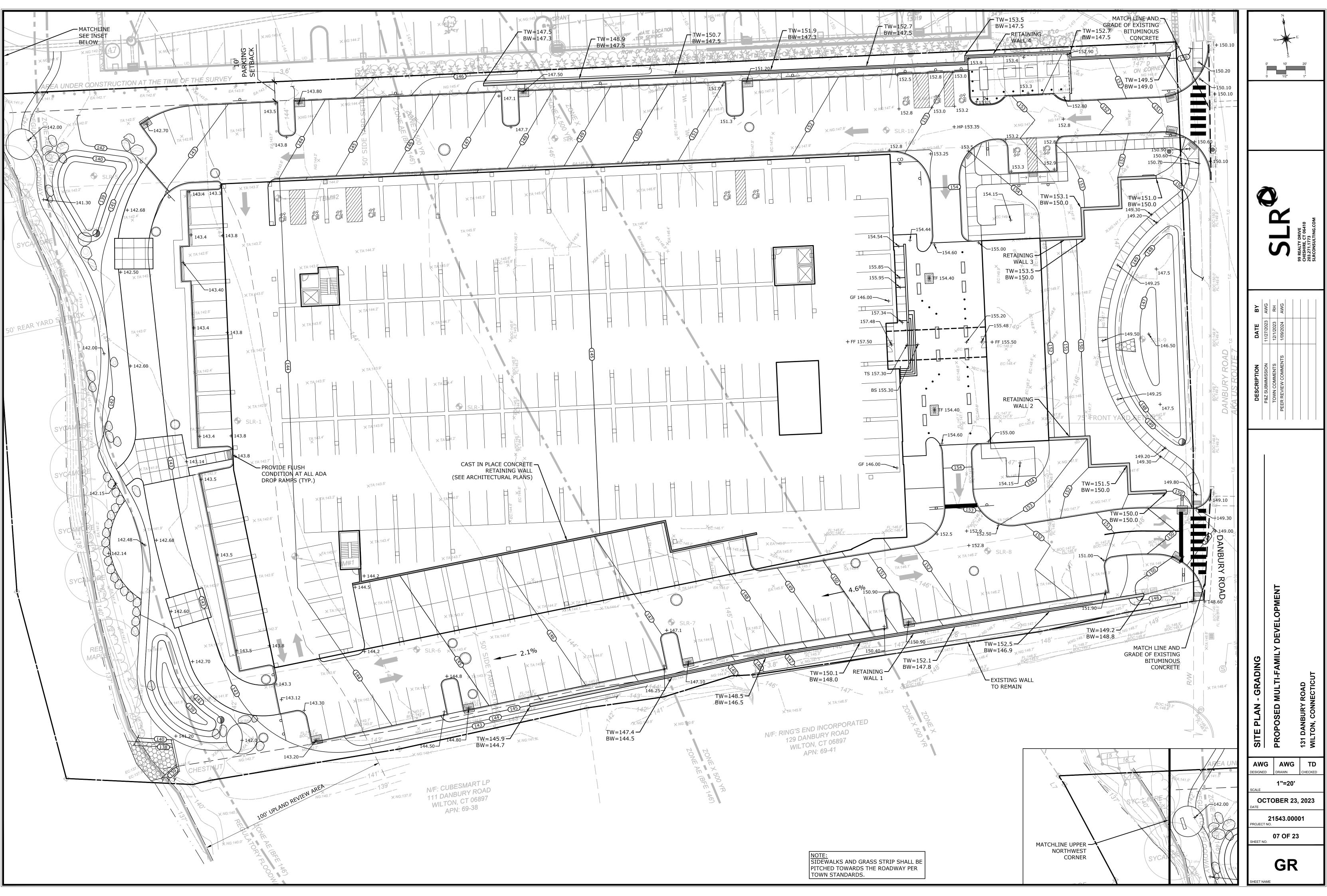

NE TO COARSE GRAVEL AND FINE TO COARSE SAND, TRACE SILT NE TO COARSE SAND AND FINE TO COARSE GRAVEL, TRACE SILT

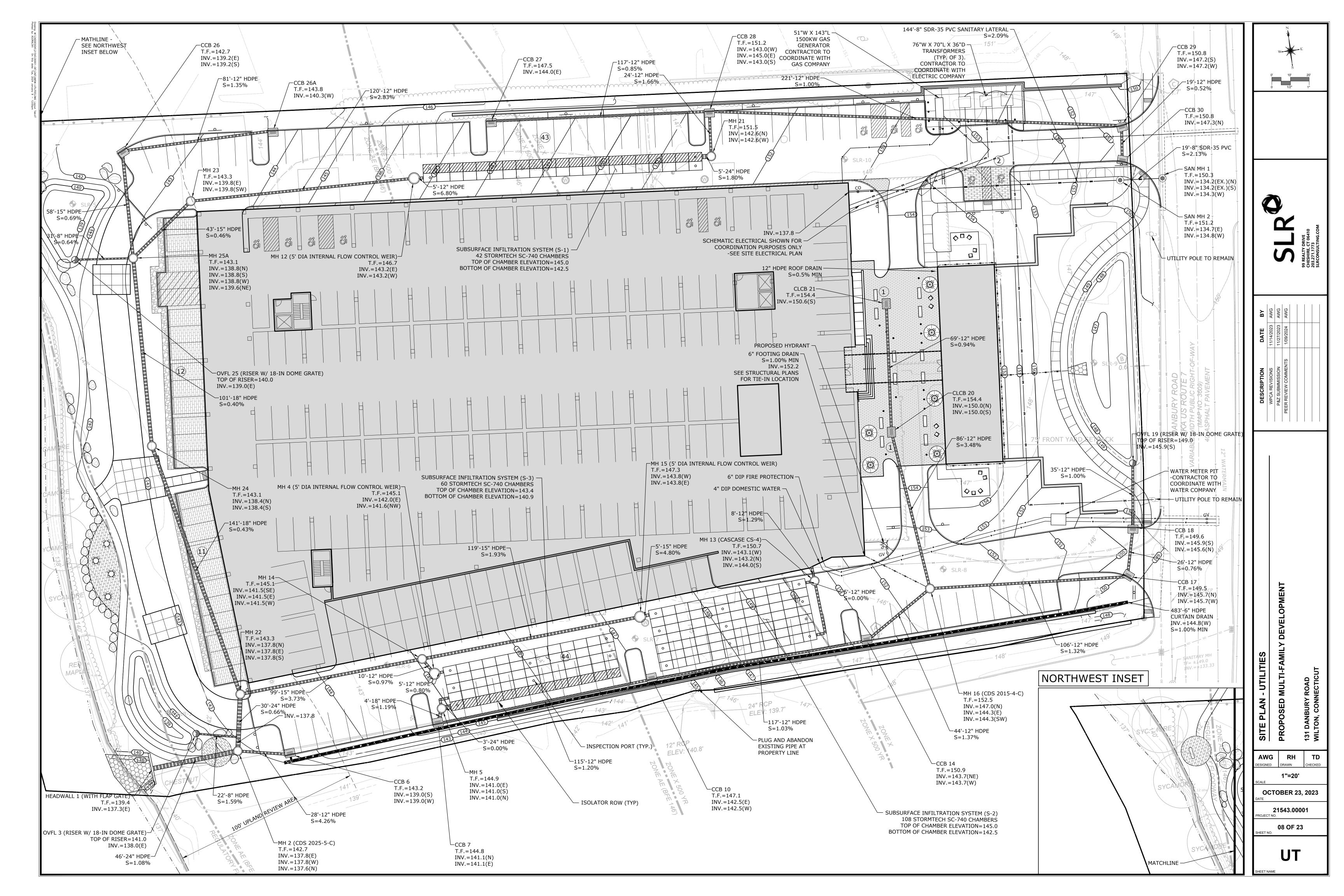

NE TO COARSE SAND, LITTLE FINE TO COARSE GRAVEL, TRACE SILT

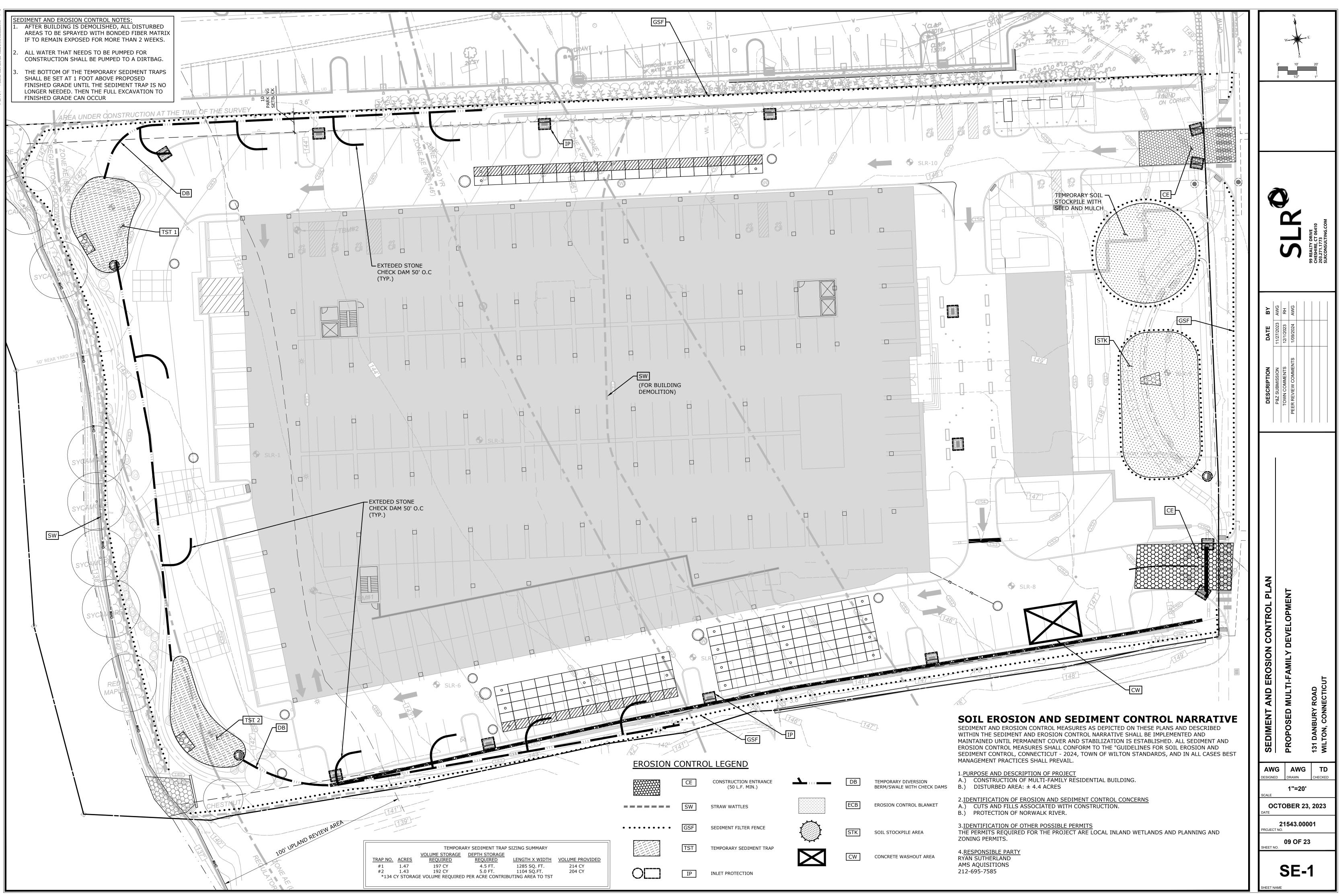
Ŕ	SLR	99 REALTY DRIVE CHESHIRE, CT 06410 203.271.1773 SLRCONSULTING.COM
	1/09/2024 AWG	
	PEEK REVIEW COMMEN IS 11	
NOTES AND LEGEND		131 DANBURY ROAD WILTON, CONNECTICUT
	AWG DESIGNEDAWG DRAWNTD CHECKEDNOT TO SCALE SCALEOCTOBER 23, 2023	
DATE	DATE 21543.00001 PROJECT NO. 03 OF 23	
SHEET NA	NL	
















CONTRACTOR SHALL LIMIT, INSOFAR AS POSSIBLE, THE SURFACE AREA OF EARTH MATERIALS EXPOSED BY CONSTRUCTION METHODS AND IMMEDIATELY PROVIDE PERMANENT AND TEMPORARY POLLUTION CONTROL MEASURES TO PREVENT CONTAMINATION OF ADJACENT WETLANDS, WATERCOURSES, AND WATERBODIES, AND TO

GENERAL:

# LAND GRADING GENERAL:

THE RESHAPING OF THE GROUND SURFACE BY EXCAVATION AND FILLING OR A

IMENT AND EROSION CONTROL SPECIFICATIONS

PREVENT, INSOFAR AS POSSIBLE, EROSION ON THE SITE

COMBINATION OF BOTH, TO OBTAIN PLANNED GRADES, SHALL PROCEED IN ACCORDANCE WITH THE FOLLOWING CRITERIA:

THESE GUIDELINES SHALL APPLY TO ALL WORK CONSISTING OF ANY AND ALL TEMPORARY

AND/OR PERMANENT MEASURES TO CONTROL WATER POLLUTION AND SOIL EROSION, AS

CONSTRUCTION ACTIVITIES SHALL PROCEED IN SUCH A MANNER SO AS NOT TO POLLUTE

ANY WETLANDS, WATERCOURSE, WATERBODY, AND CONDUIT CARRYING WATER, ETC. THE

MAY BE REQUIRED, DURING THE CONSTRUCTION OF THE PROJECT. IN GENERAL, ALL

- THE CUT FACE OF EARTH EXCAVATION SHALL NOT BE STEEPER THAN TWO HORIZONTAL TO ONE VERTICAL (2:1).
- THE PERMANENT EXPOSED FACES OF FILLS SHALL NOT BE STEEPER THAN TWO HORIZONTAL TO ONE VERTICAL (2:1)
- THE CUT FACE OF ROCK EXCAVATION SHALL NOT BE STEEPER THAN ONE HORIZONTAL TO FOUR VERTICAL (1:4).
- PROVISION SHOULD BE MADE TO CONDUCT SURFACE WATER SAFELY TO STORM DRAINS TO PREVENT SURFACE RUNOFF FROM DAMAGING CUT FACES AND FILL SLOPES
- e. EXCAVATIONS SHOULD NOT BE MADE SO CLOSE TO PROPERTY LINES AS TO ENDANGER ADJOINING PROPERTY WITHOUT PROTECTING SUCH PROPERTY FROM EROSION, SLIDING, SETTLING, OR CRACKING. NO FILL SHOULD BE PLACED WHERE IT WILL SLIDE OR WASH UPON THE
- PREMISES OF ANOTHER OWNER OR UPON ADJACENT WETLANDS,
- WATERCOURSES, OR WATERBODIES. PRIOR TO ANY REGRADING, A STABILIZED CONSTRUCTION ENTRANCE SHALL BE PLACED AT THE ENTRANCE TO THE WORK AREA IN ORDER TO REDUCE MUD AND OTHER SEDIMENTS FROM LEAVING THE SITE.

# <u>FOPSOILING</u>

- GENERAL
- TOPSOIL SHALL BE SPREAD OVER ALL EXPOSED AREAS IN ORDER TO PROVIDE A SOIL MEDIUM HAVING FAVORABLE CHARACTERISTICS FOR THE ESTABLISHMENT, GROWTH AND MAINTENANCE OF VEGETATION
- UPON ATTAINING FINAL SUBGRADES, SCARIFY SURFACE TO PROVIDE A GOOD BOND WITH TOPSOIL REMOVE ALL LARGE STONES, TREE LIMBS, ROOTS AND CONSTRUCTION DEBRIS.
- APPLY SOIL AMENDMENTS AS FOLLOWS: LIME: ACCORDING TO SOIL TEST OR AT THE RATE OF 2 TONS PER ACRE. ROCK DUST: ACCORDING TO SOIL TEST OR AT THE RATE OF 2 TONS PER ACRE

# MATERIAL:

- TOPSOIL SHOULD HAVE PHYSICAL, CHEMICAL, AND BIOLOGICAL CHARACTERISTICS FAVORABLE TO THE GROWTH OF PLANTS. TOPSOIL SHOULD HAVE A SANDY OR LOAMY TEXTURE.
- TOPSOIL SHOULD BE RELATIVELY FREE OF SUBSOIL MATERIAL AND MUST BE FREE OF LARGE STONES, LUMPS OF SOIL, ROOTS, TREE LIMBS, TRASH, OR CONSTRUCTION DEBRIS. IT SHOULD BE FREE OF ROOTS OR RHIZOMES SUCH AS THISTLE, NUTGRASS,
- AND OUACKGRASS. AN ORGANIC MATTER CONTENT OF SIX PERCENT (6%) IS REQUIRED. AVOID LIGHT COLORED SUBSOIL MATERIAL
- SOLUBLE SALT CONTENT OF LESS THAN 400 PPM IS REQUIRED. THE TOPSOIL SHALL BE WARRANTED BY SELLER TO BE FREE OF DETECTABLE RESIDUES OF CHEMICAL PESTICIDES, HERBICIDES, PETROLEUM PRODUCTS, OR

# APPLICATION:

- AVOID SPREADING WHEN TOPSOIL IS WET OR FROZEN.
- SPREAD TOPSOIL UNIFORMLY TO A DEPTH OF AT LEAST FOUR INCHES (4"), OR TO THE DEPTH SHOWN ON THE LANDSCAPING PLANS.

# EMPORARY VEGETATIVE COVER

OTHER UNSUITABLE TOXINS.

FEMPORARY VEGETATIVE COVER SHALL BE ESTABLISHED ON ALL UNPROTECTED AREAS THAT PRODUCE SEDIMENT, AREAS WHERE FINAL GRADING HAS BEEN COMPLETED, AND AREAS WHERE THE ESTIMATED PERIOD OF BARE SOIL EXPOSURE IS LESS THAN 12 MONTHS. TEMPORARY VEGETATIVE COVER SHALL BE APPLIED IF AREAS WILL NOT BE PERMANENTLY SEEDED BY SEPTEMBER 1.

# GENERAL:

- INSTALL REQUIRED SURFACE WATER CONTROL MEASURES. REMOVE LOOSE ROCK, STONE, AND CONSTRUCTION DEBRIS FROM AREA.
- APPLY SOIL AMENDMENTS AS FOLLOWS: LIME: ACCORDING TO SOIL TEST OR AT THE RATE OF 1 TONS PER ACRE. ROCK DUST: ACCORDING TO SOIL TEST OR AT THE RATE OF 1 TONS PER ACRE
- UNLESS HYDROSEEDED, WORK IN LIME TO A DEPTH OF 4 INCHES WITH A DISK OR ANY SUITABLE EQUIPMENT. DO NOT WORK FINISHED COMPOST INTO THE SOIL -APPLY IT EVENLY TO SOIL SURFACE AS A SEED BED. TILLAGE SHOULD ACHIEVE A REASONABLY UNIFORM LOOSE SEEDBED. WORK ON

## CONTOUR IF SITE IS SLOPING. SITE PREPARATION:

- SELECT APPROPRIATE SPECIES FOR THE SITUATION. NOTE RATES AND SEEDING
- DATES (SEE VEGETATIVE COVER SELECTION & MULCHING)
- APPLY SEED UNIFORMLY ACCORDING TO THE RATE INDICATED BY BROADCASTING, DRILLING, OR HYDRAULIC APPLICATION.
- UNLESS HYDROSEEDED, COVER RYEGRASS SEEDS WITH NOT MORE THAN 1/4 INCH OF SOIL USING SUITABLE EQUIPMENT. MULCH IMMEDIATELY AFTER SEEDING IF REOUIRED. (SEE VEGETATIVE COVER SELECTION & MULCHING SPECIFICATION BELOW.) APPLY STRAW AND ANCHOR TO SLOPES GREATER THAN 3%%% OR WHERE NEEDED.

## PERMANENT VEGETATIVE COVER

GENERAL

PERMANENT VEGETATIVE COVER SHALL BE ESTABLISHED AS VARIOUS SECTIONS OF THE PROJECT ARE COMPLETED IN ORDER TO STABILIZE THE SOIL, REDUCE DOWNSTREAM DAMAGE FROM SEDIMENT AND RUNOFF, AND TO ENHANCE THE AESTHETIC NATURE OF THE SITE, IT WILL BE APPLIED TO ALL CONSTRUCTION AREAS SUBJECT TO EROSION WHERE FINAL GRADING HAS BEEN COMPLETED AND A PERMANENT COVER IS NEEDED.

# SITE PREPARATION:

- INSTALL REQUIRED SURFACE WATER CONTROL MEASURES. REMOVE LOOSE ROCK, STONE, AND CONSTRUCTION DEBRIS FROM AREA.
- PERFORM ALL PLANTING OPERATIONS PARALLEL TO THE CONTOURS OF THE SLOPE. APPLY TOPSOIL AS INDICATED ELSEWHERE HEREIN. APPLY SOIL AMENDMENTS AS FOLLOWS:
- LIME: ACCORDING TO SOIL TEST OR AT THE RATE OF 1 TONS PER ACRE. ROCK DUST: ACCORDING TO SOIL TEST OR AT THE RATE OF 1 TONS PER ACRE UNLESS HYDROSEEDED. WORK IN LIME TO A DEPTH OF 4 INCHES WITH A DISK OR ANY SUITABLE EQUIPMENT. DO NOT WORK FINISHED COMPOST

# VEGETATED COVER SELECTION AND MULCHING

# TEMPORARY VEGETATIVE COVER:

PERENNIAL RYEGRASS 5 LBS./1,000 SQ.FT. (LOLIUM PERENNE) DUTCH WHITE CLOVER (TRIFOLIUM REPENS) 1/4 LBS PER 1000 SF. OR 6LBS/AC. * PERMANENT VEGETATIVE COVER:

#### DUTCH WHITE CLOVER 30% BARON KENTUCKY BLUEGRASS 30%

JAMESTOWN II CHEWINGS FESCUE 20% PALMER PERENNIAL RYEGRASS 20%

NEW ENGLAND EROSION CONTROL/R3ESOTRATION MIX FOR MOIST SITES AT 1/8 LB PER 1000 S.F. FOR 5 LBS/AC.

NEW ENGLAND SHOWY WILD FLOW MIX AT 1/16 LB PER 1000 S.F. OR 2 LBS/AC

* LOFTS - "TRIPLEX GENERAL" MIX OR APPROVED EQUAL. RECOMMENDED RATE/TIME SEEDING.

SPRING SEEDING: 4/1 to 5/31 FALL SEEDING: 8/16 to 10/15

**TEMPORARY MULCHING:** 

STRAY 70-90 LBS./1,000 SQ.FT. (TEMPORARY VEGETATIVE AREAS) WOOD FIBER IN HYDROMULCH SLURRY 25-50 LBS./1.000 SO. FT.

- ESTABLISHMENT: SMOOTH AND FIRM SEEDBED WITH CULTIPACKER OR OTHER SIMILAR EQUIPMENT PRIOR TO SEEDING (EXCEPT WHEN HYDROSEEDING). SELECT ADAPTED SEED MIXTURE FOR THE SPECIFIC SITUATION. NOTE RATES AND
- THE SEEDING DATES (SEE VEGETATIVE COVER SELECTION & MULCHING SPEC. BELOW) APPLY SEED UNIFORMLY ACCORDING TO RATE INDICATED, BY BROADCASTING, 3.
- DRILLING, OR HYDRAULIC APPLICATION. 4. COVER GRASS AND LEGUME SEED WITH NOT MORE THAN 1/4 INCH OF SOIL WITH
- SUITABLE EQUIPMENT (EXCEPT WHEN HYDROSEEDING). MULCH IMMEDIATELY AFTER SEEDING, IF REQUIRED, ACCORDING TO TEMPORARY MULCHING SPECIFICATIONS. (SEE VEGETATIVE COVER SELECTION & MULCHING
- SPECIFICATION BELOW). USE PROPER INOCULAT ON ALL LEGUME SEEDLINGS, USE FOUR (4) TIMES NORMAL RATES WHEN HYDROSEEDING. USE SOD WHERE THERE IS A HEAVY CONCENTRATION OF WATER AND IN CRITICAL
- AREAS WHERE IT IS IMPORTANT TO GET A QUICK VEGETATIVE COVER TO PREVENT EROSION.

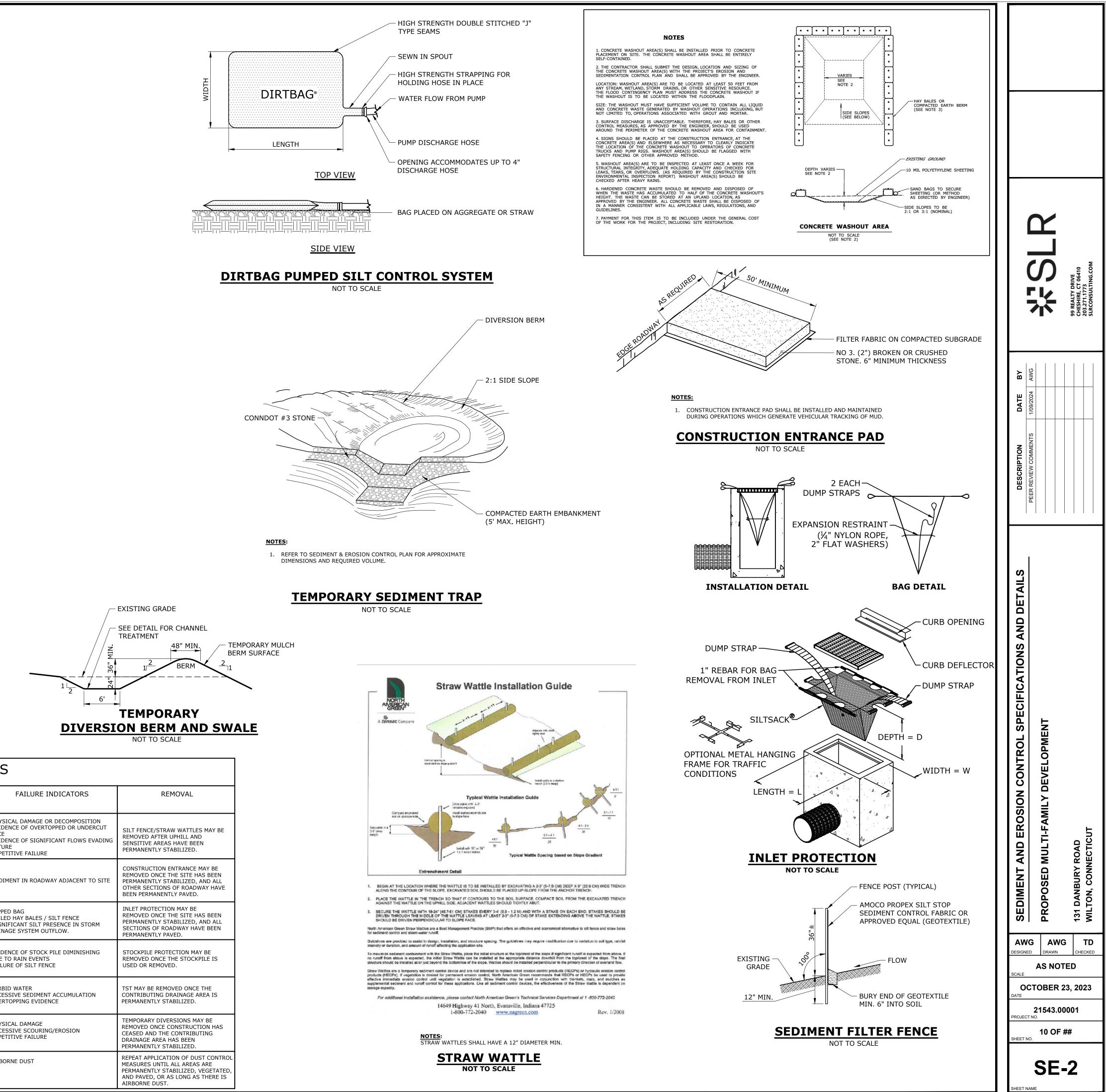
# MAINTENANCE

1. TEST FOR SOIL ACIDITY EVERY THREE (3) YEARS AND LIME AS REQUIRED.

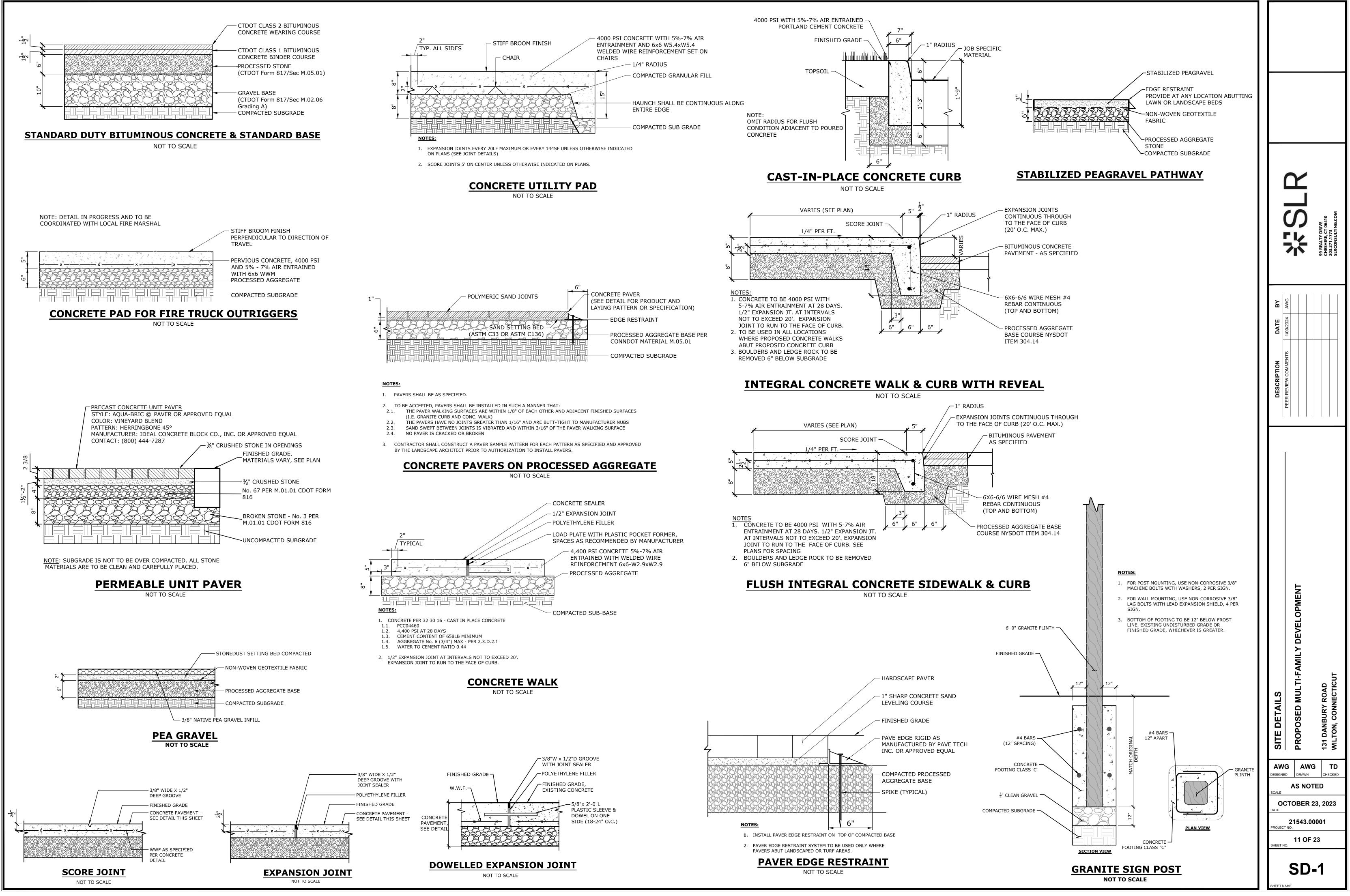
EROSION CHECKS

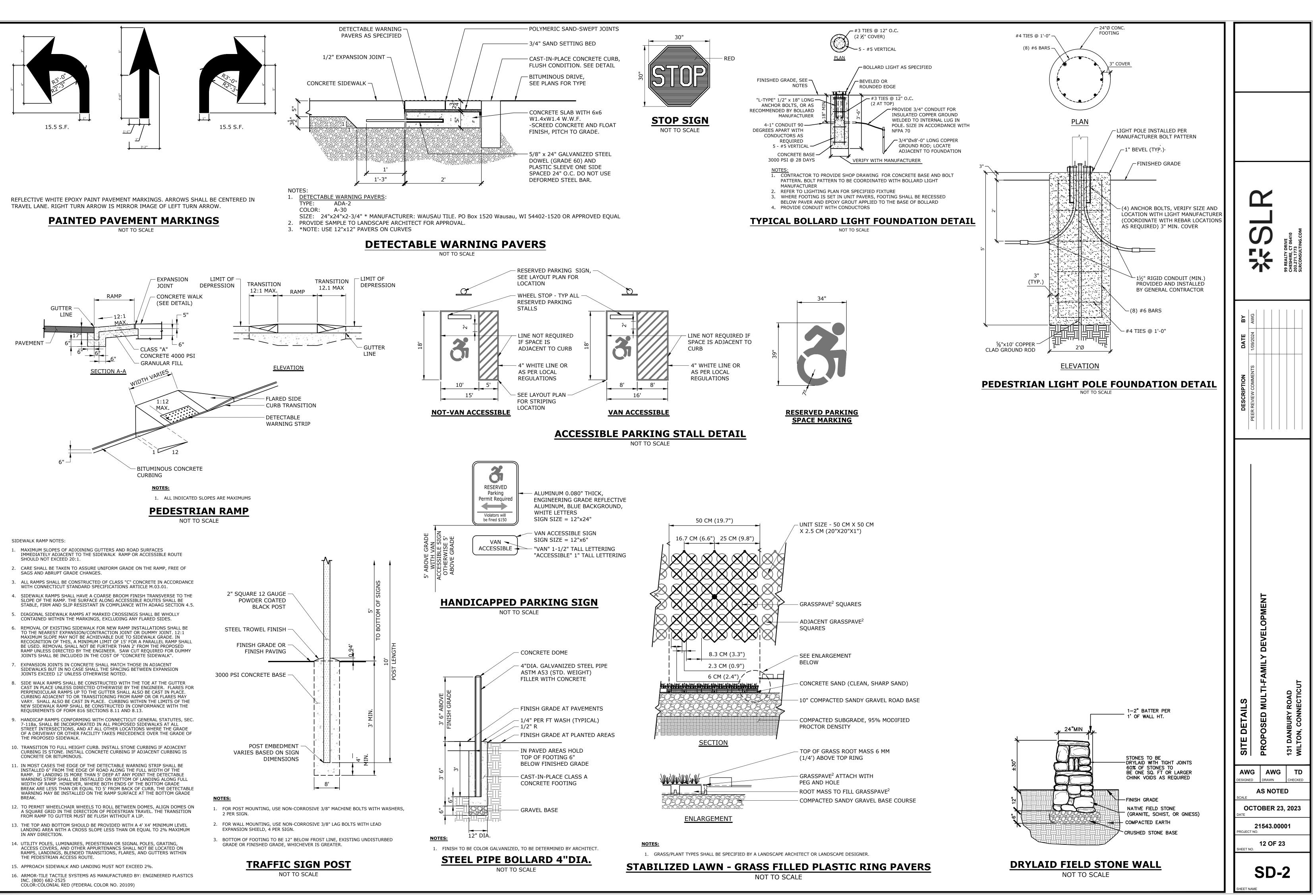
# GENERAL:

1. TEMPORARY PERVIOUS BARRIERS USING BALES OF HAY OR STRAW, HELD IN PLACE WITH STAKES DRIVEN THROUGH THE BALES AND INTO THE GROUND OR GEOTEXTILE FABRIC FASTENED TO A FENCE POST AND BURIED INTO THE GROUND, SHALL BE INSTALLED AND MAINTAINED AS REQUIRED TO CHECK EROSION AND REDUCE SEDIMENTATION. CONSTRUCTION:

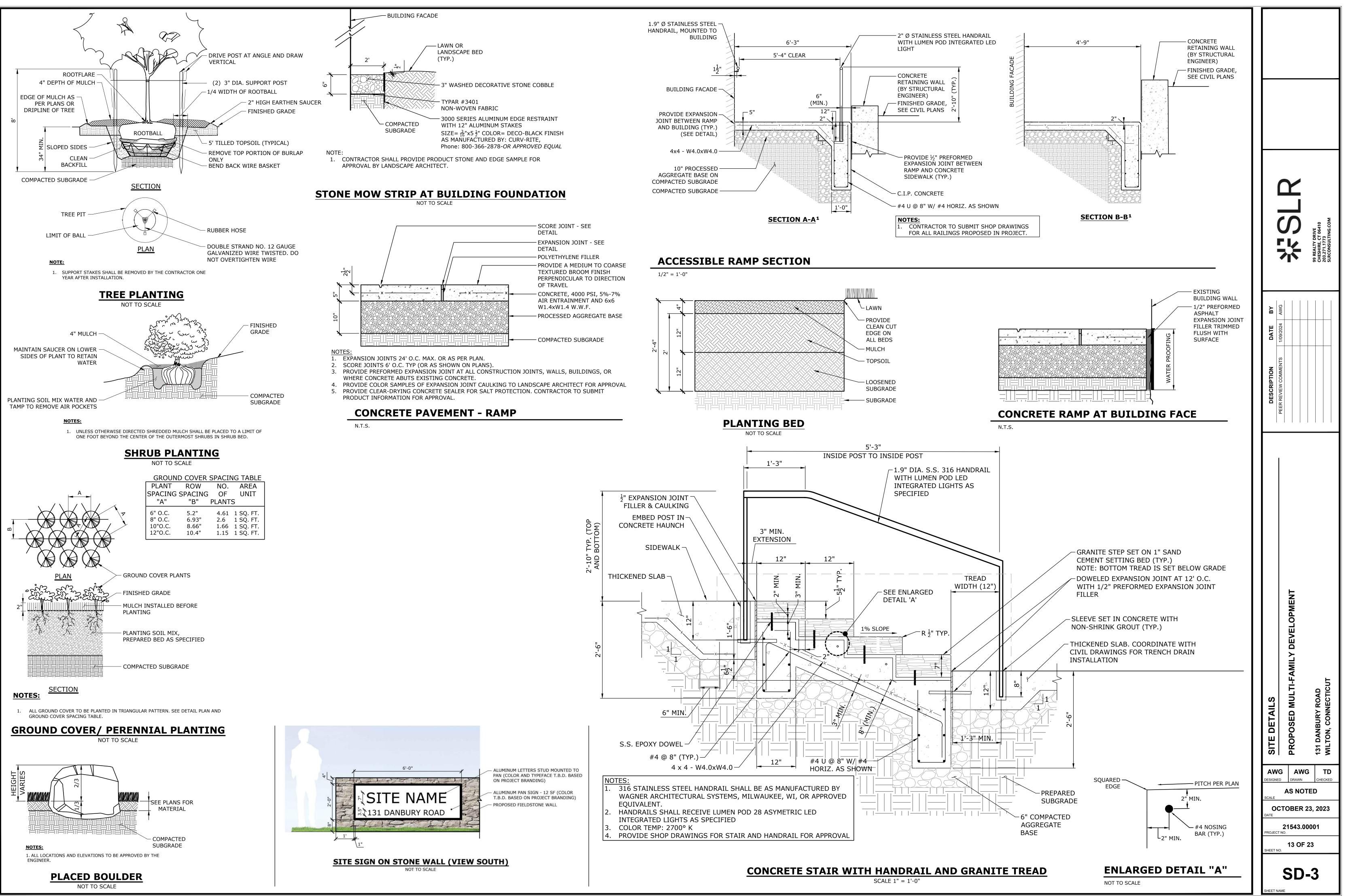

- BALES SHOULD BE PLACED IN A ROW WITH ENDS TIGHTLY ABUTTING THE
- ADJACENT BALES. EACH BALE SHALL BE EMBEDDED INTO THE SOIL A MINIMUM OF FOUR (4") INCHES. BALES SHALL BE SECURELY ANCHORED IN PLACE BY WOOD STAKES OR REINFORCEMENT BARS DRIVEN THROUGH THE BALES AND INTO THE GROUND. THE FIRST STAKE IN EACH BALE SHALL BE ANGLED TOWARD THE PREVIOUSLY LAID BALE
- TO FORCE BALES TOGETHER. GEOTEXTILE FABRIC SHALL BE SECURELY ANCHORED AT THE TOP OF A THREE FOOT 4. (3') HIGH FENCE AND BURIED A MINIMUM OF FOUR INCHES (4") TO THE SOIL. SEAMS BETWEEN SECTIONS OF FILTER FABRIC SHALL OVERLAP A MINIMUM OF TWO FEET (2').

INSTALLATION AND MAINTENANCE: BALED HAY EROSION BARRIERS SHALL BE INSTALLED AT ALL STORM SEWER INLETS.

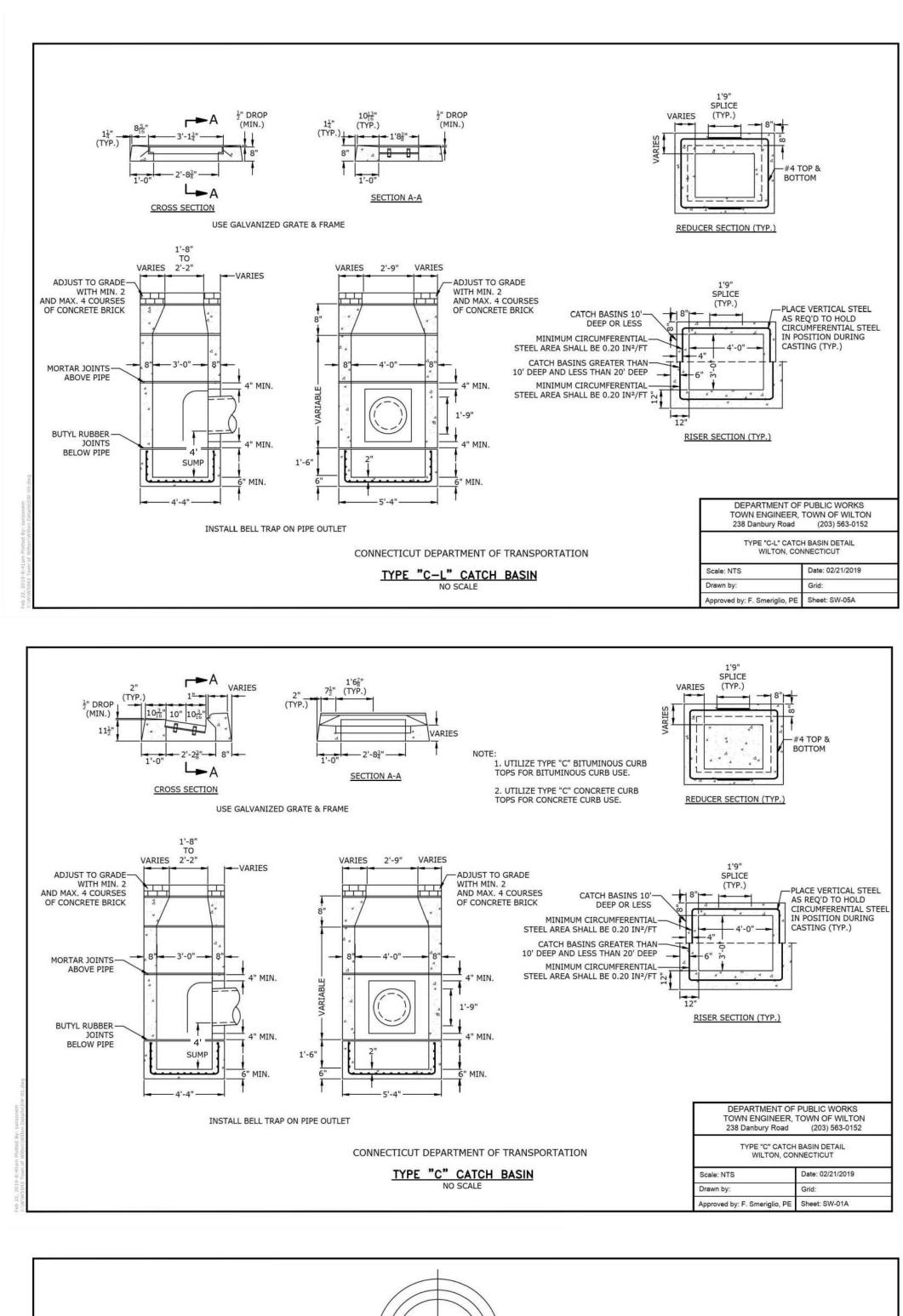

- BALED HAY EROSION BARRIERS AND GEOTEXTILE FENCE SHALL BE INSTALLED AT
- THE LOCATION INDICATED ON THE PLAN AND IN ADDITIONAL AREAS AS MAY BE DEEMED APPROPRIATE DURING CONSTRUCTION.
- ALL EROSION CHECKS SHALL BE MAINTAINED UNTIL ADJACENT AREAS ARE STABILIZED
- INSPECTION SHALL BE FREQUENT (AT MINIMUM MONTHLY AND BEFORE AND AFTER HEAVY RAIN) AND REPAIR OR REPLACEMENT SHALL BE MADE PROMPTLY AS NEEDED.
- EROSION CHECKS SHALL BE REMOVED WHEN THEY HAVE SERVED THEIR USEFULNESS SO AS NOT TO BLOCK OR IMPEDE STORMWATER FLOW OR DRAINAGE.

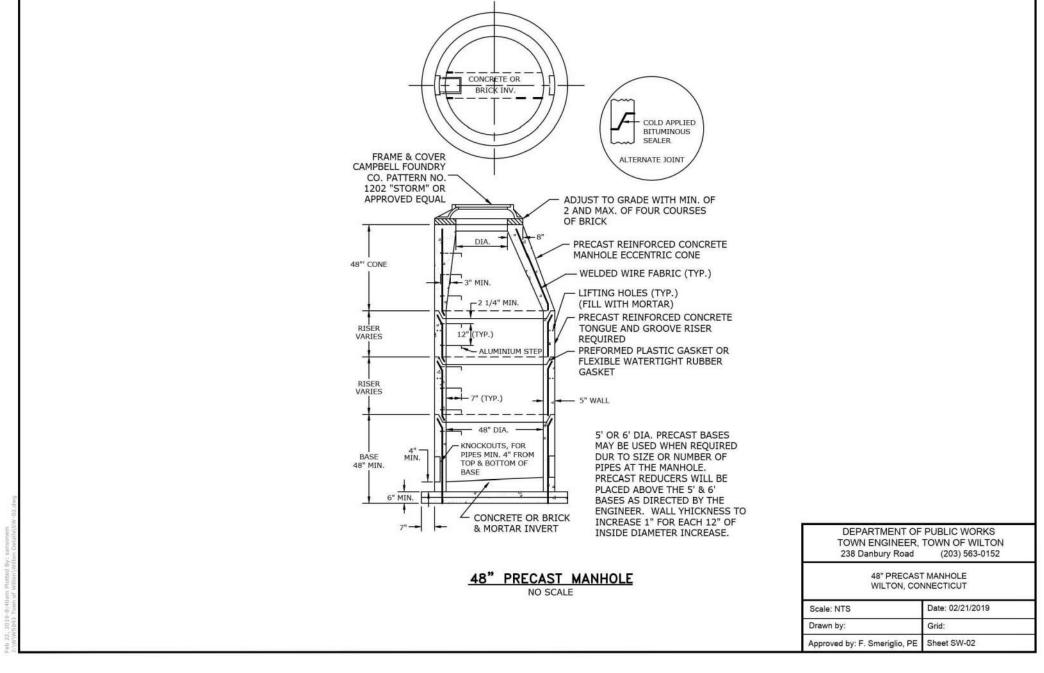

# **EROSION CONTROL MAINTENANCE INTERVALS**

EROSION CONTROL MEASURE	CONTROL OBJECTIVE	INSPECTION/MAINTENANCE					
SILT FENCE (SF) STRAW WATTLES (SW) (RELATED: IP, STK)	<ul> <li>- INTERCEPT, AND REDIRECT/DETAIN</li> <li>SMALL AMOUNTS OF SEDIMENT FROM</li> <li>SMALL DISTURBED AREAS.</li> <li>- DECREASE VELOCITY OF SHEET FLOW.</li> <li>- PROTECT SENSITIVE SLOPES OR SOILS</li> <li>FROM EXCESSIVE WATER FLOW.</li> </ul>	INSPECT AT LEAST ONCE A WEEK AND WITHIN 24 HOURS OF THE END OF A STORM WITH A RAINFALL OF 0.5 INCHES OR MORE. ACCUMULATED SEDIMENT MUST BE REMOVED ONCE ITS DEPTH IS EQUAL TO ½ THE TRENCH HEIGHT. INSPECT FREQUENTLY DURING PUMPING OPERATIONS IF USED FOR DEWATERING OPERATIONS.					
CONSTRUCTION ENTRANCE (CE)	- REDUCE THE TRACKING OF SEDIMENT OFF-SITE ONTO PAVED SURFACES.	INSPECT AT THE END OF EACH WORK DAY AND IMMEDIATELY REPAIR DAMAGES. PERIODIC ADDITION OF STONE, OR LENGTHENING OF ENTRANCE MAY BE REQUIRED AS CONDITIONS DEMAND. ALL SEDIMENT SPILLED, DROPPED, WASHED, OR TRACKED ONTO PAVED SURFACES AS A RESULT OF INEFFICIENCY OF CONSTRUCTION ENTRANCE SHALL BE IMMEDIATELY REMOVED.	- SEDII				
INLET PROTECTION (IP)	- PROHIBIT SILT IN CONSTRUCTION-RELATED RUNOFF FROM ENTERING STORM DRAINAGE SYSTEM.	INSPECT AFTER ANY RAIN EVENT. IF FILTER BAG INSIDE CATCH BASIN CONTAINS MORE THAN 6" OF SEDIMENT, REMOVE SEDIMENT FROM BAG. CHECK SURROUNDING SILT FENCE AND HAY BALES PER NOTED ABOVE.					
STOCKPILE PROTECTION (STK)	- RETAIN SOIL STOCKPILE IN LOCATIONS SPECIFIED, AND REDUCE WATER-TRANSPORT.	INSPECT SILT FENCE AT THE END OF EACH WORK DAY AND IMMEDIATELY REPAIR DAMAGES. PERIODIC REINFORCEMENT OF SILT FENCE, OR ADDITION OF HAY BALES MAY BE NECESSARY.					
TEMPORARY SEDIMENT TRAP (TST)	- DETAIN SEDIMENT-LADEN RUNOFF FROM SMALL DISTURBED AREAS LONG ENOUGH TO ALLOW A MAJORITY OF THE SEDIMENT TO SETTLE OUT.	INSPECT AT LEAST ONCE A WEEK AND WITHIN 24 HOURS OF THE END OF A STORM WITH A RAINFALL OF 0.5 INCHES OR MORE. STONE OUTLET SHOULD BE AT LEAST 1 FOOT BELOW CREST OF EMBANKMENT. SEDIMENT MUST BE REMOVED WHEN ACCUMULATION REACHES ½ OF THE REQUIRED WET STORAGE.					
TEMPORARY DIVERSION BERM/SWALE (DB)	<ul> <li>MINIMIZE VELOCITY AND CONCENTRATION OF SHEET FLOW ACROSS CONSTRUCTION SITE TO A SEDIMENT TRAPPING FACILITY.</li> <li>DIVERT WATER ORIGINATING FROM UNDISTURBED AREA AWAY FROM CONSTRUCTION.</li> </ul>	WHEN LOCATED WITHIN CLOSE PROXIMITY TO ONGOING CONSTRUCTION ACTIVITIES, INSPECT AT THE END OF EACH WORK DAY AND IMMEDIATELY REPAIR DAMAGES. OTHERWISE INSPECT AT LEAST ONCE A WEEK AND WITHIN 24 HOURS OF THE END OF A STORM WITH A RAINFALL OF 0.5 INCHES OR MORE. REPAIR THE TEMPORARY MEASURE AND ANY OTHER ASSOCIATED MEASURES WITHIN 24 HOURS.					
DUST CONTROL (DC)	- TO PREVENT MOVEMENT OF DUST FROM EXPOSED SOIL SURFACES, WHICH MAY CAUSE BOTH OFF-SITE AND ON-SITE DAMAGE, BE A HEALTH HAZARD TO HUMANSILDLIFE, AND PLANT LIFE, OR CREATE A HAZARD BY REDUCING TRAFFIC VISIBILITY.	USE MECHANICAL SWEEPING DAILY ON PAVED AREAS WHERE DUST AND FINE MATERIALS ACCUMULATE, IF HEAVILY TRAFFICKED AND SEDIMENT ACCUMULATES QUICKLY. PERIODICALLY MOISTEN UNPAVED TRAVELWAYS TO CONTROL DUST WHEN EVIDENCE OF AIRBORNE DUST.	-AIRBO				




Copyright SLR International Cor

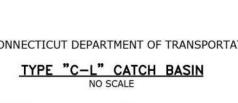


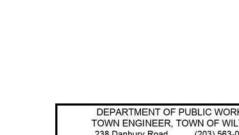







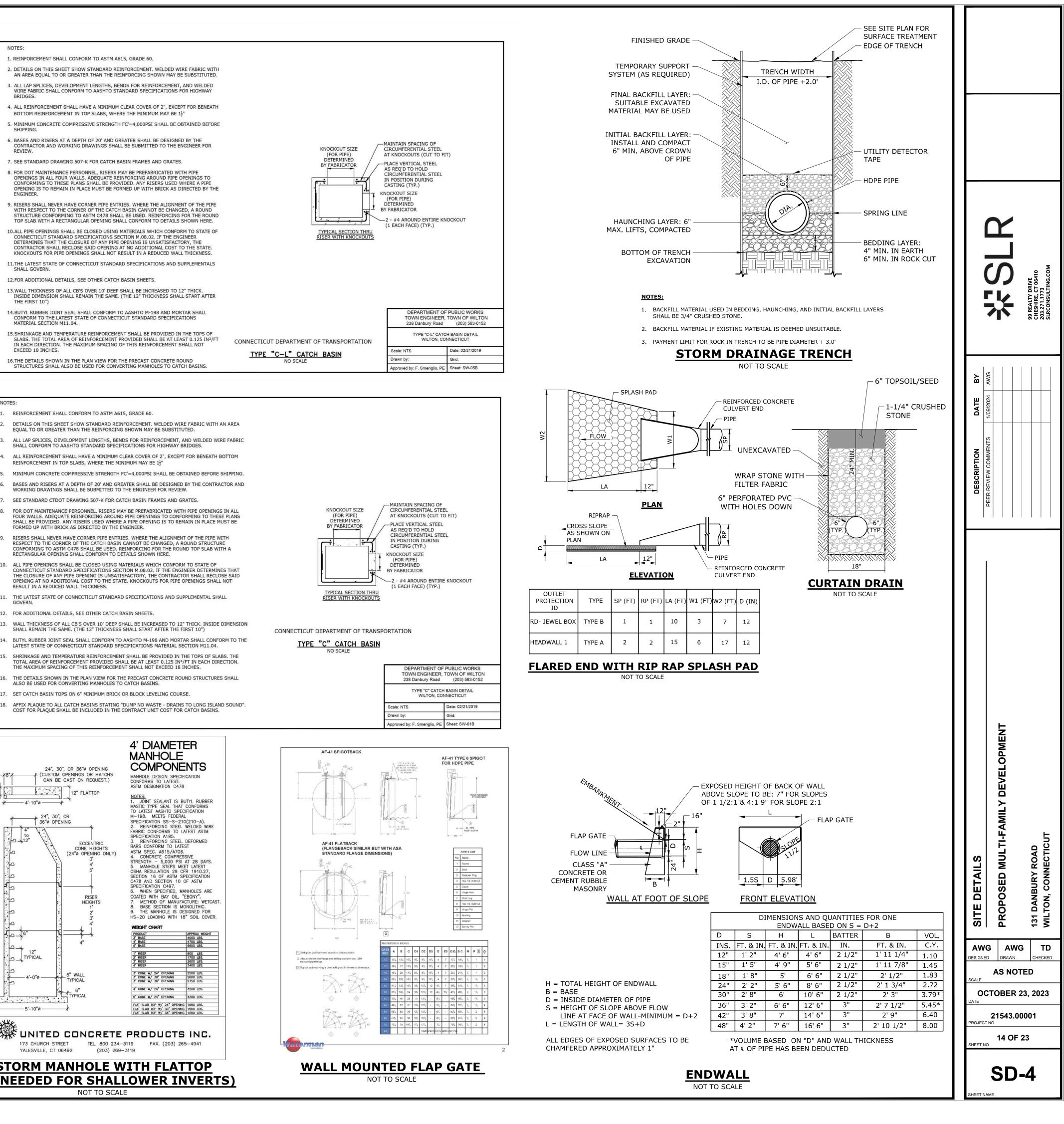


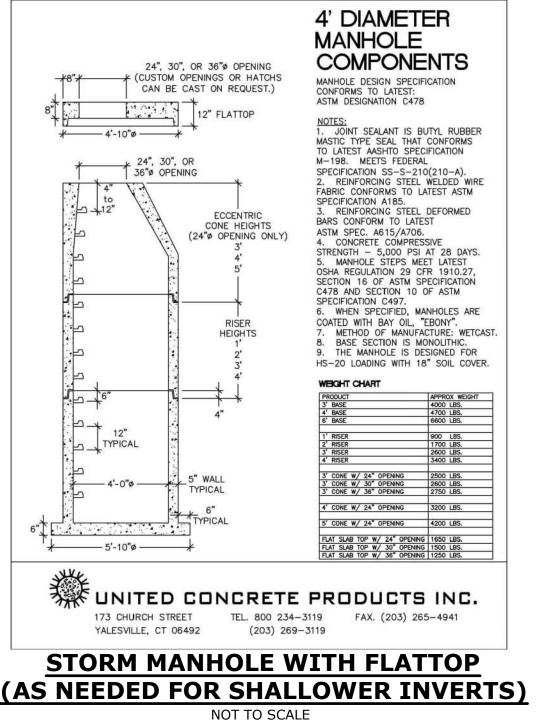

### NOTES:

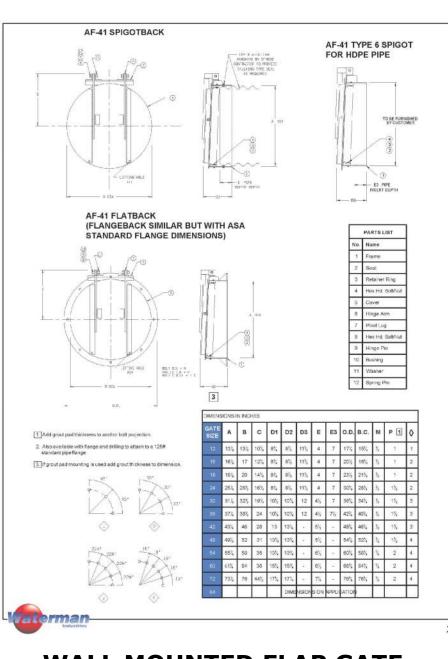
NOTES:

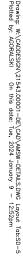

- 1. REINFORCEMENT SHALL CONFORM TO ASTM A615, GRADE 60
- AN AREA EQUAL TO OR GREATER THAN THE REINFORCING SHOWN MAY BE SUBSTITUTED.
- WIRE FABRIC SHALL CONFORM TO AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES.
- 4. ALL REINFORCEMENT SHALL HAVE A MINIMUM CLEAR COVER OF 2", EXCEPT FOR BENEATH BOTTOM REINFORCEMENT IN TOP SLABS, WHERE THE MINIMUM MAY BE  $1\frac{1}{2}$
- SHIPPING
- CONTRACTOR AND WORKING DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW.
- 7. SEE STANDARD DRAWING 507-K FOR CATCH BASIN FRAMES AND GRATES. 8. FOR DOT MAINTENANCE PERSONNEL, RISERS MAY BE PREFABRICATED WITH PIPE
- OPENINGS IN ALL FOUR WALLS. ADEQUATE REINFORCING AROUND PIPE OPENINGS TO CONFORMING TO THESE PLANS SHALL BE PROVIDED. ANY RISERS USED WHERE A PIPE
- 9. RISERS SHALL NEVER HAVE CORNER PIPE ENTRIES. WHERE THE ALIGNMENT OF THE PIPE WITH RESPECT TO THE CORNER OF THE CATCH BASIN CANNOT BE CHANGED, A ROUND
- 10.ALL PIPE OPENINGS SHALL BE CLOSED USING MATERIALS WHICH CONFORM TO STATE OF CONNECTICUT STANDARD SPECIFICATIONS SECTION M.08.02. IF THE ENGINEER TERMINES THAT THE CLOSURE OF ANY PIPE OPENING IS UNSATISFACTORY, THE CONTRACTOR SHALL RECLOSE SAID OPENING AT NO ADDITIONAL COST TO THE STATE.
- KNOCKOUTS FOR PIPE OPENINGS SHALL NOT RESULT IN A REDUCED WALL THICKNESS.
- 13.WALL THICKNESS OF ALL CB'S OVER 10' DEEP SHALL BE INCREASED TO 12" THICK. INSIDE DIMENSION SHALL REMAIN THE SAME. (THE 12" THICKNESS SHALL START AFTER THE FIRST 10")
- 14.BUTYL RUBBER JOINT SEAL SHALL CONFORM TO AASHTO M-198 AND MORTAR SHALL CONFORM TO THE LATEST STATE OF CONNECTICUT STANDARD SPECIFICATIONS MATERIAL SECTION M11.04.
- 15.SHRINKAGE AND TEMPERATURE REINFORCEMENT SHALL BE PROVIDED IN THE TOPS OF SLABS. THE TOTAL AREA OF REINFORCEMENT PROVIDED SHALL BE AT LEAST 0.125 IN²/FT IN EACH DIRECTION. THE MAXIMUM SPACING OF THIS REINFORCEMENT SHALL NOT EXCEED 18 INCHES.
- 16.THE DETAILS SHOWN IN THE PLAN VIEW FOR THE PRECAST CONCRETE ROUND STRUCTURES SHALL ALSO BE USED FOR CONVERTING MANHOLES TO CATCH BASINS.

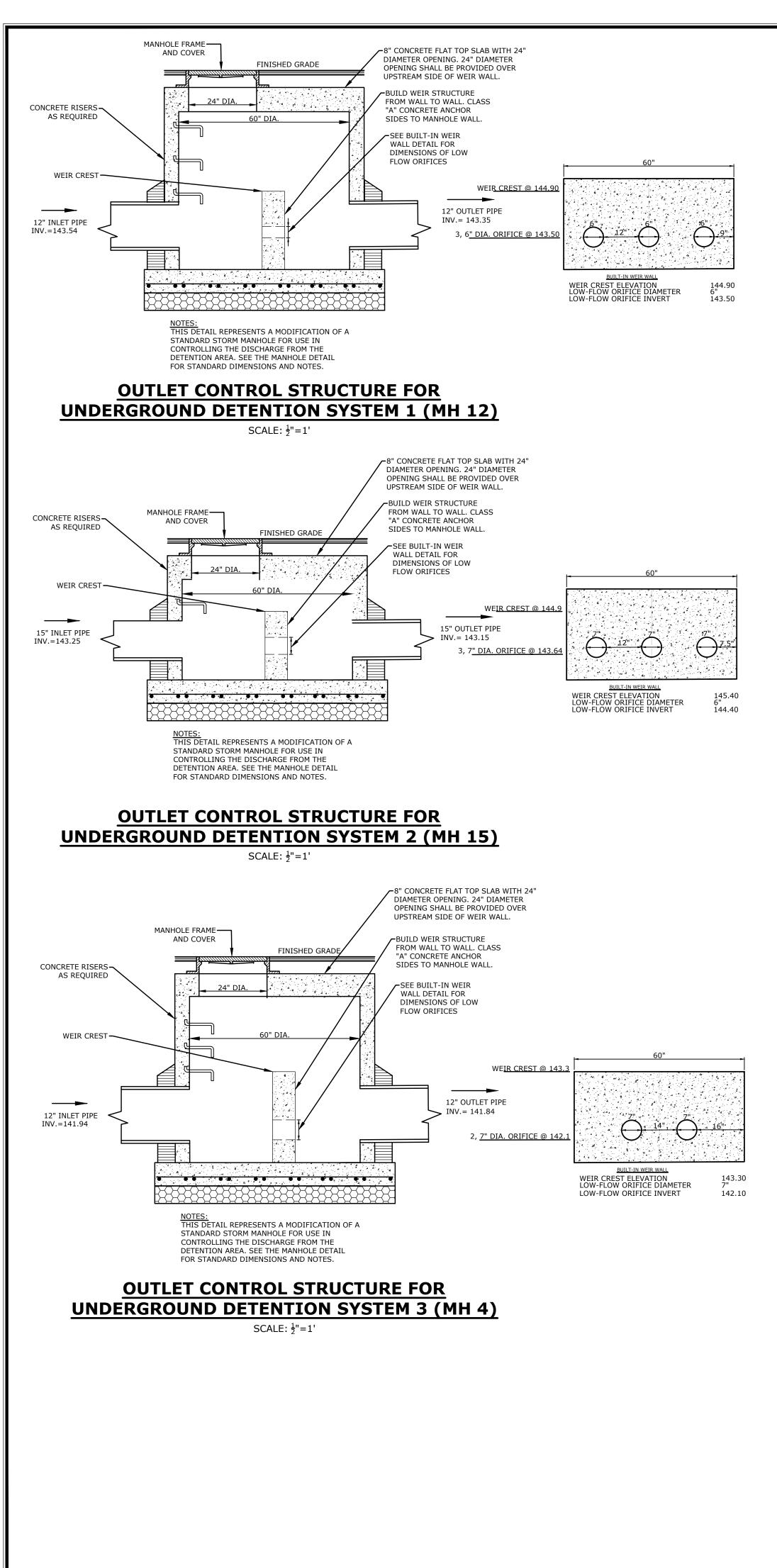


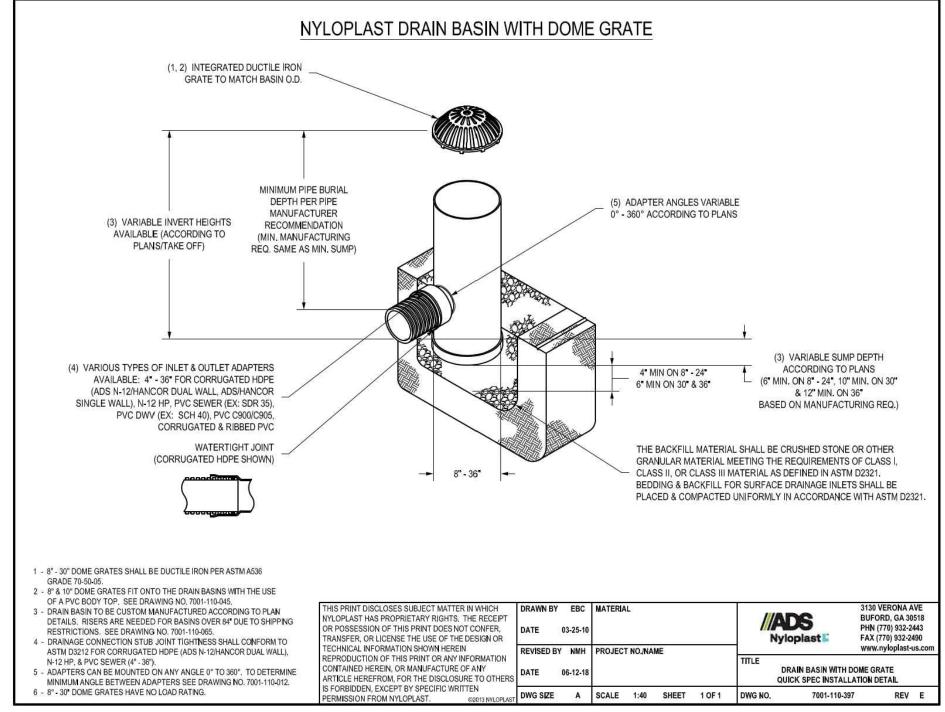


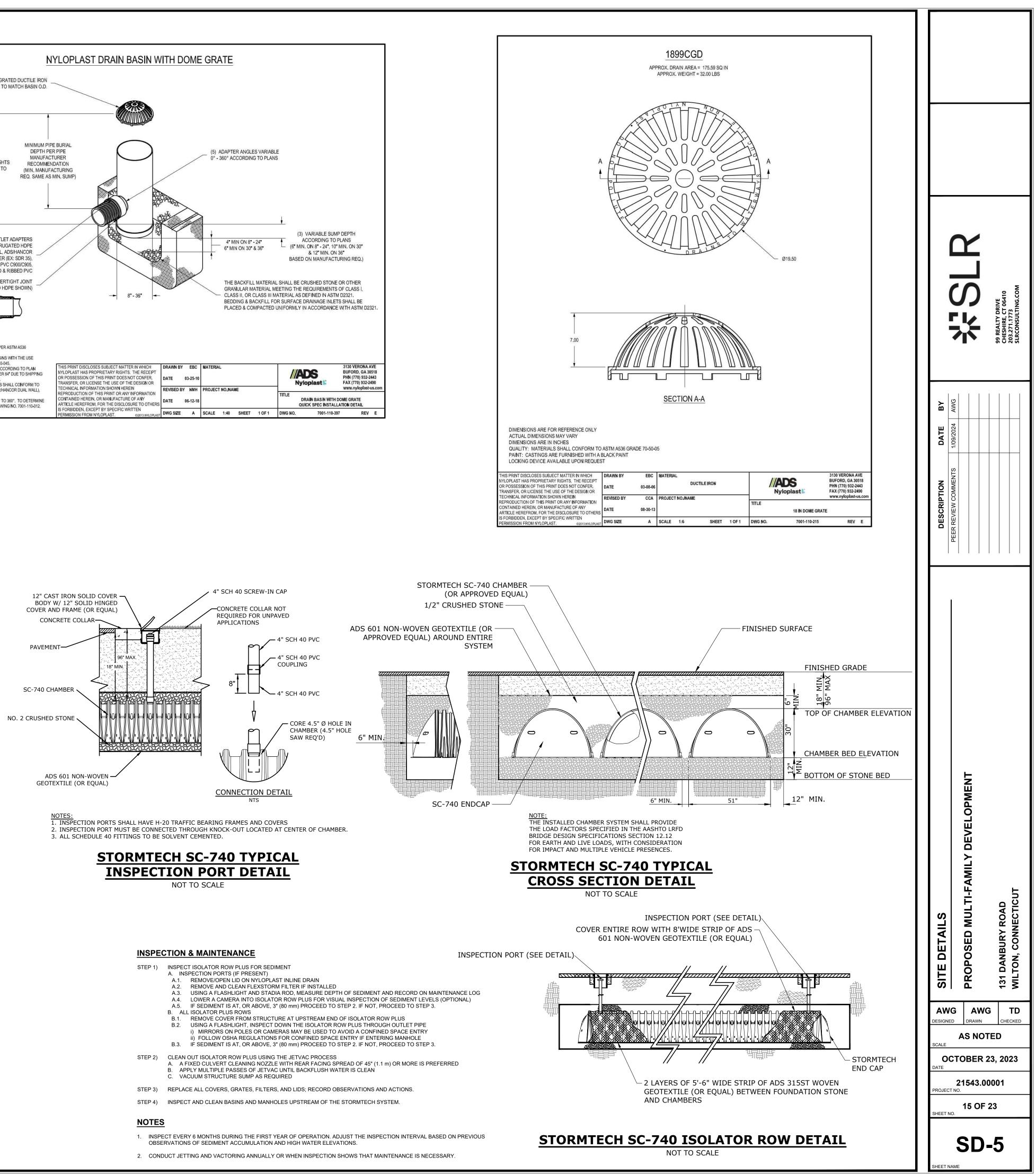




WILTON, CONNECTICUT Date: 02/21/2019



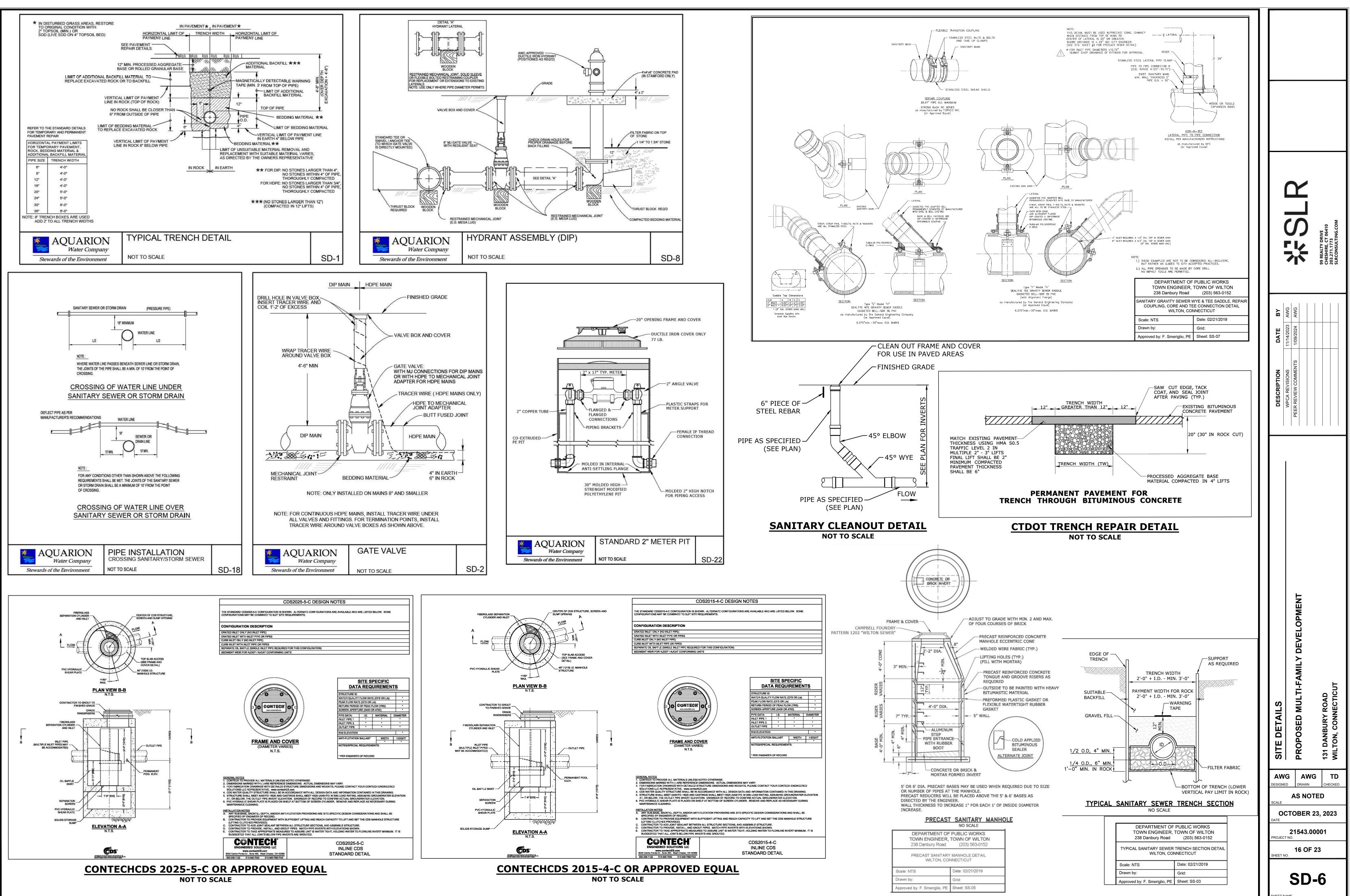



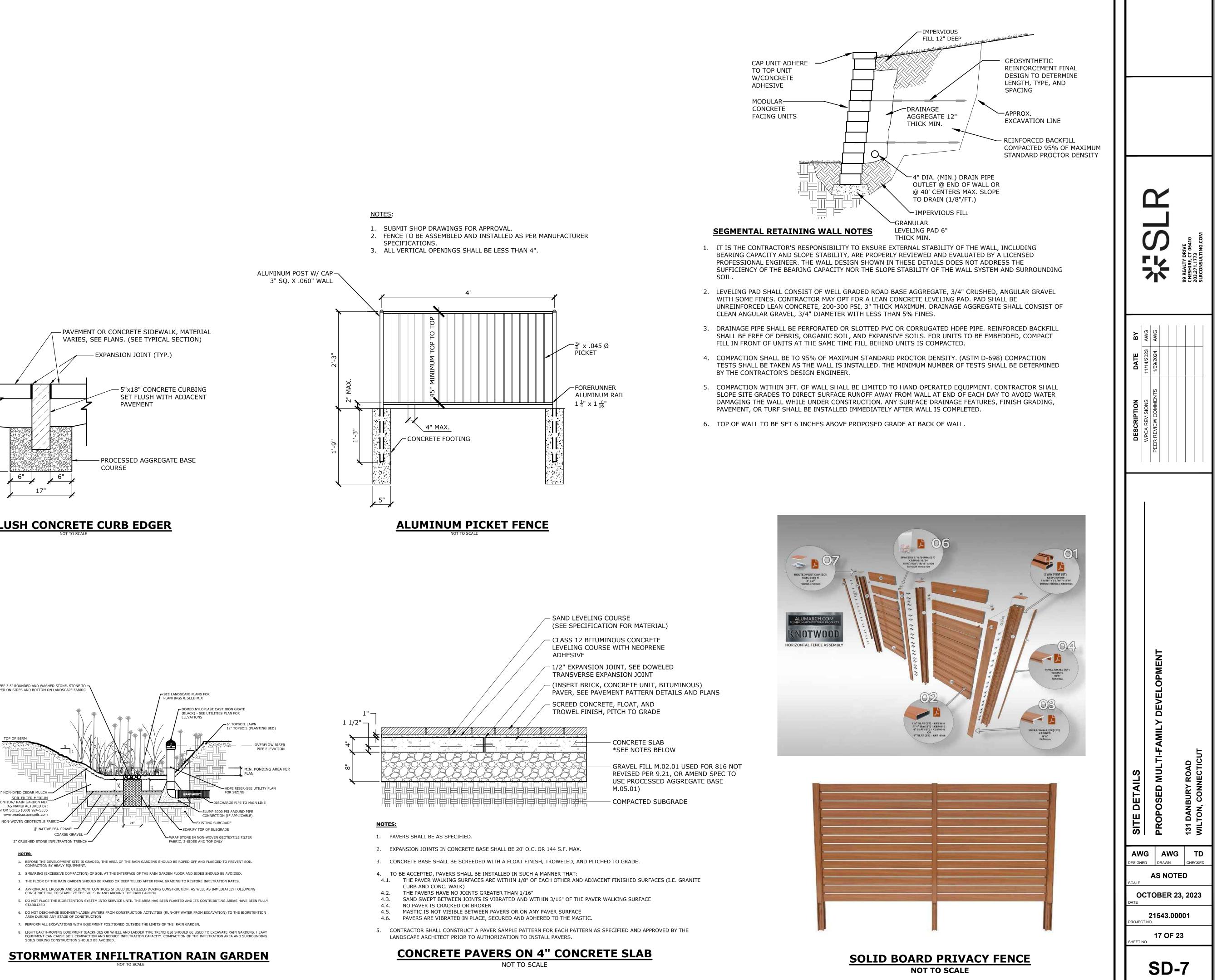


- 17. SET CATCH BASIN TOPS ON 6" MINIMUM BRICK OR BLOCK LEVELING COURSE.
- 18. AFFIX PLAQUE TO ALL CATCH BASINS STATING "DUMP NO WASTE DRAINS TO LONG ISLAND SOUND" COST FOR PLAQUE SHALL BE INCLUDED IN THE CONTRACT UNIT COST FOR CATCH BASINS.

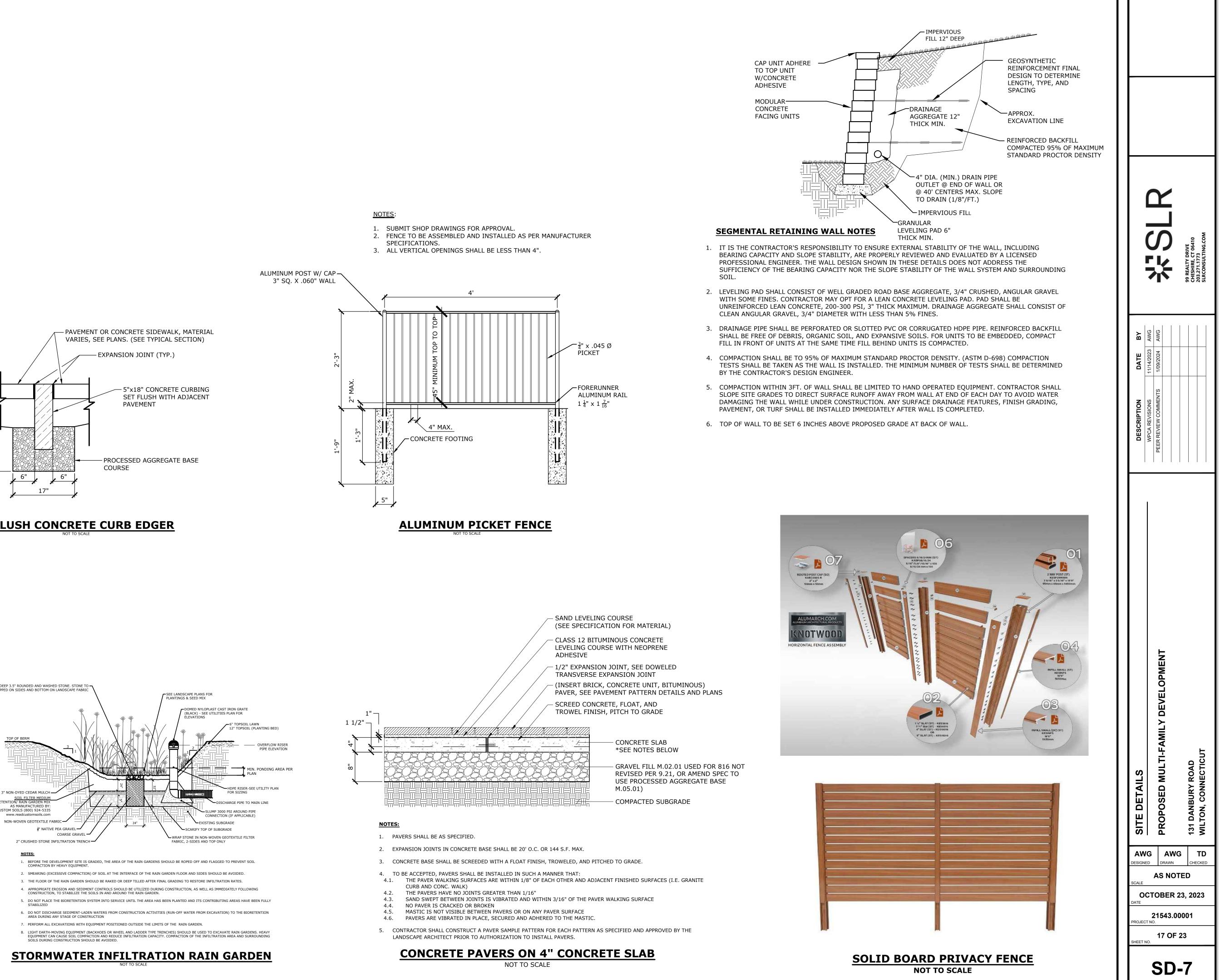


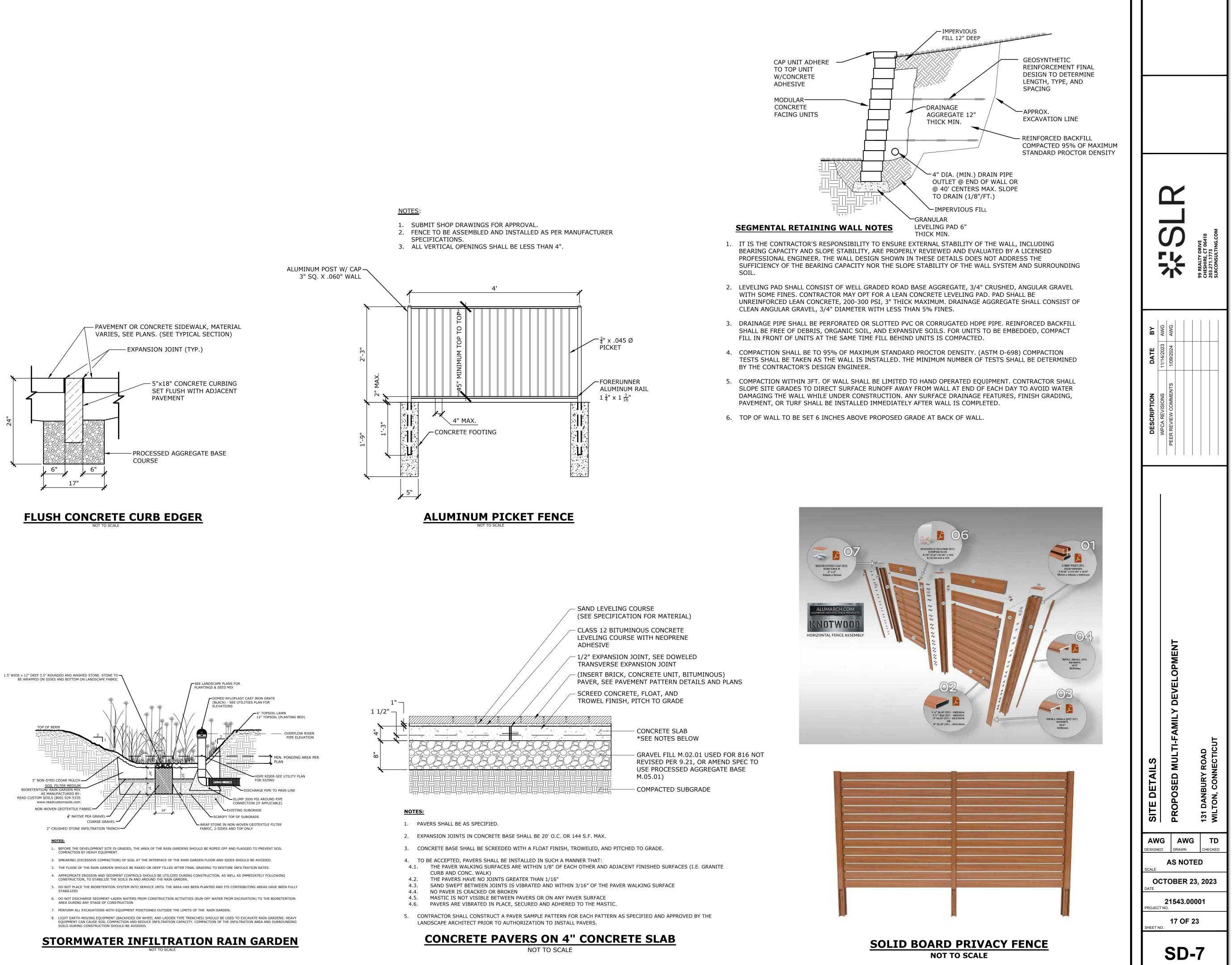




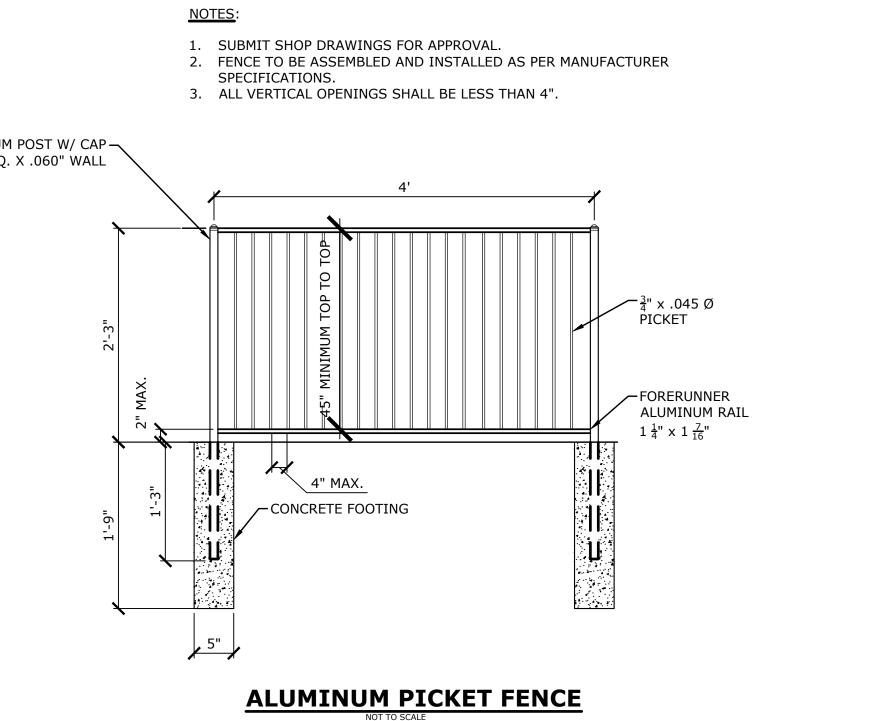



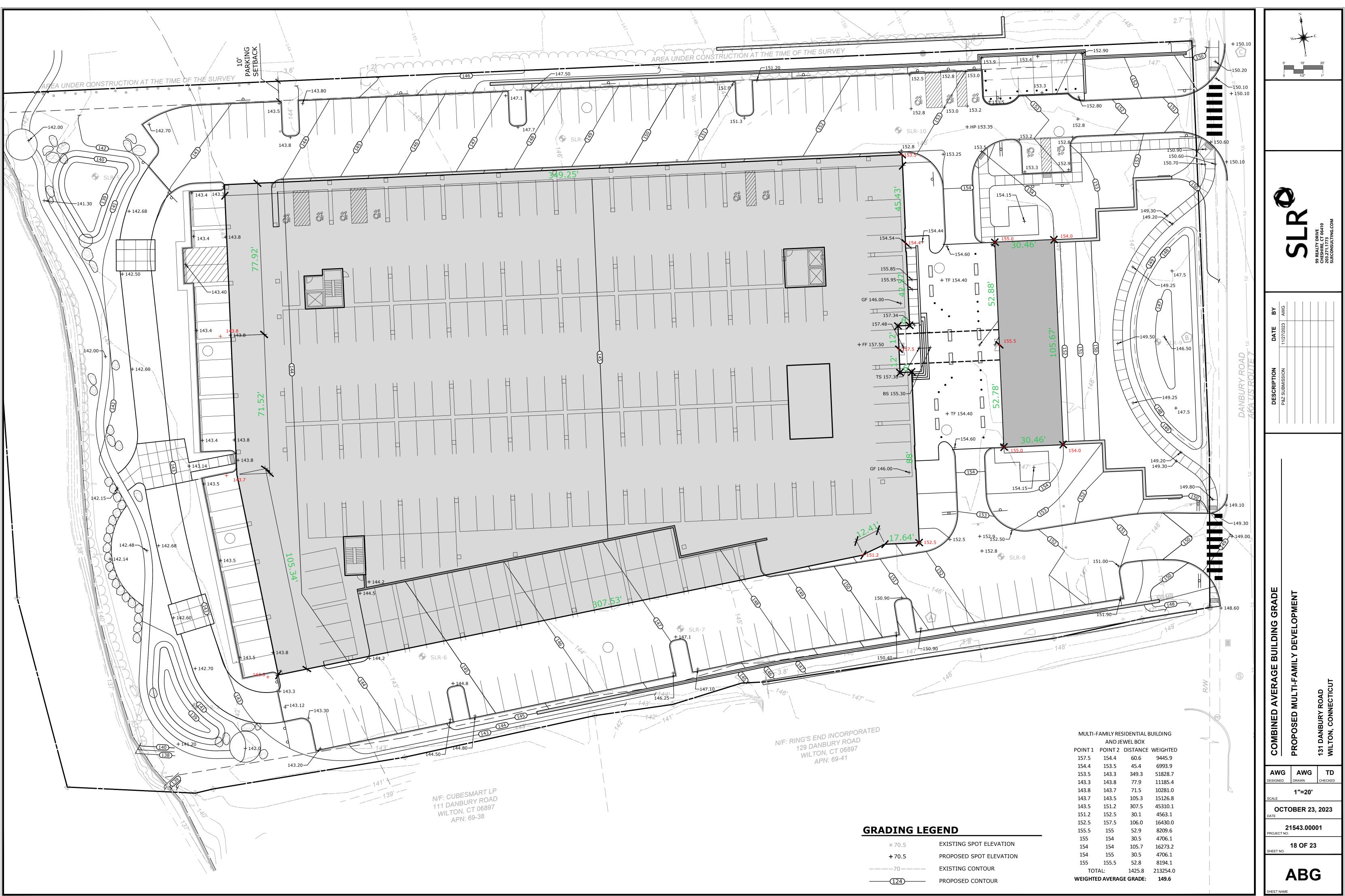



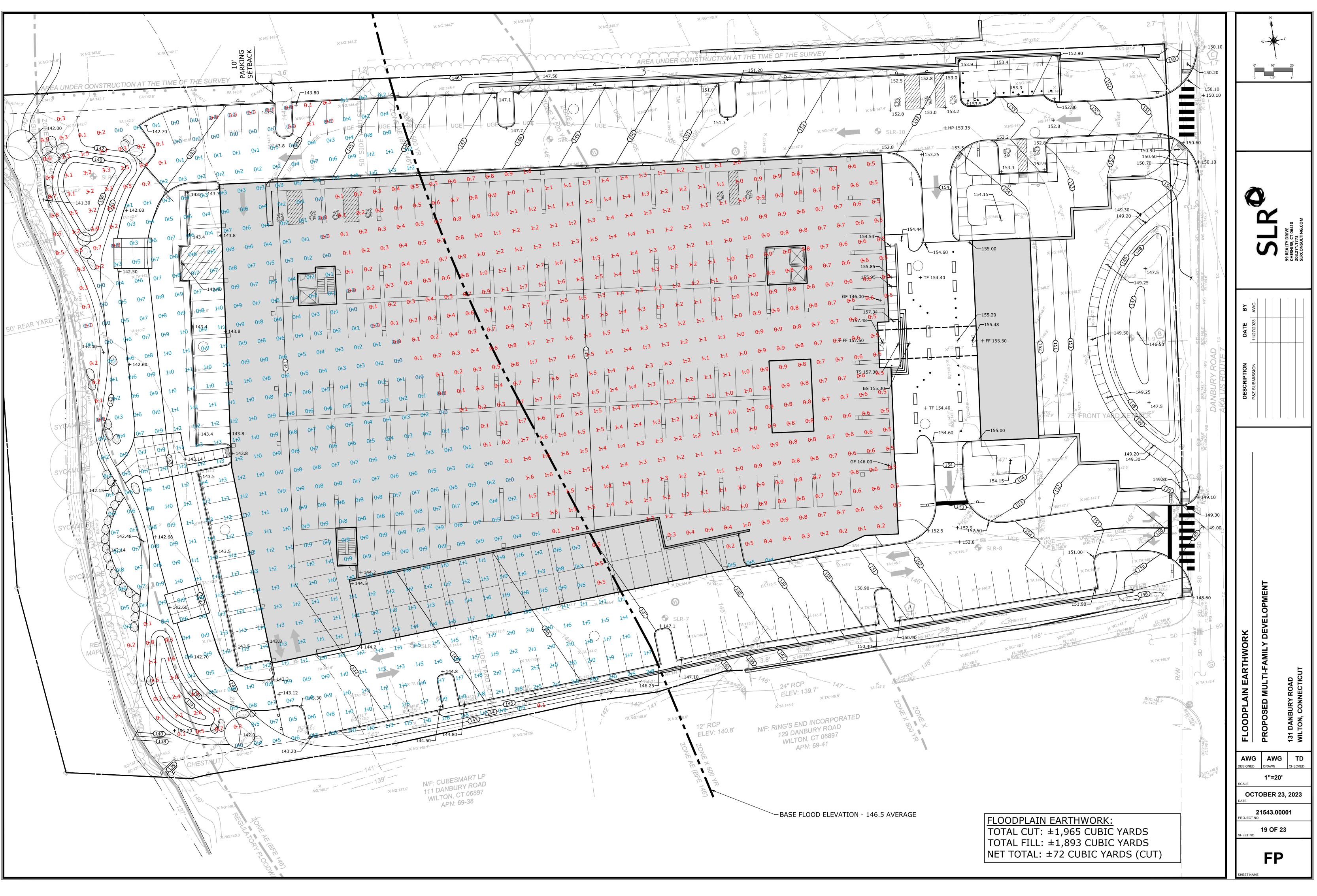

INSPEC	TION & MAINTENANCE	SPEC
STEP 1)	<ul> <li>INSPECT ISOLATOR ROW PLUS FOR SEDIMENT</li> <li>A. INSPECTION PORTS (IF PRESENT)</li> <li>A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN</li> <li>A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED</li> <li>A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE</li> <li>A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONA</li> <li>A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.</li> <li>B. ALL ISOLATOR PLUS ROWS</li> <li>B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS</li> <li>B.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE</li> <li>i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY</li> <li>ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE</li> <li>B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.</li> </ul>	
STEP 2)	<ul> <li>CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS</li> <li>A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED</li> <li>B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN</li> <li>C. VACUUM STRUCTURE SUMP AS REQUIRED</li> </ul>	
STEP 3)	REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.	
STEP 4)	INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.	



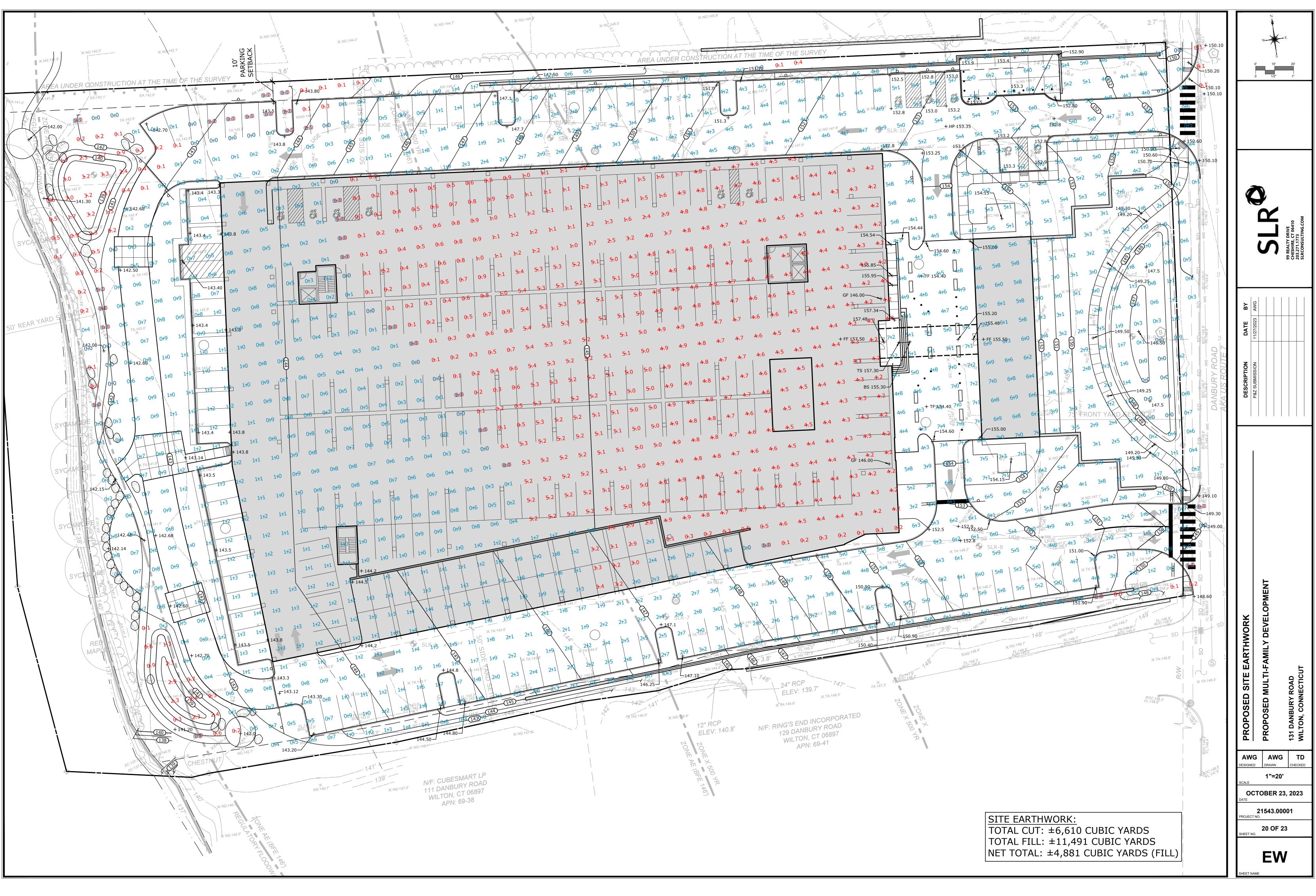





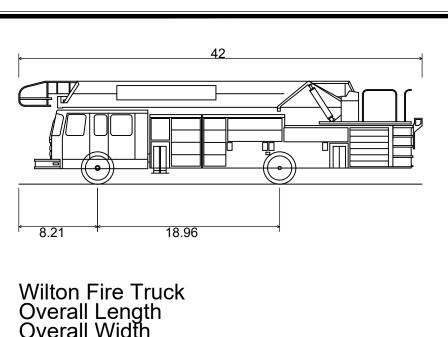




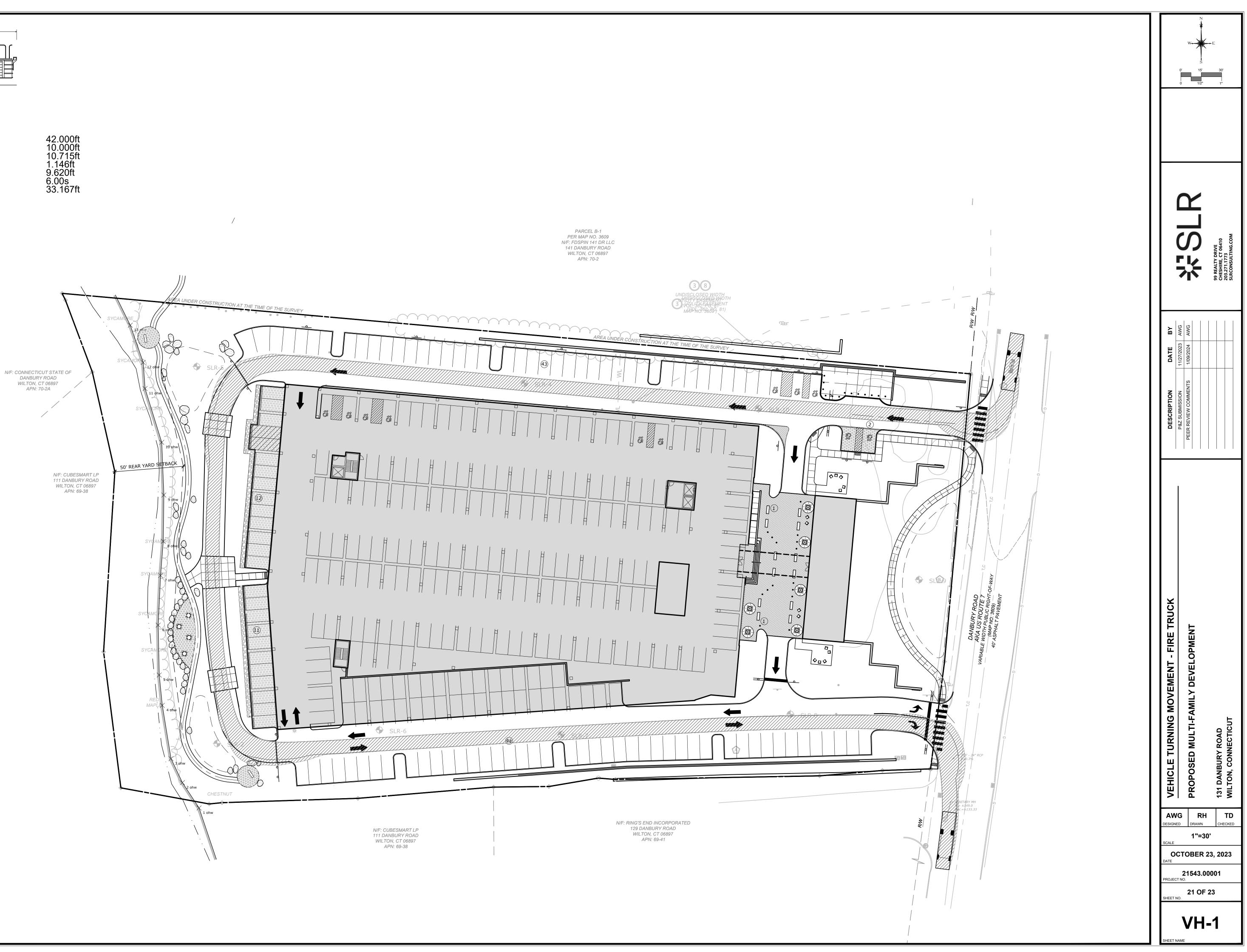



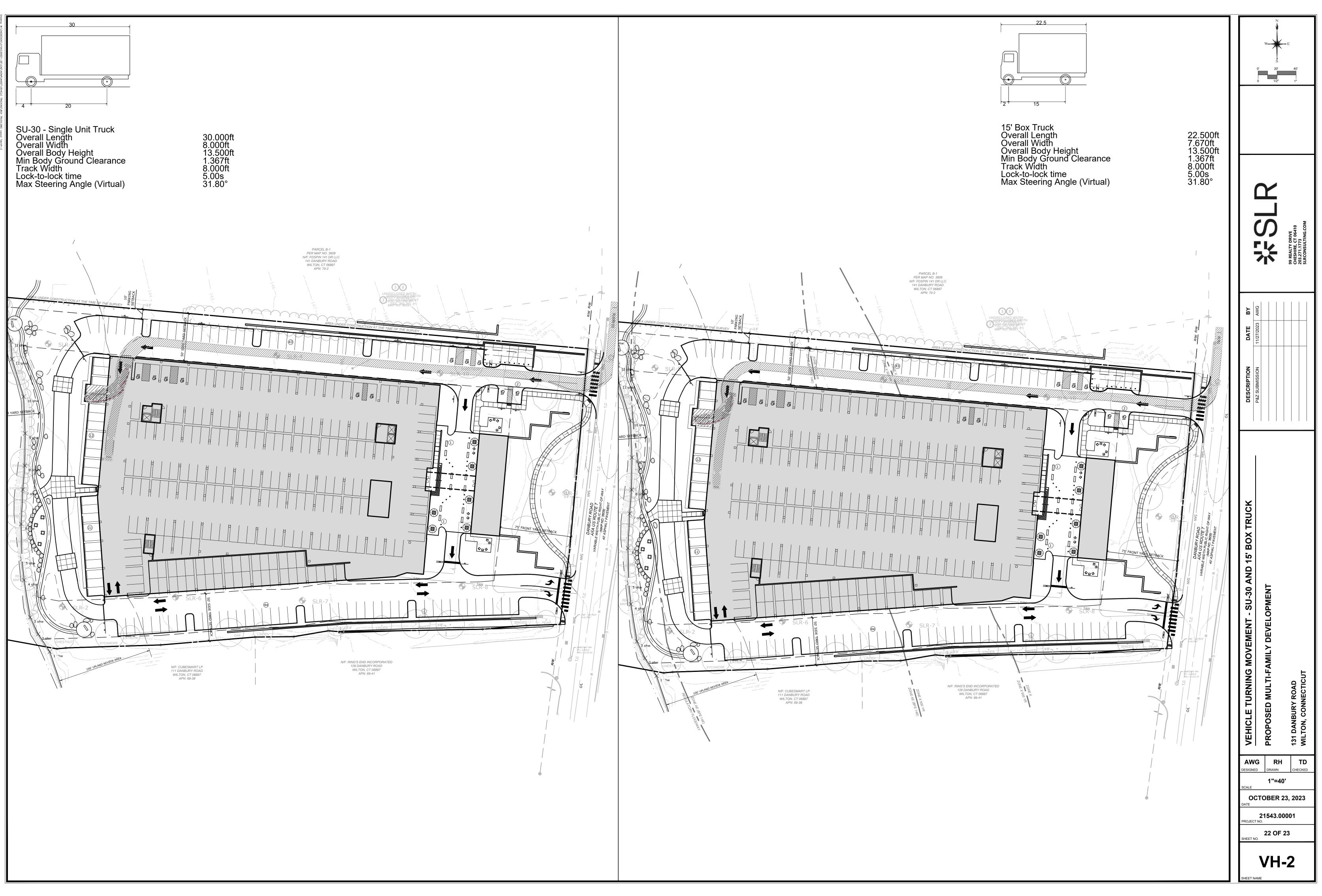

× 70.5
+ 70.5
70
_










Wilton Fire Truck Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width Lock-to-lock time Curb to Curb Turning Radius







$\frac{1}{138.60'} = 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
B3 B3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
YCANOR       B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3       Image: B3 <th< th=""></th<>
$ \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} \stackrel{+}{0.0} +$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 0.0 & 0.0 & 0.0 \\ URY ROAD \end{bmatrix} = \begin{bmatrix} 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 5.8 & -1.7 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 & -1.8 &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 \end{bmatrix} \xrightarrow{0.1} \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 \\ 0.1 \end{bmatrix} \xrightarrow{0.1} \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 \\ 0.1 \end{bmatrix} \xrightarrow{0.1} \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 \\ 0.1 \end{bmatrix} \xrightarrow{0.1} \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 \\ 0.1 \end{bmatrix} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} 0.1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0
0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10.0 $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$
to to to to to to to to to to to to to t
JOB NAME: AMS WILTON - 131 DANBURY RD - WILTON, CT

<u>GENERAL DISCLAIMER</u>: Calculations have been performed according to IES standards and good practice Some differences between measured values and calculated results may occur due to tolerances in calculation methods, testing procedures, component performance, measurement techniques and field conditions such as voltage and temperature variations. Input data used to generate the attached calculations such as room dimensions, reflectances, furniture and architectural elements significantly affect the lighting calculations. If the real environment conditions do not match the input data, differences will occur between measured values and calculated values. * LLF Determined Using Current Published Lamp Data * LLF Determined Using Current Fublished Lamp Data
 NOTE TO REVIEWER:
 Total Light Loss Factor (LLF) applied at time of design is determined by applying the Lamp Lumen Depreciation (LLD) from current lamp manufacturer's catalog, a Luminaire Dirt Depreciation Factor (LDD) based on IES recommended values and a Ballast Factor (BF) from current ballast specification sheets. Application of an incorrect Light Loss Factor (LLF) will result in forecasts of performance that will not accurately depict actual results.
 For proper comparison of photometric layouts, it is essential that you insist all designers use correct Light Loss Factors.

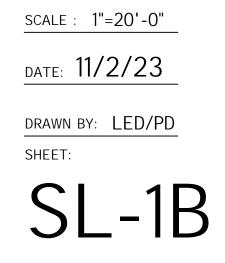
JOB NAME: AMS WILTON - 131 DANBURY RD - WILTON, CT
APEX LIGHTING SOLUTIONS
WORKPLANE/CALC PLANE: AT FINISH GRADE
MOUNTING HEIGHT: SEE LUMINAIRE SCHEDULE
APPS: LED/PD
SALES: SP

SPECIFIER: SLR CONSULTING

Luminaire Sch	redule													
Symbol	Qty	Label	Arrangement	Lum. Lumens	Lum. Watts	LLF	Description					[MANUFAC]	Filename	
•	22	В3	Single	492	6.1	0.748	PBL-42-14L-100-WW-G2-3-UNV-BK			PHILIPS	PBL-14L-100-NW-G2-3-UNV.ies			
-										GARDCO				
€	1	B5	Single	538	6.1	0.748	3 PBL-42-14L-100-WW-G2-5-UNV-BK				PHILIPS	PBL-14L-100-NW-G2-5-UNV.ies		
											GARDCO			
Ð	2	SA3	Single	9120	73	0.850	HER-48-3-500-T3-VOLT-LT-BLK / DS210-				RAGNI	EVO2-ASY10-48L(2x8)G4-		
							590A200-18-TBD-SUBLIMATION-DT-AB					3000K500mA.IES		
Ð	2	SA3H	Single	8084	73.1	0.850	HER-48-3-500-T3-VOLT-LT-BLK-HS/DS210-			RAGNI	EVO2-C13301-C17677BLK-48LED-			
							590A200-18-TBD-SUBLIMATION-DT-AB					3000K-500 mA.IES	3000K-500 mA.IES	
Ð	10	SA4H	Single	7359	73.1	0.850	HER-48-3-500-T4-VOLT-LT-BLK-HS/DS210-			RAGNI	EVO2-C13805-C17	EVO2-C13805-C17677BLK-48LED-		
							590A200-18-TBD-SUBLIMATION-DT-AB				3000K-500 mA.IES			
$\oplus$	86	TL	Single	669	10	0.850	BL9-D-W-A-S7				PHILIPS	BL9_10W_WW_med.ies		
												HADCO		
Ð	10	WP3	Single	3254	30	0.850	PWS-196L-650-WW-G3-3-UNV / Wall Mounted				GARDCO	PWS-196L-650-WW-G2-3-UNV.ies		
							12ft							
alculation Su	ummary													
Label			CalcType	CalcType Un		Avg	Max Min Avg/Min Max/Min Descri		Descrip	iption				
arking Lot			Illuminance	Fc		1.70	5.4	0.4	4.25	13.50	10ft Grid			
ite			Illuminance		Fc	0.23	6.6	0.0	N.A.	.A. N.A. 10ft Grid				
Valkway			Illuminance		Fc	2.08	5.8	0.4	5.20	14.50	5ft Grid			

**APEX LIGHTING** SOLUTIONS 20-30 BEAVER ROAD, WETHERSFIELD, CT 06109

TELEPHONE 860.632.8766 / WWW.APEXLTG.COM


PROJECT TITLE:

AMS WILTON 131 DANBURY RD WILTON, CT

DRAWING TITLE:

SITE LIGHTING PHOTOMETRIC CALCULATION

FILE NAME: 2023-11-02 SL-1B AMS WILTON - 131 DANBURY RD - WILTON, CT.dwg

