

Jason A. Klein Associate Direct:203-252-2669 Fax:203-325-8608 JKlein@carmodylaw.com

707 Summer Street Stamford, CT 06901

July 15, 2021

VIA E-MAIL & HAND DELIVERY

Mike Conklin
Inland Wetlands Commission
Town of Wilton
Town Annex
238 Danbury Road
Wilton, CT 06897
mike.conklin@wiltonct.org

Re: Inland Wetlands Commission Application No. 2714(S)

Address: 141 Danbury Road, Wilton, Connecticut

Applicant: FDSPIN 141 DR LLC

Dear Mr. Conklin:

Our client, FDSPIN 141 DR LLC (the "Applicant"), filed an Application for a Significant Regulated Activity (the "Application") with the Inland Wetlands Commission (the "IWC") on June 7, 2021. If approved, the Application will facilitate the redevelopment of property located at 141 Danbury Road, Wilton Connecticut (the "Property"). The proposed redevelopment would remove the existing structure on the Property and replace it with a new multi-family residential building, dense landscaping and associated site improvements. Work within the Regulated Area is intended to restore and enhance the natural characteristics of the Property and significantly improve water quality on the site, and provide outdoor, passive recreation space for the residents.

Subsequent to the filing of the Application, the Applicant sought pre-application review of the proposal from both the Town Architectural Review Board and the Planning and Zoning Commission. Both bodies provided the Applicant with comments regarding the aesthetic design of the proposed building. The Applicant has incorporated these comments into the proposal, resulting in changes to the architectural design of the building. The revised design is reflected in the enclosed plans. Adjustments have been made to the footprint of the building and the related drainage calculations; however, these changes do not have a meaningful impact on the Regulated Area or the water quality measures proposed for the Property.

In furtherance of the proposed applications, please find the following materials:

- 11 full-size copies of plans prepared by Tighe & Bond, revised July 15, 2021, entitled:
 - o "C-001 Site Index, Abbreviations, Notes and Legend;"
 - o "C-101 Site Layout Plan;"
 - "C-102 Fire Truck Turning Plan;"
 - o "C-201 Grading Plan;"
 - o "C-301 Stormwater Management Plan;"
 - o "C-401 Utility Plan;"

{S7318409}

- o "C-501 Soil Erosion and Sediment Control Plan Initial Phase;"
- o "C-502 Soil Erosion and Sediment Control Plan Fina, Phase;"
- o "C-503 Soil Erosion and Sediment Control Details;"
- o "C-504 Soil Erosion and Sediment Control Details;"
- o "C-601 Details 1;"
- o "C-602 Details 2;"
- o "C- 603 Details 3;"
- o "C-604 Details 4;"
- "C-605 Details 5;"
- o "C-606 Details 6;"
- o "C-607 Details 7;"
- o "C-608 Details 8;" and
- °C-609 Details 9;
- 11 full-size copies of a Landscape Plan prepared by Environmental Land Solutions, revised July 15, 2021, entitled:
 - o "LP-1 Landscape and Lighting Plan;" and
 - o "LP-2 Landscape and Lighting Details;"
- 11 copies of a letter prepared by Environmental Land Solutions, revised July 15, 2021, entitled "Inland Wetlands Application -141 Danbury Road, Wilton, CT;" and
- 11 copies of an Engineering Report prepared by Tighe & Bond, revised July 15, 2021, entitled "Engineering Report, Prepared For: FDSPIN 141 DR, LLC;"

Please let me know if you have any questions or require additional materials. We look forward to presenting the Application to the IWC at the July 22nd public hearing. Thank you for your time and attention regarding this matter.

Sincerely,

Jason A. Klein

Jason A. Klein

Enclosures

cc:

E. Larkin elizabeth.larkin@wiltonct.org

M. Wrinn Michael.wrinn@wiltonct.org

Z. Herter zen.herter@wiltonct.org

Development Team

LEGEND DESCRIPTION **EXISTING** PROPOSED PROPERTY LINE RIGHT-OF-WAY LINE ______ EASEMENT LINE ______ _____ LIMITS OF WORK INTERMEDIATE CONTOURS INDEX CONTOURS SPOT GRADE + 32.0 MAGNITUDE & DIRECTION OF SLOPE **─** 0.0% STORM DRAIN STORM UNDERDRAIN **GRAVITY SANITARY SEWER** SANITARY SEWER FORCE MAIN SANITARY SEWER LOW PRESSURE SANITARY SEWER COMBINED WATER SERVICE POTABLE WATER FIRE SERVICE HIGH PRESSURE FIRE SERVICE UNDERGROUND ELECTRIC PRIMARY ELECTRIC SERVICE SECONDARY ELECTRIC OVERHEAD ELECTRIC TELEPHONE SERVICE TEL-DATA SERVICE — T-D — COMMUNICATIONS SERVICE CABLE TV SERVICE GAS SERVICE CHILLED WATER RETURN CHILLED WATER SUPPLY HOT WATER RETURN HOT WATER SUPPLY STEAM CONDENSATE LOW PRESSURE STEAM MEDIUM PRESSURE STEAM HIGH PRESSURE STEAM OXYGEN SERVICE OVERHEAD UTILITY (UNSPECIFIED) CURB EDGE OF PAVEMENT DIRT ROAD SIDEWALK RETAINING WALL STONE WALL FENCE - UNSPECIFIEL FENCE - CHAIN LINK FENCE - WOOD POST **GUARDRAIL** METAL BEAM RAIL TRAIN TRACKS MANHOLE O AREA CATCH BASIN STORM DRAIN STRUCTURES MANHOLE 🔘 SANITARY SEWER MANHOLE HYDRANT - MANHOLE W VALVE HYDRANT XX MANHOLE W VALVE XX WATER SERVICE STRUCTURES VALVE 🔀 GAS SERVICE STRUCTURES UTILITY CO. MANHOLE (E) LIGHT UTILITY CO. MANHOLE E LIGHT ELECTRIC SERVICE STRUCTURES

LEGEND

TREELINE

TELECOMMUNICATIONS MANHOLE

RESOURCE AREAS	
VEGETATED WETLAND LIMIT	
WETLANDS WATER COURSE	
WETLAND FLAG	6 <
FLOODWAY	
SETBACK LINE	

A. GENERAL NOTES

- 1. THESE DRAWINGS ARE INTENDED FOR REVIEW AND APPROVAL BY THE TOWN OF WILTON AND ARE NOT RELEASED FOR CONSTRUCTION.
- 2. TOPOGRAPHICAL, PROPERTY LINES, EXISTING SITE FEATURES, AND UTILITY INFORMATION TAKEN FROM PLAN ENTITLED "TOPOGRAPHIC SURVEY DEPICTING 141 DANBURY ROAD IN WILTON, CONNECTICUT, PREPARED FOR FDSPIN 141 DR LLC" BY D'ANDREA SURVEYING & ENGINEERING, P.C., DATED APRIL 19. 2021. INFORMATION ON EXISTING UTILITIES HAS BEEN COMPILED FROM AVAILABLE INFORMATION INCLUDING UTILITY COMPANY AND MUNICIPAL RECORD MAPS AND FIELD SURVEY AND IS NOT GUARANTEED CORRECT OR COMPLETE. UTILITIES ARE SHOWN TO ALERT THE CONTRACTOR TO THEIR PRESENCE. THE CONTRACTOR AND/OR RESPONSIBLE PARTY IS SOLELY RESPONSIBLE FOR DETERMINING ACTUAL LOCATIONS AND ELEVATIONS OF ALL UTILITIES INCLUDING SERVICES. PRIOR TO CONSTRUCTION, CONTACT "CALL BEFORE YOU DIG" AT 811 OR 1 - 800 - 922 - 4455 AND VERIFY ALL UNDERGROUND AND OVERHEAD UTILITY LOCATIONS.
- 3. IT IS THE DEVELOPER'S RESPONSIBILITY TO OBTAIN ALL NECESSARY PERMITS AND/OR EASEMENTS FROM STATE AND LOCAL AUTHORITIES AND ANY CONSTRUCTION RIGHTS AND/OR SLOPE RIGHTS AS MAY BE REQUIRED FROM THE PROPERTY OWNERS.
- 4. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ASSURE THAT ALL PIPING IS PROPERLY BEDDED AND STABILIZED IN AREAS OF HIGH GROUND WATER AND/OR UNSTABLE SOIL CONDITIONS.
- 5. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH TOWN OF WILTON AND/OR CONNECTICUT DEPARTMENT OF TRANSPORTATION STANDARDS.
- 6. ANY DRAINAGE STRUCTURES, DITCHES, ASPHALT, CURBS, OTHER EXISTING CONSTRUCTION OR GRASSED AREAS DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO THE ORIGINAL CONDITION.
- 7. FIRE LANE MARKINGS SHALL BE STRIPED IN THE FIELD PER FIRE MARSHAL REVIEW AND DIRECTION IF REQUIRED.
- 8. VERTICAL DATUM IS NAVD88.

B. UTILITY COORDINATION NOTES

- 1. UTILITY LOCATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO FINAL SITE SURVEY. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY ALL ELEVATIONS, PROPERTY LINES, LOCATION OF UTILITIES AND SITE CONDITIONS IN THE FIELD. IF AN UNFORESEEN INTERFERENCE EXISTS BETWEEN AN EXISTING AND A PROPOSED STRUCTURE, THE CONTRACTOR SHALL NOTIFY THE DESIGN ENGINEER SO THAT THE APPROPRIATE REVISIONS CAN BE MADE.
- 2. IT IS THE RESPONSIBILITY OF EACH BIDDER IN EVALUATING THESE PLANS TO MAKE EXAMINATIONS IN THE FIELD BY VARIOUS METHODS AND OBTAIN NECESSARY INFORMATION FROM AVAILABLE RECORDS, UTILITY CORPORATIONS, AND INDIVIDUALS AS TO THE LOCATION OF ALL SUBSURFACE STRUCTURES.
- 3. THE CONTRACTOR IS TO USE CAUTION WHEN WORKING NEAR OR UNDER OVERHEAD AND UNDERGROUND UTILITIES. THE CONTRACTOR IS TO NOTIFY THE UTILITY COMPANIES OF HIS INTENT PRIOR TO THE COMMENCEMENT OF ANY WORK.
- 4. PLANTINGS SHALL NOT BE PLACED ON TOP OF UTILITIES
- 5. ELECTRICAL CONDUIT SHALL BE INSTALLED BY AN ELECTRICIAN LICENSED IN THE STATE OF CONNECTICUT
- 6. CONTRACTOR SHALL COORDINATE THE EXACT LOCATION OF BUILDING UTILITY SERVICES AND RAIN WATER LEADER LOCATIONS WITH THE MECHANICAL ELECTRICAL, PLUMBING, AND ARCHITECTURAL DRAWINGS.
- 7. FOR SITE LIGHTING DESIGN, SEE PROJECT LANDSCAPE ARCHITECTURAL DRAWINGS AND SPECIFICATIONS.

C. STORM SEWER NOTES

- 1. STORM SEWER LINES ARE TO BE INSTALLED USING INVERT ELEVATIONS, PIPE SLOPES SHOWN ARE APPROXIMATE AND ARE FOR REFERENCE ONLY.
- 2. APPLICABLE STORM SEWER CONSTRUCTION SHALL CONFORM TO TOWN OF WILTON REQUIREMENTS.
- 3. ROOF DRAINS ARE TO BE CONNECTED TO THE STORM DRAINAGE SYSTEM WHERE SHOWN.
- 4. THE ON-SITE DRAINAGE SYSTEM WILL REMAIN PRIVATE. THE PROPERTY OWNER IS TO PROVIDE REGULAR MAINTENANCE OF THE SYSTEM TO ALLOW IT TO CONTINUALLY FUNCTION AS INTENDED.
- 5. ALL PORTIONS OF THE STORM DRAINAGE SYSTEM ARE TO BE CAPABLE OF HANDLING AASHTO H-20 LOADS.
- 6. ALL REINFORCED CONCRETE PIPE SHALL BE CLASS IV UNLESS OTHERWISE NOTED.
- 7. ALL PVC PIPING TO BE CLASS SDR-35 UNLESS OTHERWISE NOTED. (SDR-21 REQUIRED FOR DEPTHS OVER 12 FEET.)
- 8. ALL CATCH BASINS SHALL HAVE BELL TRAPS EXCEPT IF CONNECTED IN A SERIES, IN WHICH CASE ONLY THE UPPER TWO CATCH BASINS IN THE SERIES SHALL HAVE BELL TRAPS.
- 9. HDPE PIPING SHALL CONFORM TO ASTM F2306.
- 10. THE INSTALLATION OF THE DRAINAGE SYSTEM IS TO BE DONE UNDER THE SUPERVISION OF THE DESIGN ENGINEER LICENSED IN THE STATE OF CONNECTICUT. AFTER CONSTRUCTION, THE ENGINEER IS TO SUBMIT TO THE TOWN OF WILTON WRITTEN CERTIFICATION THAT THE SYSTEM WAS INSTALLED AS PER THE APPROVED DESIGN. A DRAINAGE AS-BUILT DRAWING IS SUBMITTED WITH THIS LETTER TO THE TOWN OF WILTON. A REMINDER TO THE PROPERTY OWNER THAT THE SYSTEM WILL REMAIN PRIVATE AND THAT REGULAR MAINTENANCE WILL BE CRUCIAL TO ITS CONTINUED FUNCTIONING AS INTENDED. ADEQUATE ACCESS TO THE SYSTEM FOR MAINTENANCE PURPOSES IS TO BE PROVIDED.

D. SANITARY SEWER & WATER NOTES

- 1. SANITARY SEWER AND WATER LINE CROSSINGS SHALL MAINTAIN AN 18 INCH MINIMUM VERTICAL SEPARATION DISTANCE.
- 2. SEWER AND WATER LINE CROSSING ALL OTHER UTILITIES SHALL MAINTAIN A 12 INCH VERTICAL SEPARATION DISTANCE.
- 3. SANITARY SEWER LINES ARE TO BE INSTALLED USING INVERT ELEVATIONS. PIPE SLOPES SHOWN ARE APPROXIMATE AND ARE FOR REFERENCE ONLY.
- 4. PROPOSED SANITARY SEWER SERVICE IS TO MEET THE REQUIREMENTS OF THE TOWN OF WILTON.
- 5. PROPOSED WATER SERVICE IS TO MEET THE REQUIREMENTS OF THE STATE PLUMBING CODES AND AQUARION WATER COMPANY RULES AND REGULATIONS.

E. GRADING NOTES

- 1. AREAS OF DISTURBED EARTH SHALL BE STABILIZED BY MULCHING OR OTHER MEANS. SEEDING OF GRASSED AREAS SHALL BE INITIATED AS SOON AS PRACTICAL AS AN EROSION AND SILTATION CONTROL MEASURE.
- 2. RETAINING WALLS OVER 3' IN HEIGHT ARE TO BE DESIGNED AND CONSTRUCTED UNDER THE SUPERVISION OF A STATE OF CONNECTICUT LICENSED PROFESSIONAL ENGINEER OR ARCHITECT.
- 3. RETAINING WALLS REQUIRING AN ENGINEERED DESIGN SHALL BE SUBMITTED TO AND APPROVED BY THE TOWN OF WILTON WITH CALCULATIONS BEFORE CONSTRUCTION OF THESE WALLS BEGINS.
- 4. RETAINING WALLS ARE TO HAVE PROTECTIVE FENCING WHERE WARRANTED.
- 5. WHERE LEDGE IS TO BE LEFT IN PLACE, THE STABILITY OF THE LEDGE IS TO BE VERIFIED BY A QUALIFIED STATE OF CONNECTICUT LICENSED PROFESSIONAL ENGINEER OR SOIL SCIENTIST.
- 6. ALL LAND CLEARING AND CONSTRUCTION DEBRIS SHALL BE PROPERLY DISPOSED OF OFFSITE.
- 7. THE OWNER IS RESPONSIBLE FOR OBTAINING ALL NECESSARY PERMITS AND/OR EASEMENTS FROM THE STATE OR LOCAL AUTHORITIES AND ANY CONSTRUCTION RIGHTS AS MAY BE REQUIRED FROM ADJOINING PROPERTY OWNER.
- 8. THE CONTRACTOR SHALL ADJUST THE TOP OF FRAME/GRATE ELEVATIONS OF ALL EXISTING AND PROPOSED SANITARY/STORM/WATER MANHOLES, CATCH BASINS, AREA DRAINS, VALVE COVERS AND APPURTENANCES, WITHIN THE PROJECT LIMITS TO MEET THE PROPOSED GRADES PRIOR TO CONSTRUCTION.

ABBREVIATIONS

MISC

MON

MISCELLANEOUS

MECHANICAL JOINT

MONUMENT

ABDN('D)	ABANDON (ED)	N	NORTH
AC	ASBESTOS CEMENT PIPE	NITC	NOT IN THIS CONTRACT
BC	BITUMINOUS CURB	NTS	NOT TO SCALE
BFP	BACK FLOW PREVENTOR	N/A	NOT APPLICABLE
BIT	BITUMINOUS	N/F	NOW OR FORMERLY
BL	BASELINE	OC	ON CENTER
BLDG	BUILDING	OCS	OUTLET CONTROL STRUCT
BND	BOUND	OH	OVERHEAD
BOC	BOTTOM OF CURB	PB	PLANT BED
BOT	BOTTOM	PC	POINT OF CURVATURE
BS	BOTTOM OF STEP	PCC	POINT OF CORVATORE POINT OF COMPOUND
BW	BOTTOM OF WALL	rcc	CURVATURE
CATV	CABLE TELEVISION	PCPP	PERFORATED CORRUGATE
СВ	CATCH BASIN	PCPP	
CEM	CEMENT	DEDE	POLYETHYLENE PIPE
CI	CAST IRON PIPE	PERF	PERFORATED
CL	CENTERLINE	PI	POINT OF INTERSECTION
CLF	CHAIN LINK FENCE	PRC	POINT OF REVERSE CURVA
CO	CLEAN OUT	PSF	POUNDS PER SQUARE FOO
CONC	CONCRETE	PSI	POUNDS PER SQUARE INC
CPP	CORRUGATED	PT	POINT OF TANGENCY
CII	POLYETHYLENE PIPE	PVC	POLYVINYLCHLORIDE
CY	CUBIC YARD	PVMT	PAVEMENT
DH	DRILL HOLE	R	RADIUS
	DUCTILE IRON PIPE	RCP	REINFORCED CONCRETE F
DI		RD	ROOF DRAIN
DIA	DIAMETER	REV	REVISION
DMH	DRAIN MANHOLE	ROW	RIGHT OF WAY
E	EAST	RT	RIGHT
EF	EACH FACE	R&D	REMOVE AND DISPOSE
EG	EXISTING GRADE	R&R	REMOVE AND RESET
EL/ELEV	ELEVATION	R&S	REMOVE AND STACK
ELEC	ELECTRIC	S	SOUTH
EMH	ELECTRIC MANHOLE	SAN	SANITARY
EOP	EDGE OF PAVEMENT	SCH	SCHEDULE
EW	EACH WAY	SF	SQUARE FOOT
EXIST	EXISTING	SMH	SEWER MANHOLE
FES	FLARED END SECTION	SS	STAINLESS STEEL
FF	FINISH FLOOR	STA	STATION
FM	FORCE MAIN	STL	STEEL
G	GAS	STRM	STORM
GG	GAS GATE	T	TANGENT LENGTH
GRAN	GRANITE	TC	TOP OF CURB
HC	HANDICAP	TEL	TEL-DATA
HDPE	HIGH DENSITY	TP	TEST PIT
	POLYETHYLENE	TS	TOP OF STEP
HMA	HOT MIX ASPHALT	TW	TOP OF WALL
HYD	HYDRANT	TYP	TYPICAL
IN	INCHES	UP	
INV	INVERT		UTILITY POLE
IP	IRON PIN	W	WATER CATE
L	LENGTH OF CURB	WG	WATER GATE
_ LP	LIGHT POLE	WV	WATER VALVE
LT	LEFT	XFMR	TRANSFORMER
MAX	MAXIMUM		
MH	MANHOLE		
MIN	MINIMUM		
	·		

ABBREVIATIONS CONT'D

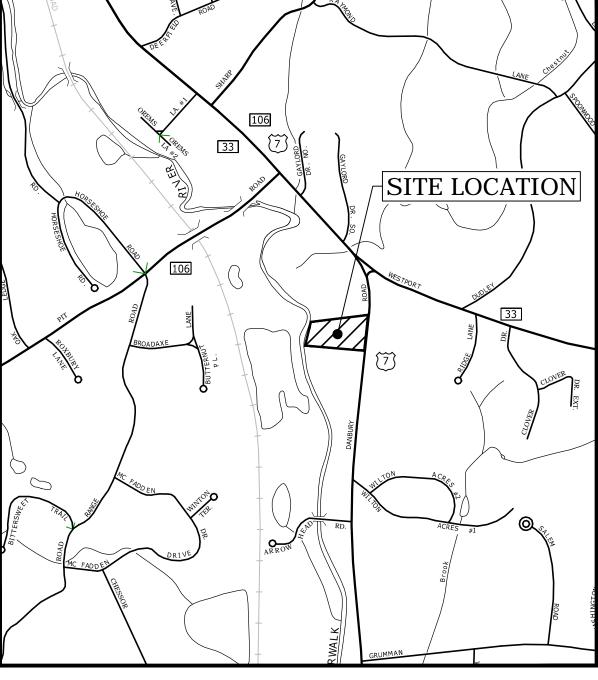
CTURE ΓED VATURE TOC **PIPE**


Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LI Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836

info@elsllc.net www.elsllc.net



TOWN SUBMISSION

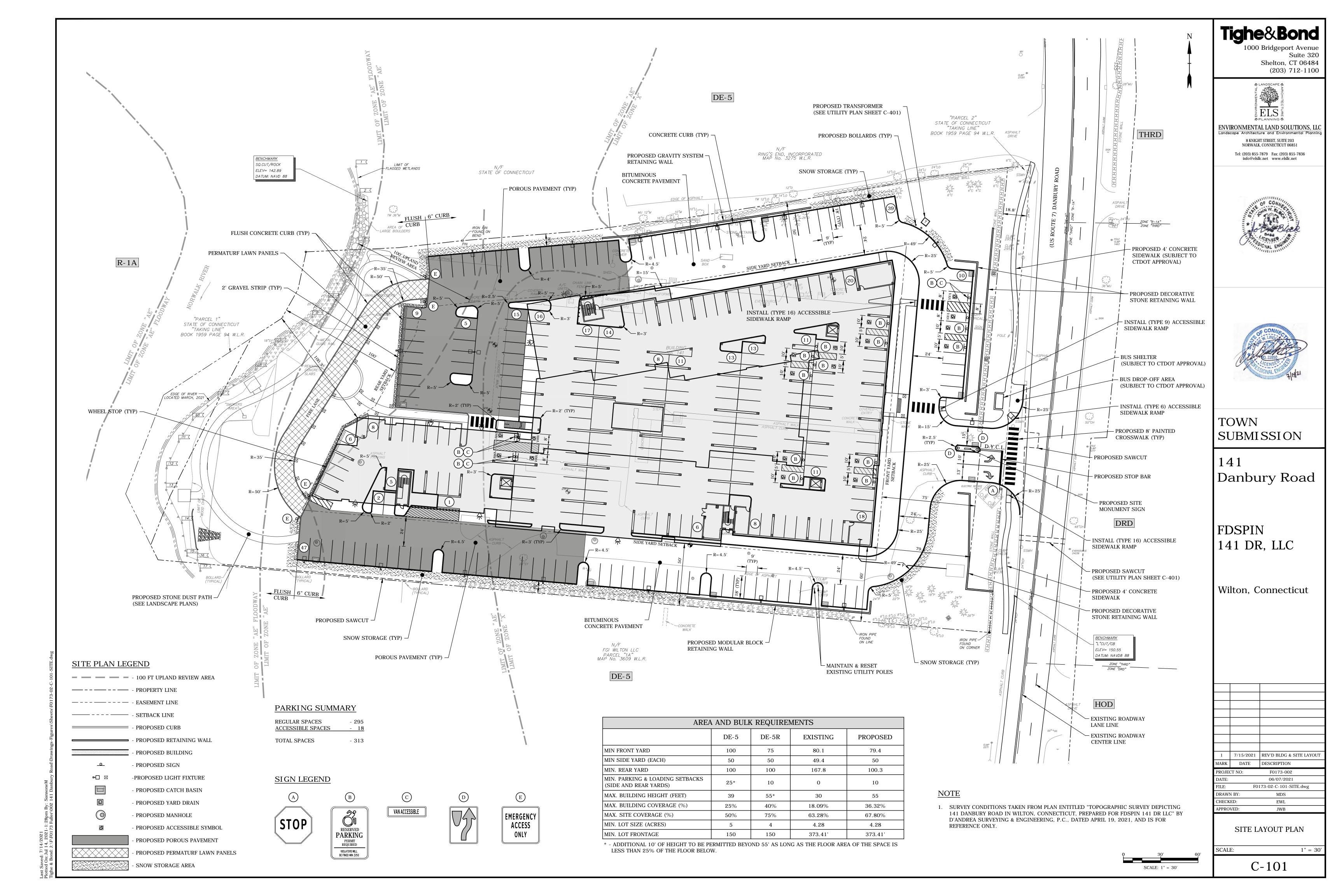
Danbury Road

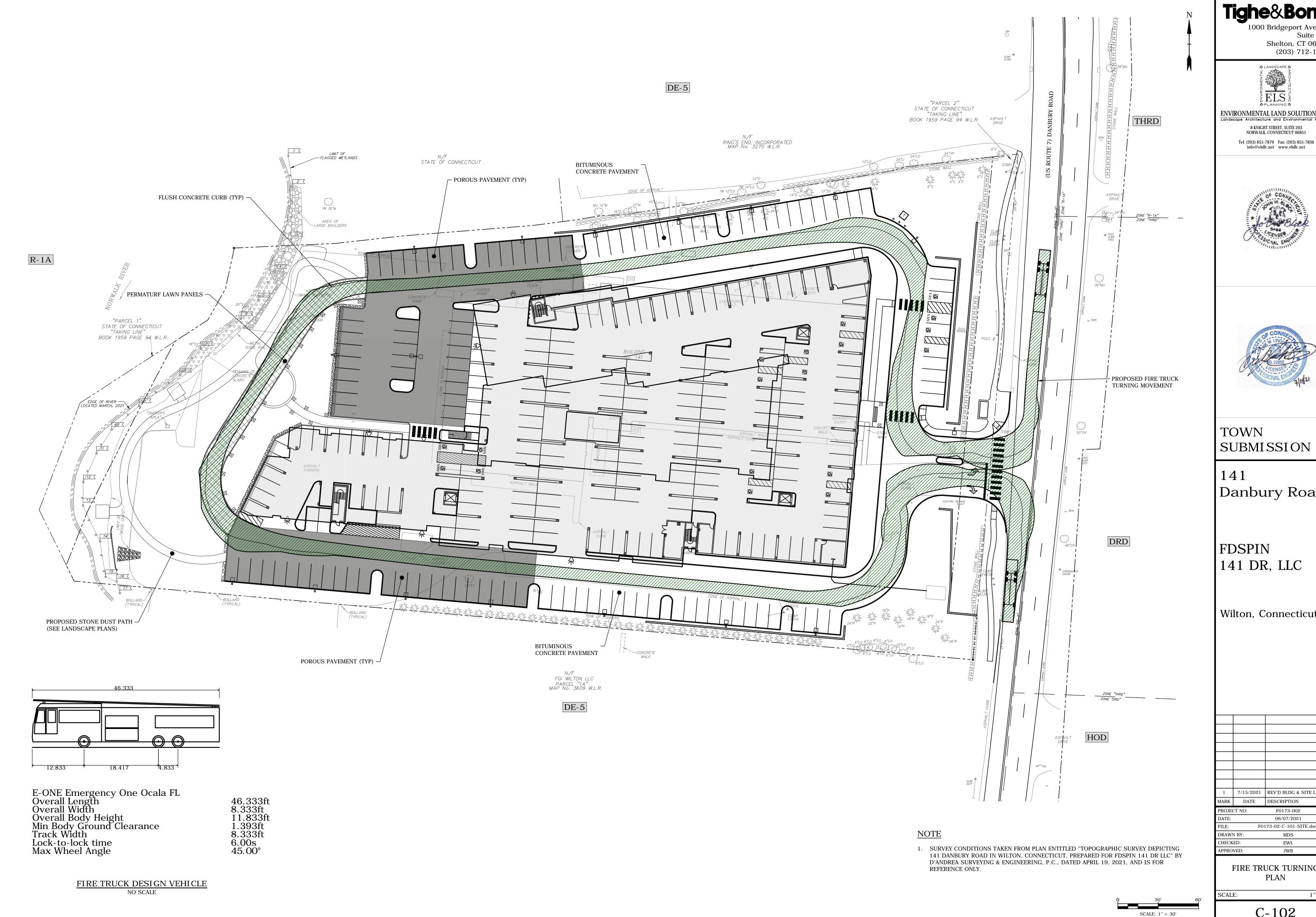
FDSPIN 141 DR, LLC

Wilton, Connecticut

LOCATION MAP

7/15/2021 REV'D BLDG & SITE LAYOUT MARK DATE DESCRIPTION PROJECT NO: F0173-002 06/07/2021


DRAWN BY: MDS CHECKED: EWL APPROVED: SITE INDEX,


F0173-02-C-001-INDX.dwg

ABBREVIATIONS, NOTES AND LEGEND

C-001

AS SHOWN

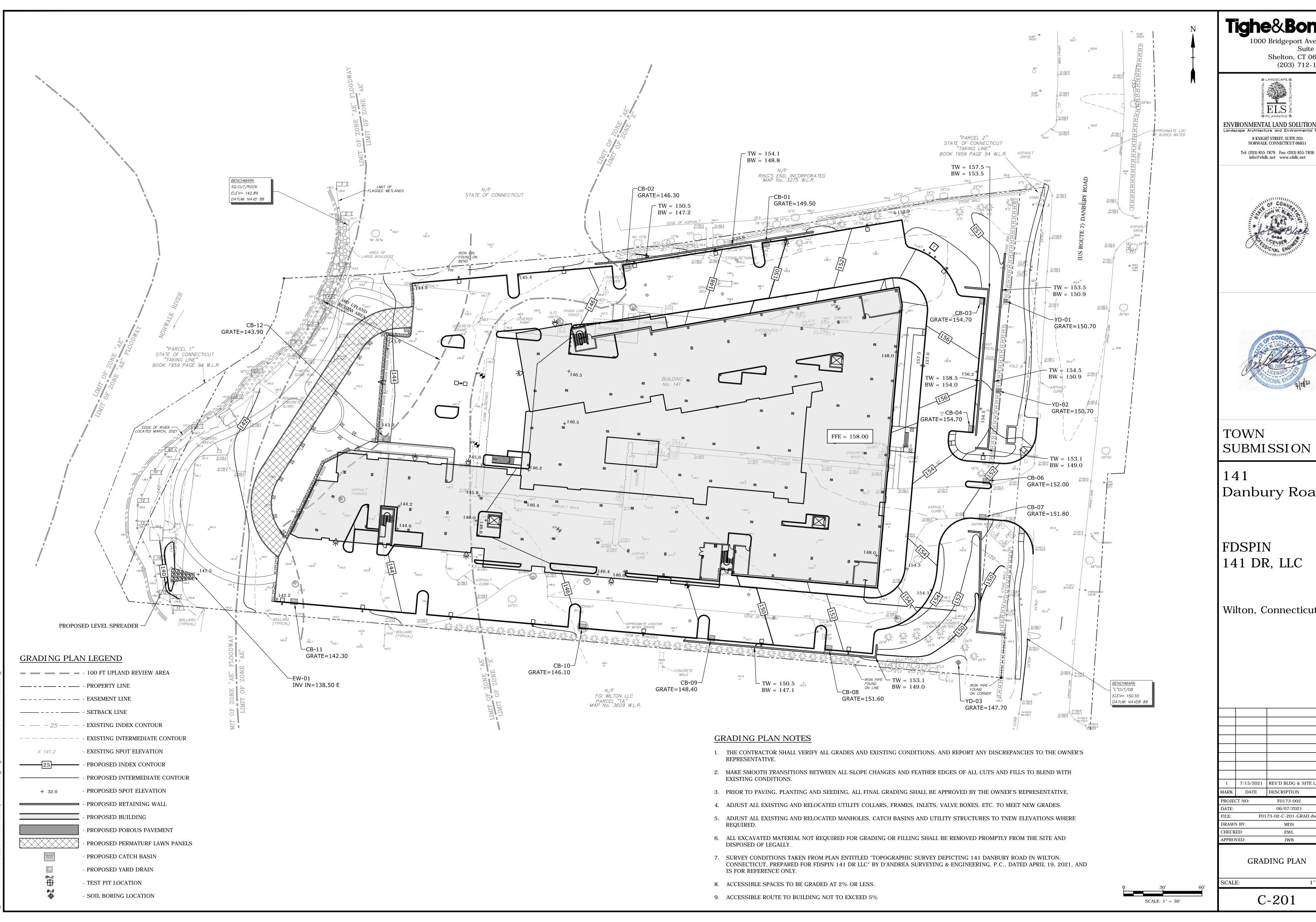
1000 Bridgeport Avenue Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

TOWN SUBMISSION

Danbury Road

FDSPIN 141 DR, LLC


Wilton, Connecticut

	7/15/2021	REV'D BLDG & SITE LAYOUT
	DATE	DESCRIPTION
(CT NO:	F0173-002

06/07/2021 F0173-02-C-101-SITE.dwg MDS

EWL

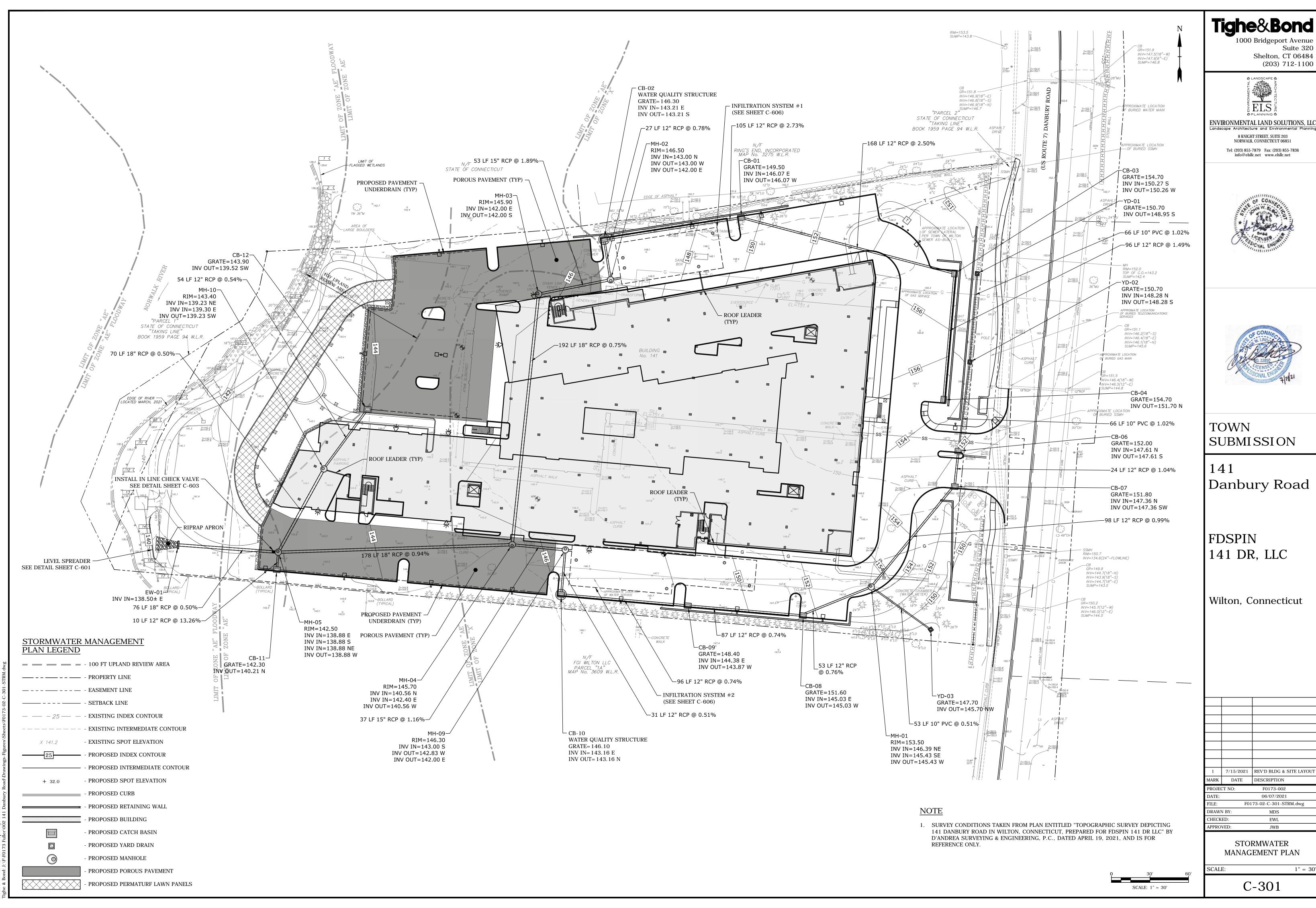
FIRE TRUCK TURNING PLAN

Tighe&Bond

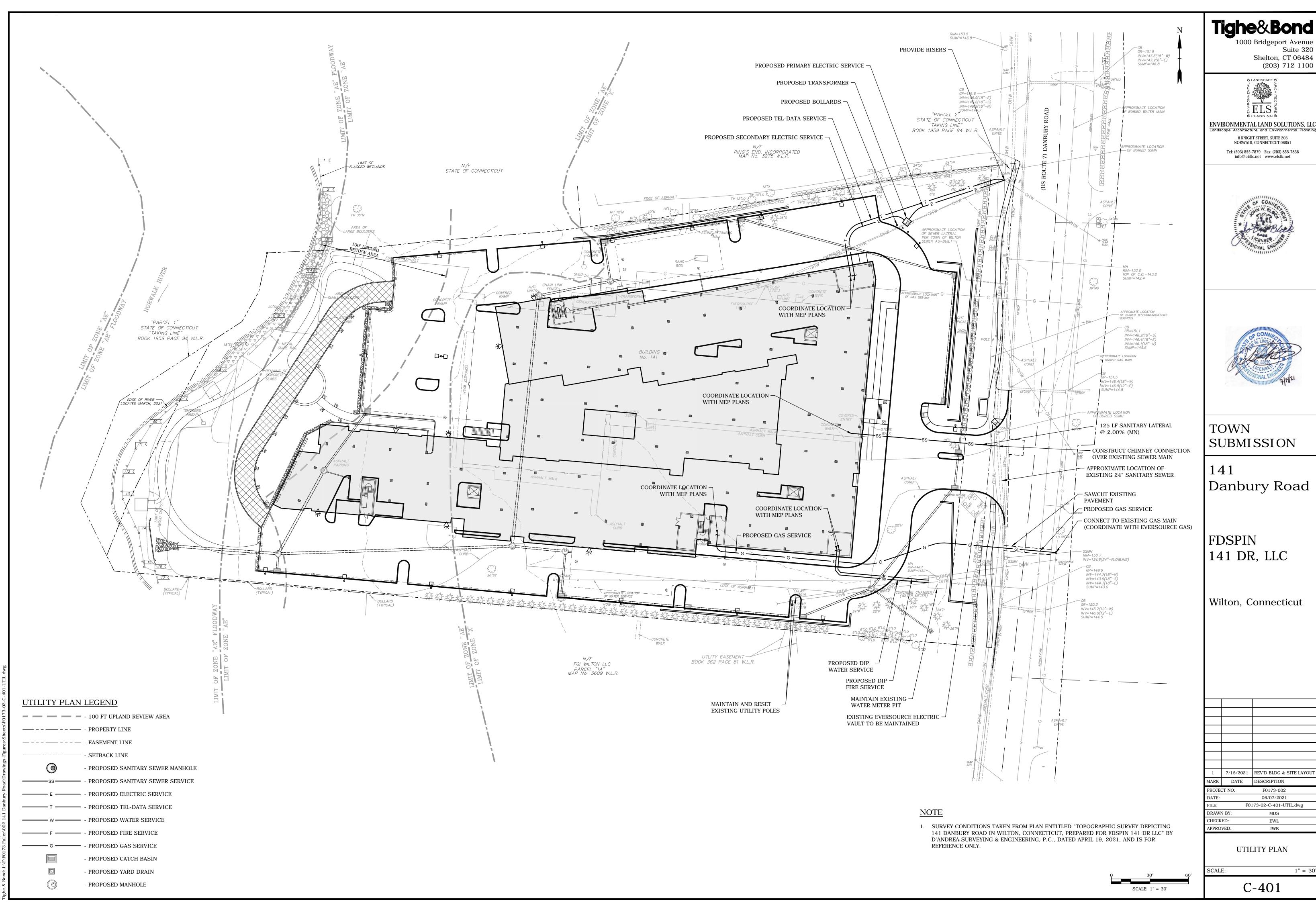
Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

SUBMISSION

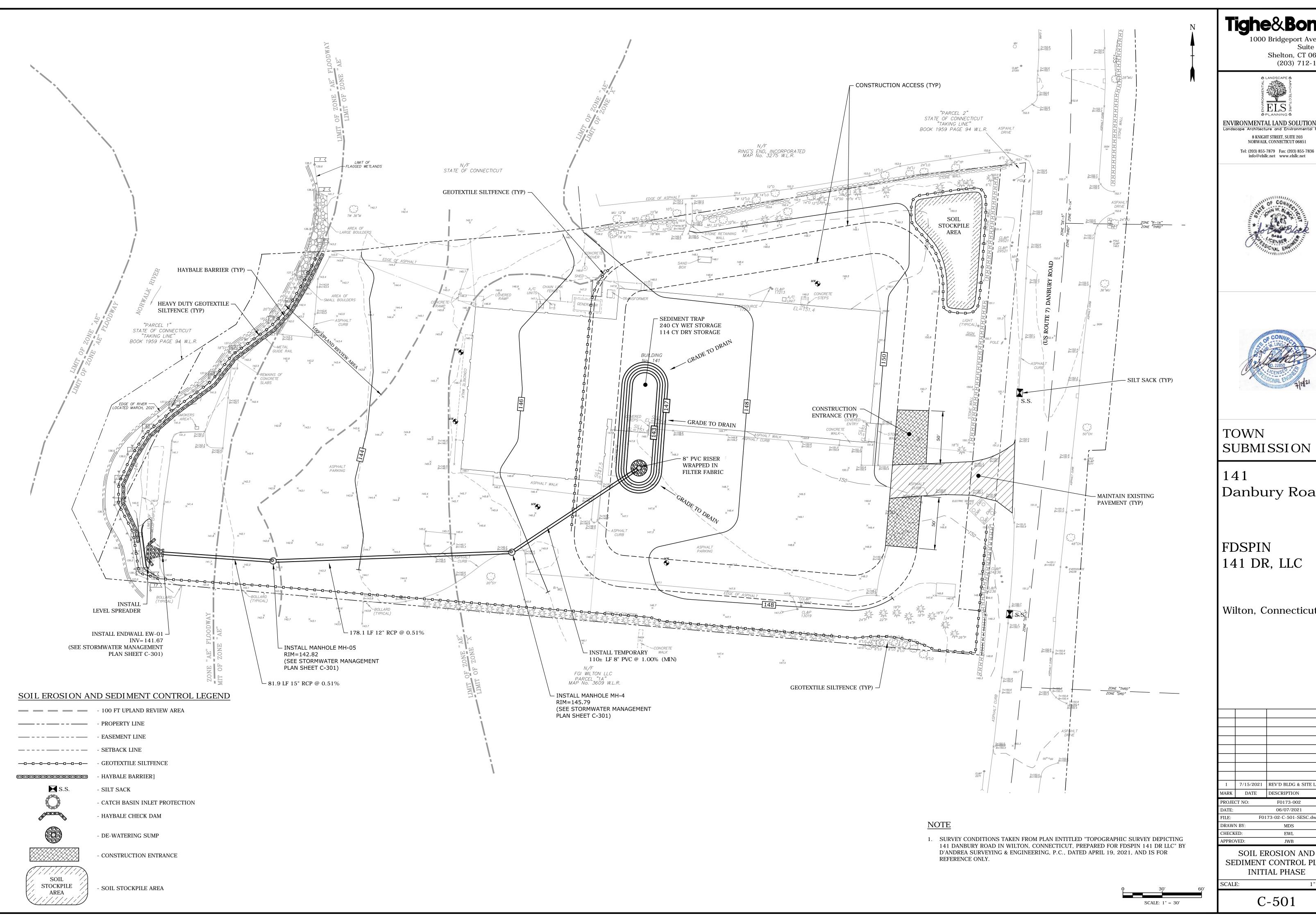

Danbury Road

Wilton, Connecticut


1	7/15/2021	REV'D BLDG & SITE LAYOU'
MARK	DATE	DESCRIPTION
PROJE	CT NO:	F0173-002
DATE:		06/07/2021
		•

F0173-02-C-201-GRAD.dwg MDS EWL

GRADING PLAN



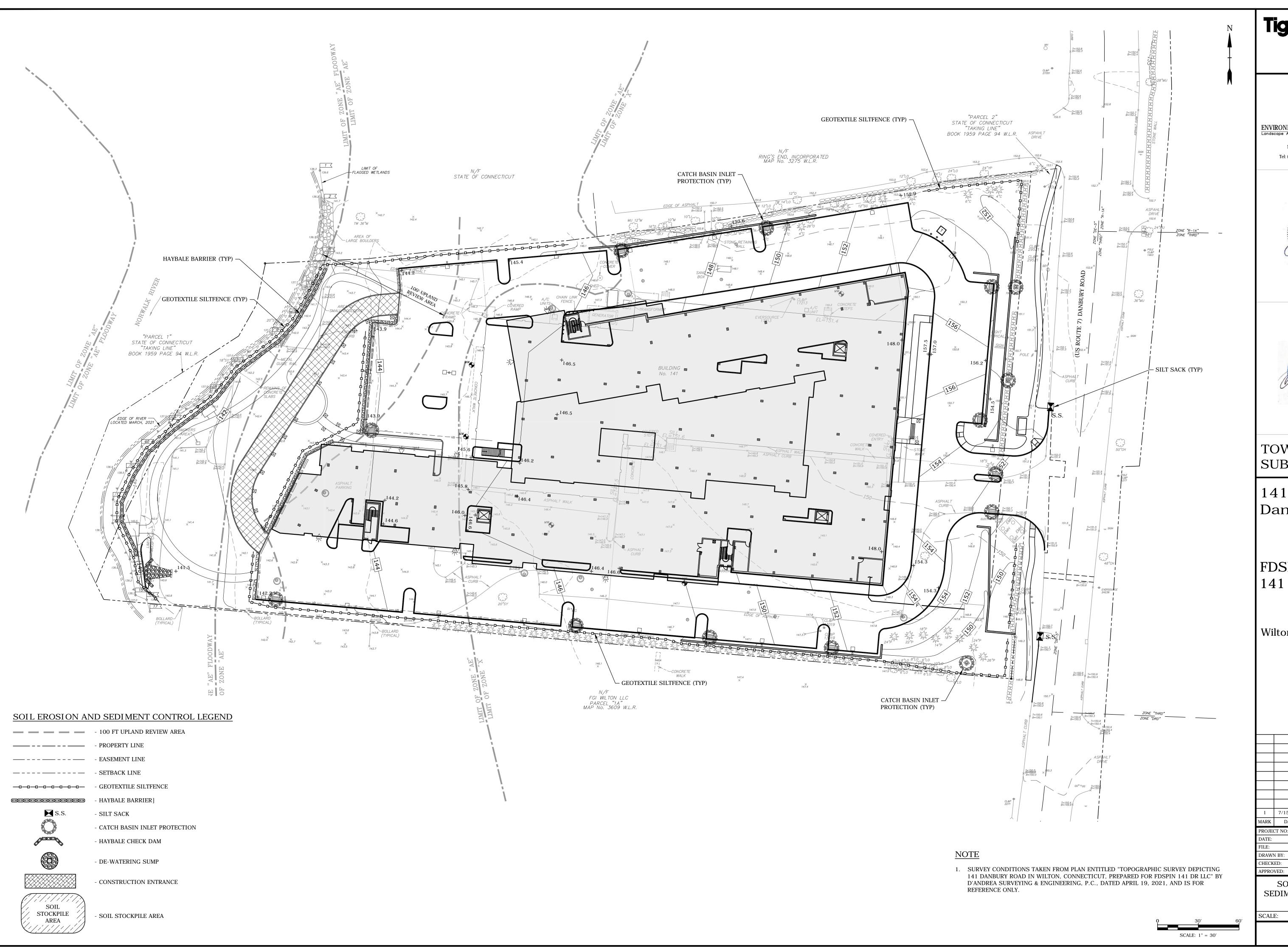
	7/15/2021	REV'D BLDG & SITE LAYOUT
	DATE	DESCRIPTION
ΕŒ	CT NO:	F0173-002
:		06/07/2021

Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

SUBMISSION

Danbury Road


141 DR, LLC

Wilton, Connecticut

	7/15/2021	REV'D BLDG & SITE LAYOUT
Κ	DATE	DESCRIPTION
ΕŒ	T NO:	F0173-002

06/07/2021 F0173-02-C-501-SESC.dwg

SOIL EROSION AND SEDIMENT CONTROL PLAN

Tighe&Bon

1000 Bridgeport Avenue Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836 info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

_		
	7/15/2021	REV'D BLDG & SITE LAYOUT
(DATE	DESCRIPTION
T-/	OT MO.	E0170 000

PROJECT NO: F0173-002

DATE: 06/07/2021

FILE: F0173-02-C-501-SESC.dwg

DRAWN BY: MDS

SOIL EROSION AND SEDIMENT CONTROL PLAN FINAL PHASE

CALE:

SOIL EROSION AND SEDIMENT CONTROL

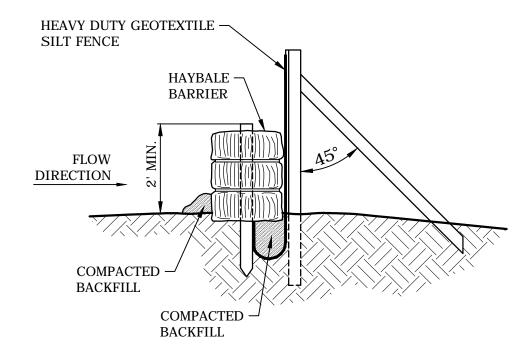
THE STORMWATER MANAGEMENT MEASURES WILL ADDRESS THE STORMWATER QUALITY ONCE THE SITE HAS BEEN CONSTRUCTED AND STABILIZED. SEDIMENTATION AND EROSION CONTROL MEASURES WILL BE INSTALLED DURING CONSTRUCTION WHICH WILL MINIMIZE ADVERSE IMPACTS FROM CONSTRUCTION ACTIVITIES.

ALL SEDIMENTATION AND EROSION CONTROL MEASURES PROPOSED FOR THIS DEVELOPMENT HAVE BEEN DESIGNED IN ACCORDANCE WITH THE "2002 CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENTATION CONTROL" AS PUBLISHED BY THE CONNECTICUT COUNCIL ON SOIL EROSION AND WATER CONSERVATION. ADDITIONAL GUIDELINES HAVE ALSO BEEN FOLLOWED THAT ARE AVAILABLE FROM THE CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AS RECOMMENDED FOR SEDIMENTATION CONTROL DURING CONSTRUCTION ACTIVITIES.

LISTED BELOW ARE THE EROSION CONTROL NARRATIVE AND THE EROSION CONTROL NOTES.

SOIL EROSION AND SEDIMENT CONTROL NARRATIVE:

<u>GENERAL</u>

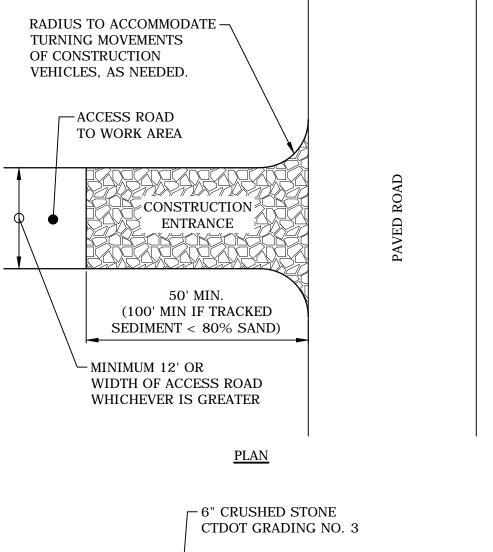

- 1. THE PROPOSED DEVELOPMENT IS ENTITLED 141 DANBURY ROAD, WILTON, CONNECTICUT.
- 2. ESTIMATED:
- PROJECT START: FALL 2021
- PROJECT COMPLETION: SPRING 2022
- 3. EROSION CONTROL NARRATIVE REFERS TO DRAWINGS C-501 THROUGH C-504.
- 4. THE PROPOSED SITE DEVELOPMENT WILL CONSIST OF BUILDING DEMOLITION, CLEARING AND GRUBBING THE EXISTING SITE, EXCAVATION, CONSTRUCTION OF SEDIMENTATION/DETENTION BASINS, AND ROUGH GRADING OF BUILDING, PARKING AREAS, SIDEWALKS AND CURBING.
- 5. THE DEVELOPMENT IS LOCATED IN WILTON, CONNECTICUT AND IS LOCATED ON DANBURY ROAD.

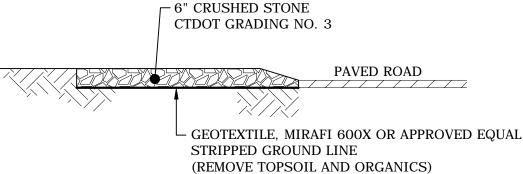
CONSTRUCTION SEQUENCE - INITIAL PHASE

- 1. CONDUCT A PRE-CONSTRUCTION MEETING WITH THE OWNER OR OWNER'S REPRESENTATIVE, TOWN PLANNER, DESIGN ENGINEER, SITE ENGINEER, CONTRACTOR AND SITE SUPERINTENDENT TO ESTABLISH THE LIMITS OF CONSTRUCTION, CONSTRUCTION PROCEDURES AND MATERIAL STOCKPILE AREAS.
- 2. FIELD STAKE THE LIMITS OF CONSTRUCTION.
- 3. INSTALL ALL APPLICABLE SOIL AND EROSION CONTROL MEASURES AROUND THE PERIMETER OF THE SITE TO THE EXTENT POSSIBLE. THIS WILL INCLUDE SILTATION FENCE AROUND THE PROJECT AS SHOWN ON THE
- 4. INSTALL CONSTRUCTION ACCESS ROAD AND ANTI-TRACKING PAVEMENT IN THE AREAS AS SHOWN ON THE PLANS. ALL CONSTRUCTION ACCESS SHALL BE INTO THE SITE THROUGH THE ANTI-TRACKING PADS.
- 5. ESTABLISH TEMPORARY STAGING AREA.
- 6. BEGIN BUILDING DEMOLITION AND PAVEMENT REMOVAL.
- 7. CONSTRUCT THE INITIAL STORM DRAINAGE AND SEDIMENTATION TRAP AS SHOWN ON THE PLANS.
- 8. INSTALL WATER QUALITY SYSTEMS AND ASSOCIATED DRAINAGE NETWORK TO THE MAXIMUM EXTENT PRACTICABLE. GRADE THE AREA AROUND THE STORM DRAINAGE SYSTEM AS NECESSARY.
- 9. BEGIN ROUGH ROADWAY GRADING.
- 10. INSTALL REMAINING DRAINAGE SYSTEM TO THE EXTENT NECESSARY TO PROVIDE POSITIVE DRAINAGE.
- 11. BEGIN INSTALLATION OF SANITARY SEWER SYSTEM, WATER AND OTHER UTILITIES TO EXTENT NECESSARY.
- 12. PROVIDE SILT FENCE/HAYBALE BARRIER AROUND SOIL STOCKPILE AREA. PROVIDE TEMPORARY VEGETATIVE COVER (DEFINED IN EROSION CONTROL NOTES) ON ALL EXPOSED SURFACES.
- 13. BEGIN BUILDING CONSTRUCTION.
- 14. PAVE BINDER COURSE ON PARKING AND DRIVEWAYS FOR NON-POROUS PAVEMENT AREAS.
- 15. ESTABLISH TEMPORARY VEGETATIVE COVER.
- 16. CONSTRUCT DRAINAGE AND SUBBASE FOR POROUS PAVEMENT AND THEN PLACE PAVEMENT COURSE

CONSTRUCTION SEQUENCE - FINAL PHASE

- 1. REPAIR PERIMETER SEDIMENT & EROSION CONTROLS AS NEEDED.
- 2. CLEAN/REPLACE CONTROLS FROM PREVIOUS PHASE AS NEEDED.
- 3. FINE GRADE SITE.
- 4. CONTINUE CONSTRUCTION OF BUILDING.
- 5. COMPLETE CONSTRUCTION OF SIDEWALKS.
- 6. ESTABLISH FINAL VEGETATIVE COVER AND LANDSCAPING
- 7. PAVE SURFACE COURSE ON ROADWAYS.
- 8. REMOVE EROSION CONTROLS WHEN SITE IS STABILIZED.

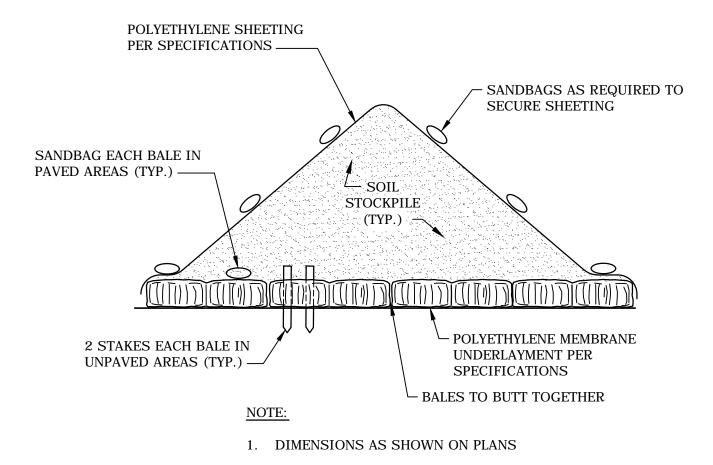

NOTE:

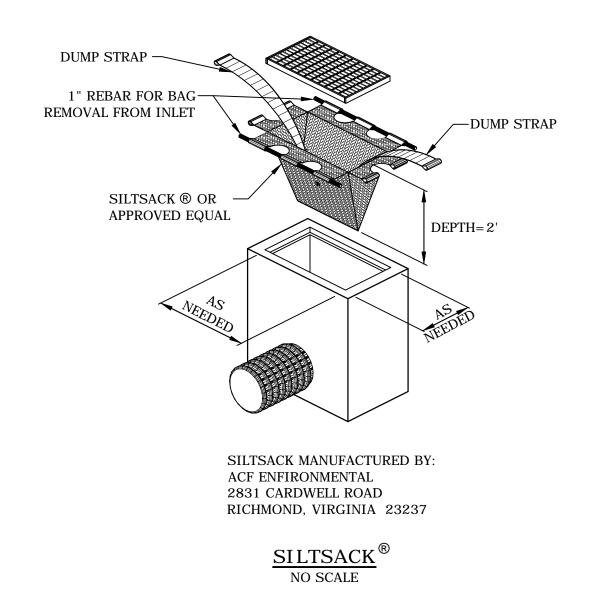

1. BACKFILL AND COMPACT THE EXCAVATED SOIL AS SHOWN ON THE UPHILL SIDE OF THE BARRIER TO PREVENT PIPING.

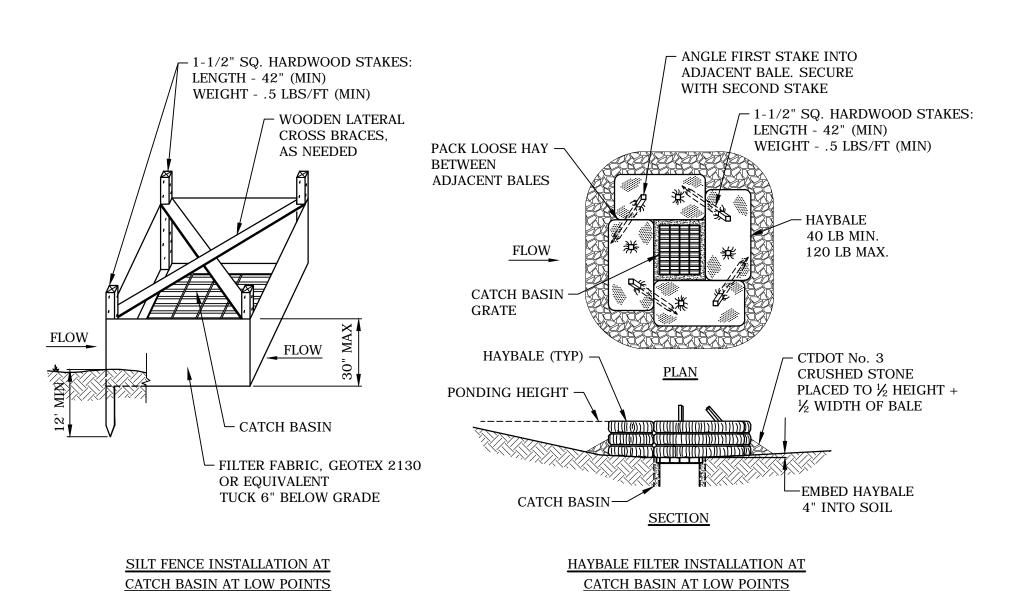
> SILT FENCE AND HAYBALE COMBINED BARRIER NO SCALE

SOIL EROSION AND SEDIMENT CONTROL NOTES:

- 1. ALL SEDIMENTATION AND EROSION CONTROL MEASURES SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE STANDARDS AND SPECIFICATIONS OF THE "2002 CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL", DEP BULLETIN NO. 34, AND ALL AMENDMENTS AND ADDENDA THERETO AS PUBLISHED BY THE CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION.
- 2. LAND DISTURBANCE SHALL BE KEPT TO THE MINIMUM NECESSARY FOR CONSTRUCTION OPERATIONS.
- 3. ALL EROSION CONTROL MEASURES SHALL BE INSTALLED AS SHOWN ON THE PLAN AND ELSEWHERE AS ORDERED BY THE ENGINEER.
- 4. ALL CATCH BASINS SHALL BE PROTECTED WITH A SILT SACKS, HAYBALE RING, SILT FENCE OR BLOCK AND STONE INLET PROTECTION THROUGHOUT THE CONSTRUCTION PERIOD AND UNTIL ALL DISTURBED AREAS ARE THOROUGHLY STABILIZED.
- 5. WHENEVER POSSIBLE, EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO CONSTRUCTION. SEE "EROSION CONTROL NARRATIVE".
- 6. ADDITIONAL CONTROL MEASURES SHALL BE INSTALLED DURING THE CONSTRUCTION PERIOD AS ORDERED BY THE
- 7. ALL SEDIMENTATION AND EROSION CONTROL MEASURES SHALL BE MAINTAINED IN EFFECTIVE CONDITION THROUGHOUT THE CONSTRUCTION PERIOD.
- 8. SEDIMENT REMOVED SHALL BE DISPOSED OF OFF SITE OR IN A MANNER AS REQUIRED BY THE ENGINEER.
- 9. THE CONSTRUCTION CONTRACTOR SHALL BE RESPONSIBLE FOR CONSTRUCTION AND MAINTENANCE OF ALL CONTROL MEASURES THROUGHOUT THE CONSTRUCTION PERIOD.
- 10. ALL DISTURBED AREAS TO BE LEFT EXPOSED FOR MORE THAN 30 DAYS SHALL BE PROTECTED WITH A TEMPORARY VEGETATIVE COVER. SEED THESE AREAS WITH PERENNIAL RYEGRASS AT THE RATE OF 40 LBS. PER ACRE (1 LB. PER 1,000 SQ. FT). APPLY SOIL AMENDMENTS AND MULCH AS REQUIRED TO ESTABLISH A UNIFORM STAND OF VEGETATION OVER ALL DISTURBED AREAS.
- 11. THE CONSTRUCTION CONTRACTOR SHALL UTILIZE APPROVED METHODS/MATERIALS FOR PREVENTING THE BLOWING AND MOVEMENT OF DUST FROM EXPOSED SOIL SURFACES ONTO ADJACENT PROPERTIES AND SITE
- 12. THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A SUPPLY OF SILT FENCE/HAYBALES AND ANTI-TRACKING CRUSHED STONE ON SITE FOR EMERGENCY REPAIRS.
- 13. ALL DRAINAGE STRUCTURES SHALL BE PERIODICALLY INSPECTED WEEKLY BY THE CONSTRUCTION CONTRACTOR AND CLEANED TO PREVENT THE BUILD-UP OF SILT.
- 14. THE CONSTRUCTION CONTRACTOR SHALL CAREFULLY COORDINATE THE PLACEMENT OF EROSION CONTROL MEASURES WITH THE PHASING OF CONSTRUCTION.
- 15. KEEP ALL PAVED SURFACES CLEAN. SWEEP AND SCRAPE BEFORE FORECASTED STORMS.
- 16. TREAT ALL UNPAVED SURFACE WITH 4" MINIMUM OF TOPSOIL PRIOR TO FINAL STABILIZATION.
- 17. HAYBALE BARRIERS AND SILT FENCING SHALL BE INSTALLED ALONG THE TOE OF CRITICAL CUT AND FILL SLOPES.
- 18. THE CONTRACTOR SHALL NOTIFY THE TOWN OFFICIALS PRIOR TO THE INSTALLATION OF EROSION CONTROLS, CUTTING OF TREES, OR ANY EXCAVATION.
- 19. ALL TRUCKS LEAVING THE SITE MUST BE COVERED.
- 20. SOME CONTROL MEASURES ARE PERMANENT. THESE STRUCTURES SHALL BE CLEANED AND REPLENISHED AT THE END OF CONSTRUCTION. LOCATIONS OF THE PERMANENT CONTROL STRUCTURES ARE SHOWN ON THE DRAINAGE
- 21. ALL SEDIMENTATION AND EROSION CONTROLS SHALL BE CHECKED WEEKLY AND/OR AFTER EACH RAIN FALL EVENT NECESSARY REPAIRS SHALL BE MADE WITHOUT DELAY.
- 22. PRIOR TO ANY FORECASTED RAINFALL, EROSION AND SEDIMENT CONTROLS SHALL BE INSPECTED AND REPAIRED AS NECESSARY.
- 23. AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED, EROSION CONTROLS MAY BE REMOVED ONCE AUTHORIZATION TO DO SO HAS BEEN SECURED FROM THE OWNER. DISTURBED AREAS SHALL BE SEEDED AND
- 24. ALL EMBANKMENT SLOPES 3:1 OR GREATER TO BE STABILIZED WITH EROSION CONTROL BLANKET. NORTH AMERICAN GREEN SC150BN OR APPROVED EQUIVALENT, UNLESS OTHERWISE NOTED ON PLANS.




ELEVATION


CONSTRUCTION ENTRANCE

NO SCALE

TEMPORARY CONTROLLED STOCKPILE AREA

CATCH BASIN EROSION CONTROL NO SCALE

Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LI Landscape Architecture and Environmental Plannin 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851 Tel: (203) 855-7879 Fax: (203) 855-7836

info@elsllc.net www.elsllc.net

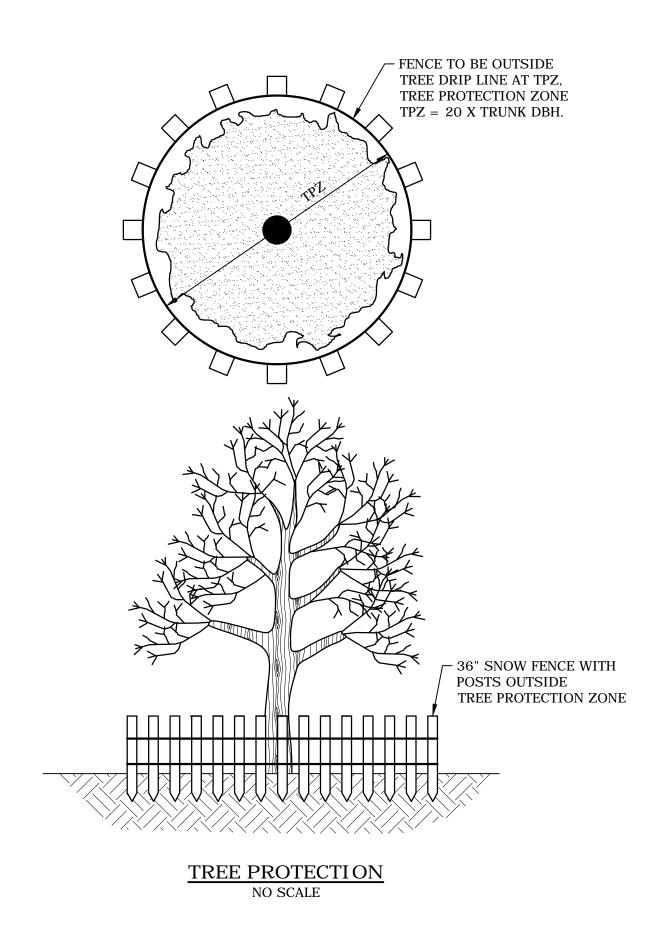
TOWN **SUBMISSION**

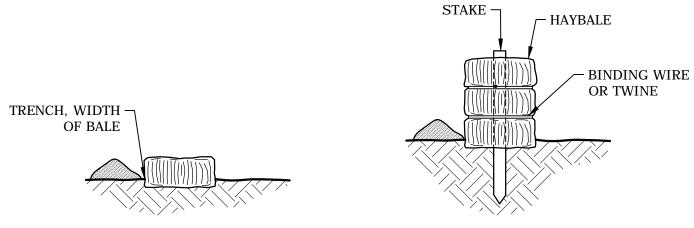
Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

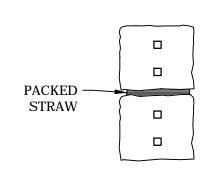
7/15/2021 REV'D BLDG & SITE LAYOUT DATE DESCRIPTION PROJECT NO: F0173-002 06/07/2021 F0173-02-C-501-SESC.dwg


CHECKED: EWI. PPROVED: SOIL EROSION AND


MDS

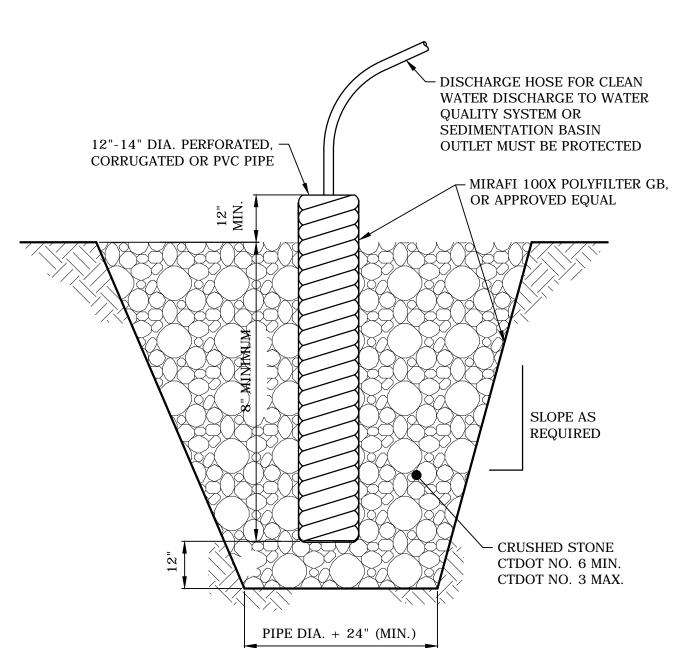
AS SHOWN

SEDIMENT CONTROL **DETAILS**


DRAWN BY:

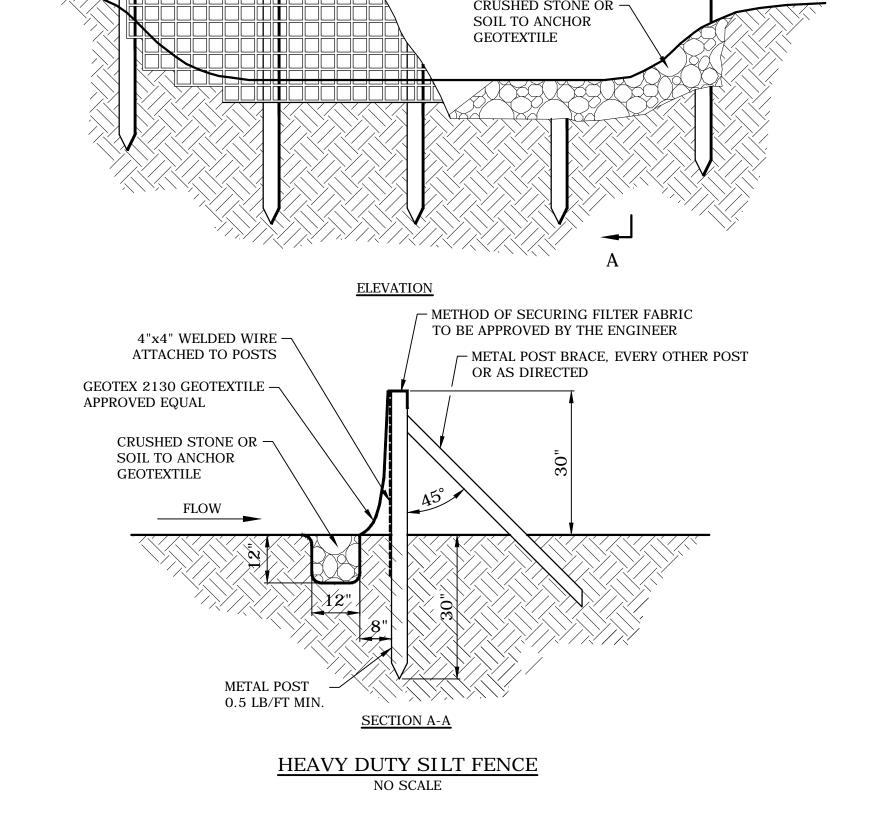
1. EXCAVATE A TRENCH 4" DEEP AND THE WIDTH OF THE HAYBALE

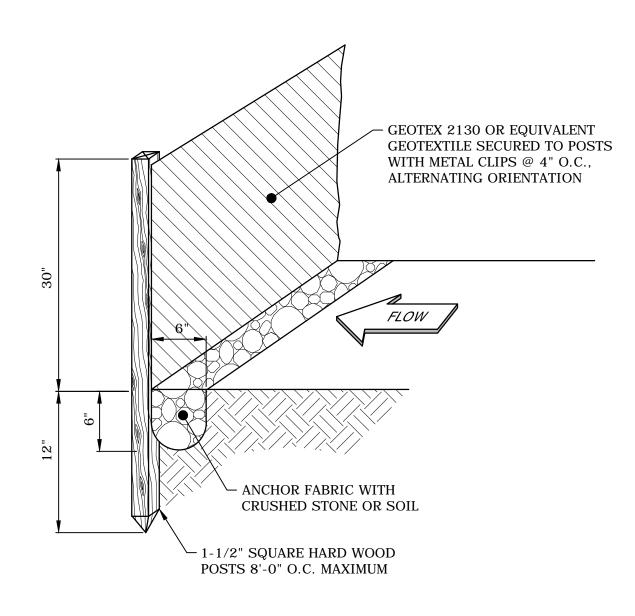
2. PLACE AND STAKE HAYBALES TWO STAKES PER BALE

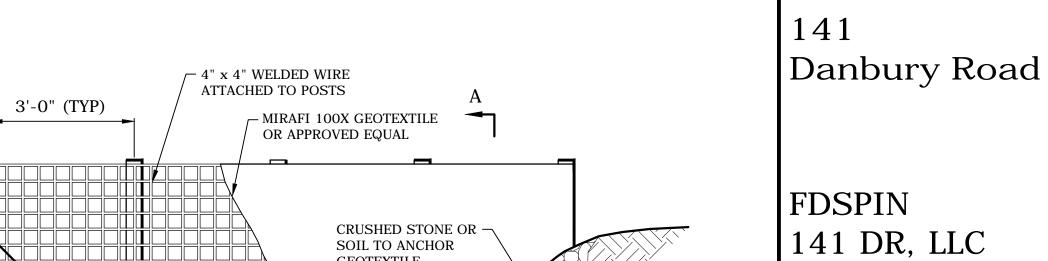

BARRIER

COMPACTED BACKFILL

3. WEDGE LOOSE STRAW BETWEEN BALES TO CREATE A CONTINUOUS


4. BACKFILL AND COMPACT EXCAVATED SOIL ON THE UPHILL SIDE OF THE BARRIER TO PREVENT PIPING




- 2. SIDE SLOPES TO MEET OSHA TRENCHING REQUIREMENTS.

SUMP PIT DETAIL (IF REQUIRED)

SILT FENCE NO SCALE

Wilton, Connecticut

TOWN

SUBMISSION

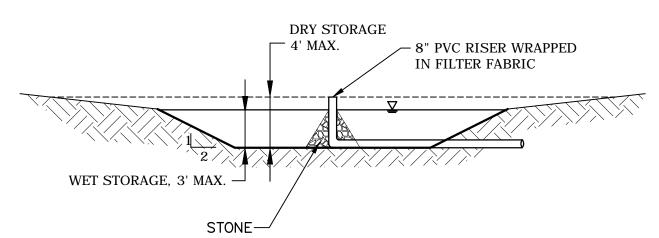
Suite 320

Shelton, CT 06484

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836

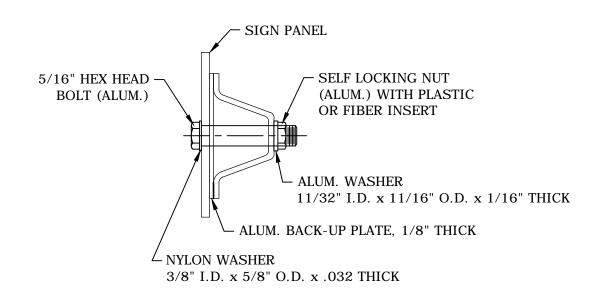
info@elsllc.net www.elsllc.net


(203) 712-1100

1 7/15/2021 REV'D BLDG & SITE LAYOUT MARK DATE DESCRIPTION PROJECT NO: F0173-002 06/07/2021 F0173-02-C-501-SESC.dwg DRAWN BY: MDS CHECKED: **EWL**

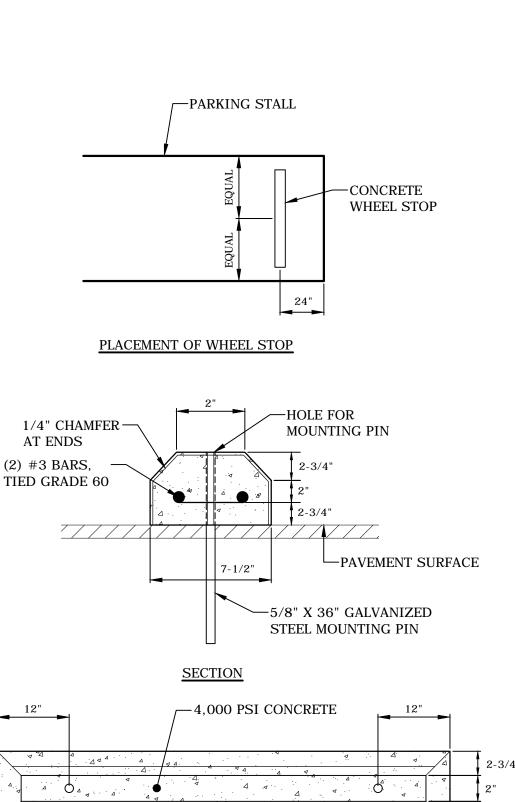
APPROVED: JWB SOIL EROSION AND SEDIMENT CONTROL

DETAILS AS SHOWN

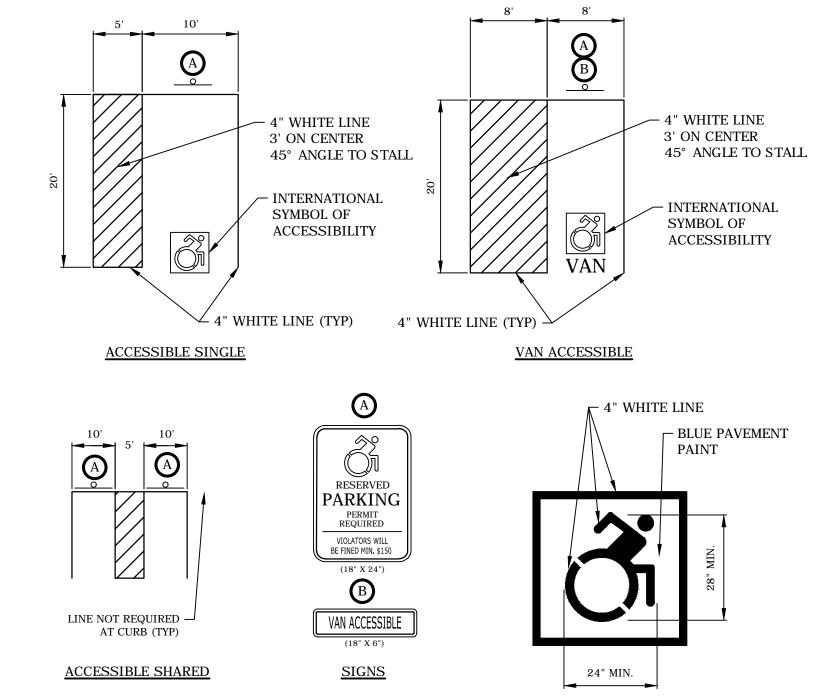

C-504

TEMPORARY SEDIMENT TRAP NO SCALE

1. PERFORATIONS SHALL BE CIRCULAR OR SLOTS, NOT TO EXCEED 1/2" DIAMETER.


NO SCALE

TYPI CAL SI GN PANEL ATTACHMENT NO SCALE

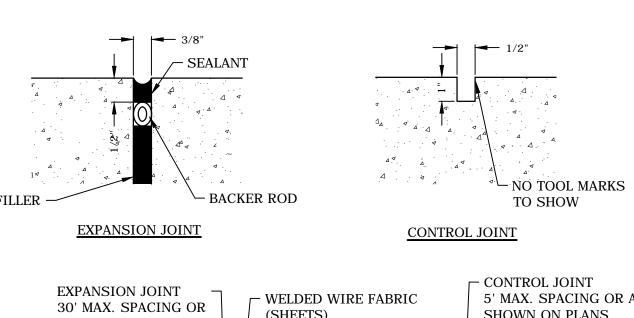


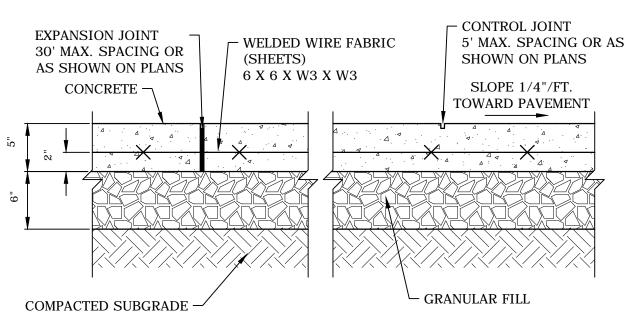
NO SCALE

CONCRETE WHEEL STOP DETAIL
NO SCALE

<u>PLAN</u>

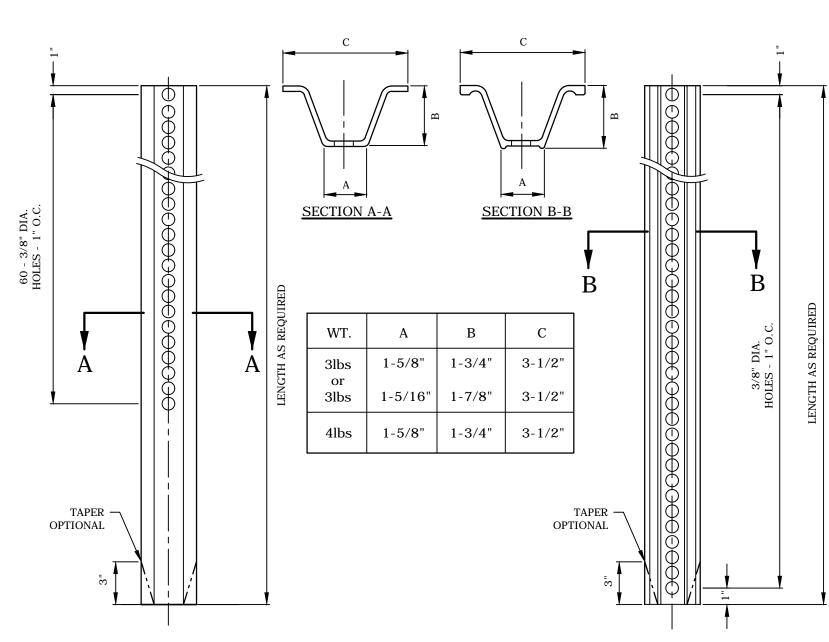
1. SIGN LOCATED AT ALL HANDICAPPED PARKING SPACES.


2. 18' X 15' D.O.T STANDARD ACCESSIBLE PARKING STALL


INTERNATIONAL SYMBOL OF ACCESSIBILITY

3. SIGN BACKGROUND - BLUE REFLECTIVE

4. LETTERS, GRAPHICS & BORDER - WHITE REFLECTIVE


ACCESSIBLE PARKING STRIPING DETAILS

CONCRETE SIDEWALK DETAIL

NO SCALE

NOTES

- 1. STEEL FOR POSTS SHALL CONFORM TO THE MECHANICAL REQUIREMENTS OF ASTM A 499-81 GRADE 60 AND TO THE CHEMICAL REQUIREMENTS OF ASTM A1-76 CARBON STEEL TEE RAIL HAVING NOMINAL WEIGHT OF 91 LBS. OR GREATER PER LINEAR YARD.
- 2. AFTER FABRICATION, ALL STEEL POSTS SHALL BE GALVANIZED TO MEET THE REQUIREMENTS OF ASTM A 123.
- 3. ALL SIGN POSTS SHALL HAVE "BREAKAWAY" FEATURES THAT MEET AASHTO REQUIREMENTS CONTAINED IN "STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS-1985." THE "BREAKAWAY" FEATURES SHALL BE STRUCTURALLY ADEQUATE TO CARRY THE SIGNS SHOWN IN THE PLANS AT 60 MPH WIND LOADINGS. INSTALLATIONS SHALL BE IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS.
- 4. TYPE A POSTS 3 LB/FT TYPE B POSTS 4 LB/FT.

TYPICAL METAL SIGN POSTS
NO SCALE

Tighe&Bond
1000 Bridgeport Avenue
Suite 320
Shelton, CT 06484

(203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836

info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

1	7/15/2021	REV'D BLDG & SITE LAYOUT
ARK	DATE	DESCRIPTION
ROJE	CT NO:	F0173-002
ATE:		06/07/2021
II F.	FO1	73-02-C-601-DETL dwg

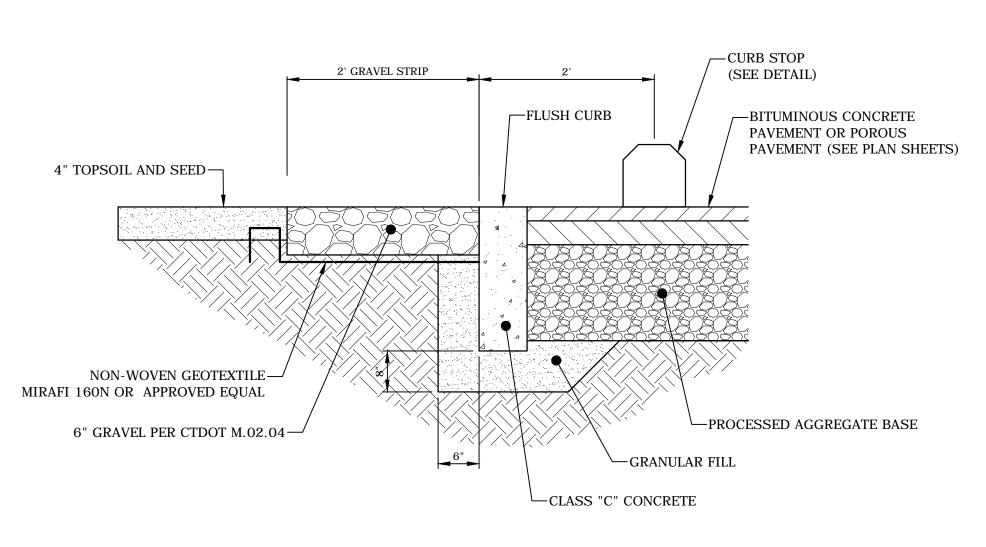
PROJECT NO: F0173-002

DATE: 06/07/2021

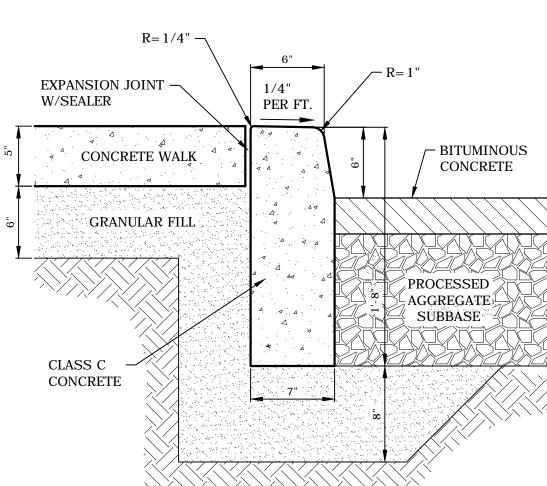
FILE: F0173-02-C-601-DETL.dwg

DRAWN BY: MDS

CHECKED: EWL

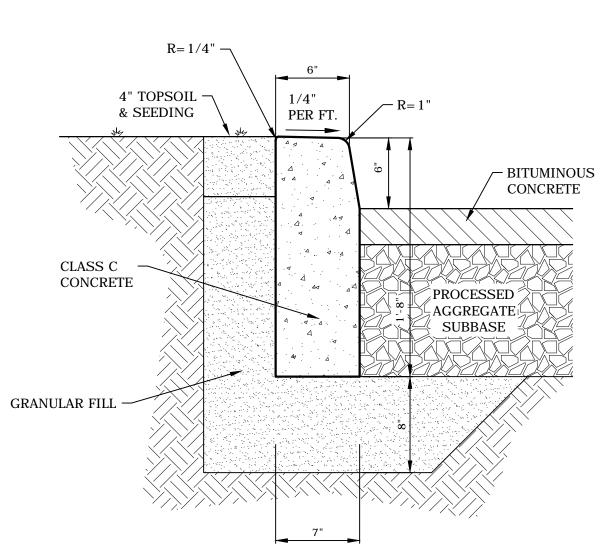

APPROVED: JWB

DETAILS - 1


ALE: AS SHOWN

BITUMINOUS CONCRETE PAVEMENT

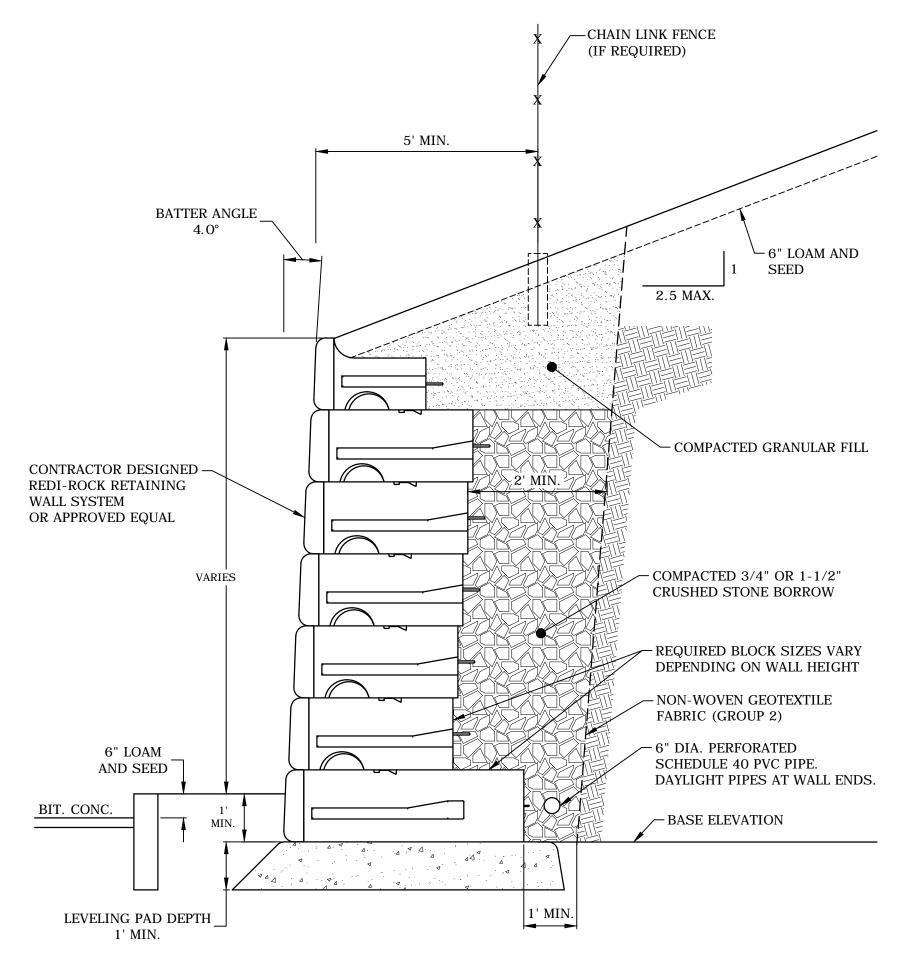
NO SCALE



2' GRAVEL STRIP WITH FLUSH CURB DETAIL NO SCALE

1. CONSTRUCT CURBING IN SECTIONS NOT TO EXCEED 10 FEET IN LENGTH, SUCH THAT THE CURBING JOINTS ALIGN WITH JOINTS IN THE CONCRETE PAVEMENT SLAB. NO SECTION SHALL BE LESS THAN 6 FEET IN LENGTH.

CONCRETE CURB AND CONCRETE SIDEWALK


1. CONSTRUCT CURBING IN SECTIONS NOT TO EXCEED 10 FEET IN LENGTH, SUCH THAT THE CURBING JOINTS ALIGN WITH JOINTS IN THE CONCRETE PAVEMENT SLAB. NO SECTION SHALL BE LESS THAN 6 FEET IN LENGTH.

> CONCRETE CURB ADJACENT TO GRASS NO SCALE

CAP UNIT ADHERE TO TOP UNIT W/VERSA-LOK CONCRETE ADHESIVE GEOSYNTHETIC REINFORCEMENT SEE PROFILE DRAWINGS FOR LENGTH, TYPE, AND SPACING VERSA-LOK ACCENT MODULAR CONCRETE UNITS DRAINAGE AGGREGATE 12" THICK MIN. COMPACTED 95% OF MAXIMUM STANDARD PROCTOR DENSITY ~4" DIA. (MIN.) DRAIN PIPE OUTLET @ END OF WALL OR @ 40' CENTERS MAX. SLOPE TO DRAIN (1/8"/FT.) IMPERVIOUS FILL GRANULAR LEVELING PAD 6" THICK MIN. TYPICAL SECTION-REINFORCED RETAINING WALL ACCENT UNIT SCALE: NONE VERSA-LOK ACCENT DETAILS Retaining Wall Systems 10/2007 REINFORCED SECTION (800)770-4525 fax(651)770-4089 **Solid Solutions™** 6348 Hwy36 Ste1, Oakdale,MN 55128 **Solid Solutions™**

OR APPROVED EQUAL

MODULAR BLOCK RETAINING WALL NO SCALE

1. TEMPORARY EXCAVATIONS FOR WALL AND CRUSHED STONE PLACEMENT SHALL BE IN ACCORDANCE WITH OSHA STANDARDS. ADDITIONAL BACKFILL REQUIRED TO FILL EXCAVATIONS SHALL CONSIST OF COMPACTED GRANULAR FILL OR CRUSHED STONE EXCEPT AS NOTED.

GRAVITY RETAINING WALL DETAIL

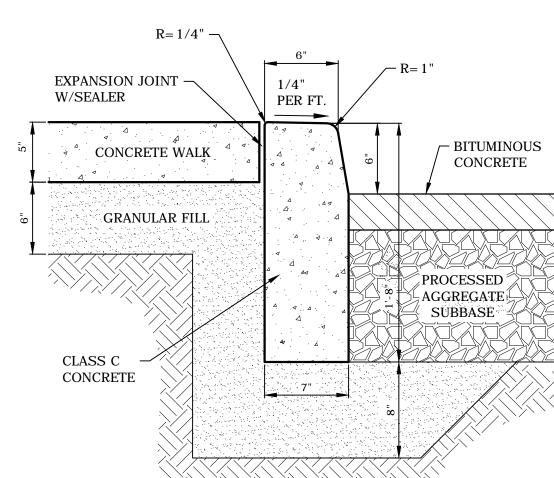
Suite 320 Shelton, CT 06484 (203) 712-1100

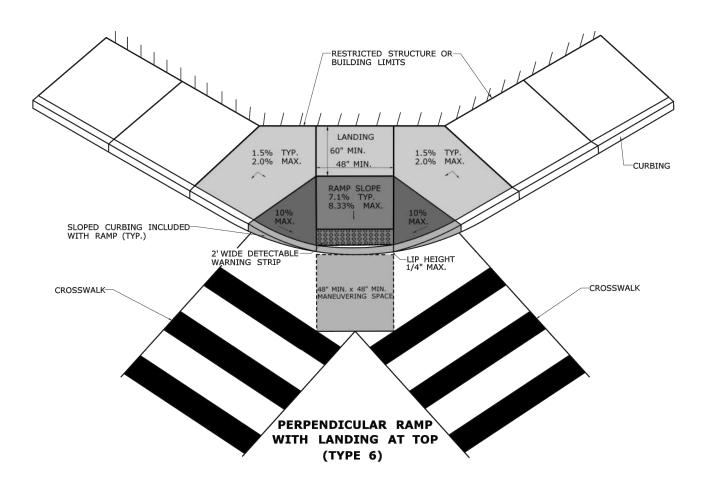
ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851 Tel: (203) 855-7879 Fax: (203) 855-7836 info@elsllc.net www.elsllc.net

TOWN **SUBMISSION**

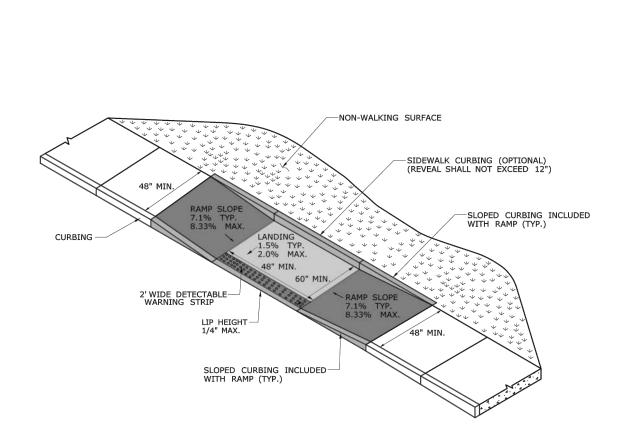
Danbury Road

FDSPIN 141 DR, LLC

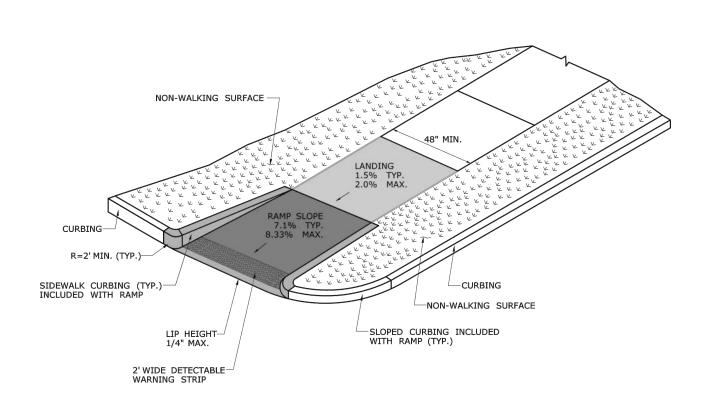

Wilton, Connecticut


1	7/15/2021	REV'D BLDG & SITE LAYOUT
ARK	DATE	DESCRIPTION
OJE	CT NO:	F0173-002
ATE:		06/07/2021

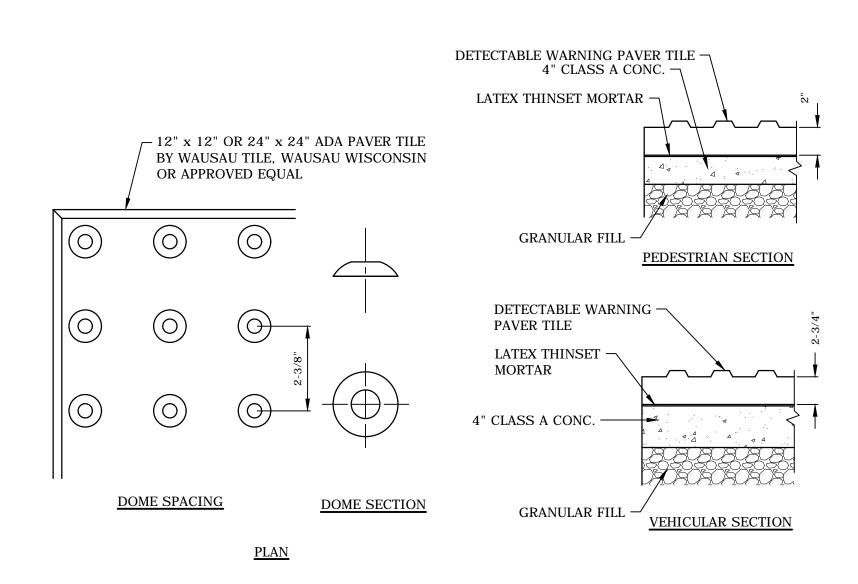
F0173-02-C-601-DETL.dwg DRAWN BY: MDS CHECKED: **EWL** APPROVED:


DETAILS - 2

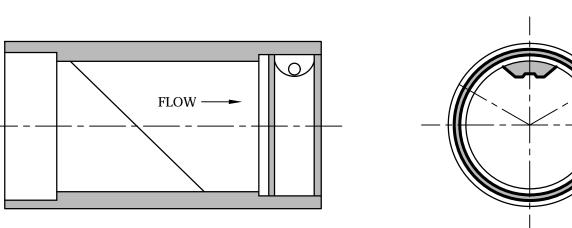
SCALE: AS SHOWN


CTDOT - (TYPE 6) ACCESSIBLE RAMP NO SCALE

CTDOT - (TYPE 9) ACCESSIBLE RAMP

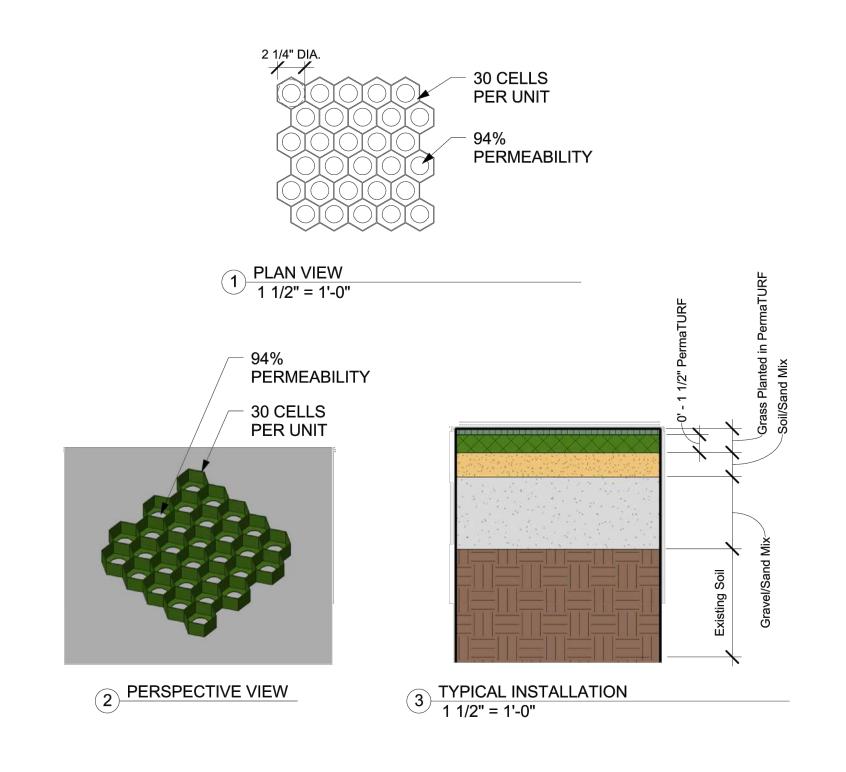

PARALLEL RAMP WITHOUT NON-WALKING SURFACE

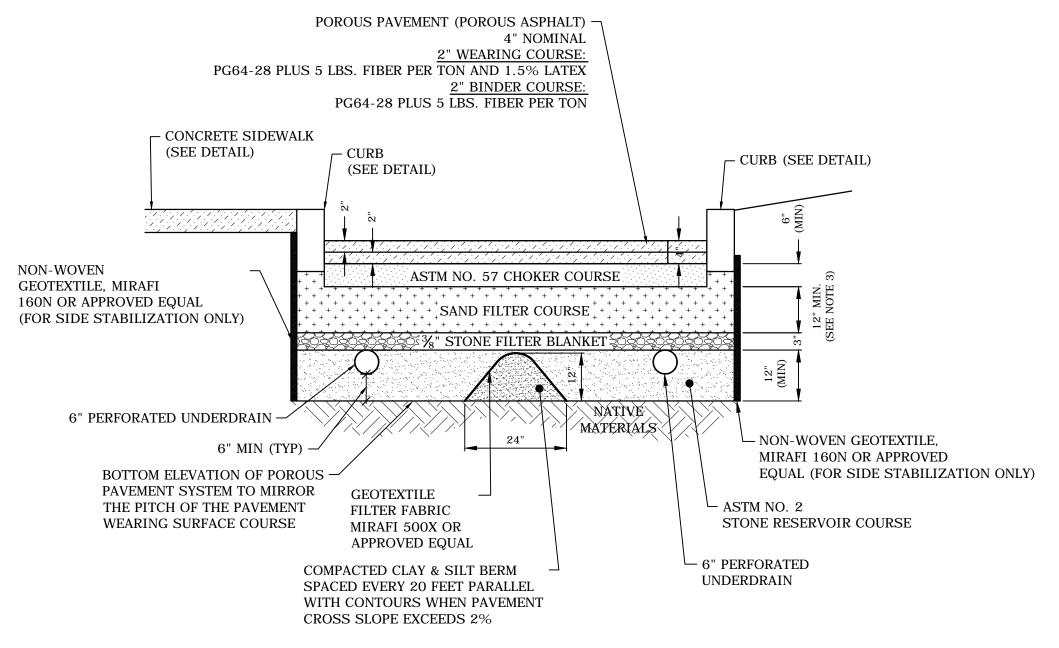
(TYPE 9)



SINGLE DIRECTION - RETURN CURB WITH NON-WALKING SURFACE (TYPE 16)

CTDOT - (TYPE 16) ACCESSIBLE RAMP NO SCALE


DETECTABLE WARNING TILE
NO SCALE


	CHECKMATE VALVE							
NOMINAL OVERALL PIPE SIZE I.D. LENGTH		NUMBER OF CLAMPS	_	UFF EPTH	_	RESSURE ΓING		
Inches	Millimeters	Inches	Millimeters		Inches	Millimeters	Feet	Meters
12	300	23	584	1	2	51	40	12
14	350	25.75	654	1	4	102	20	6
16	400	28.61	727	1	4	102	20	6
18	450	31	787	1	4	102	20	6
20	500	42.14	1070	2	8	203	20	6
24	600	47.5	1207	2	8	203	20	6

CHECKMATE® IN LINE CHECK VALVE DETAIL

NO SCALE

PERMATURF LAWN PANELS
SCALE AS SHOWN

NOTES:

- 1. SEE SITE PLAN FOR PAVEMENT WIDTH AND LOCATION.
- 2. SEE GRADING, DRAINAGE, UTILITIES AND EROSION CONTROL PLAN FOR PAVEMENT SLOPE AND CROSS-SLOPE.
- 3. FILTER COURSE TO BE INCREASED AS NECESSARY TO MEET PROPOSED GRADES.

POROUS PAVEMENT SECTION
NO SCALE

Tighe&Bond
1000 Bridgeport Avenue
Suite 320
Shelton, CT 06484
(203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836
info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

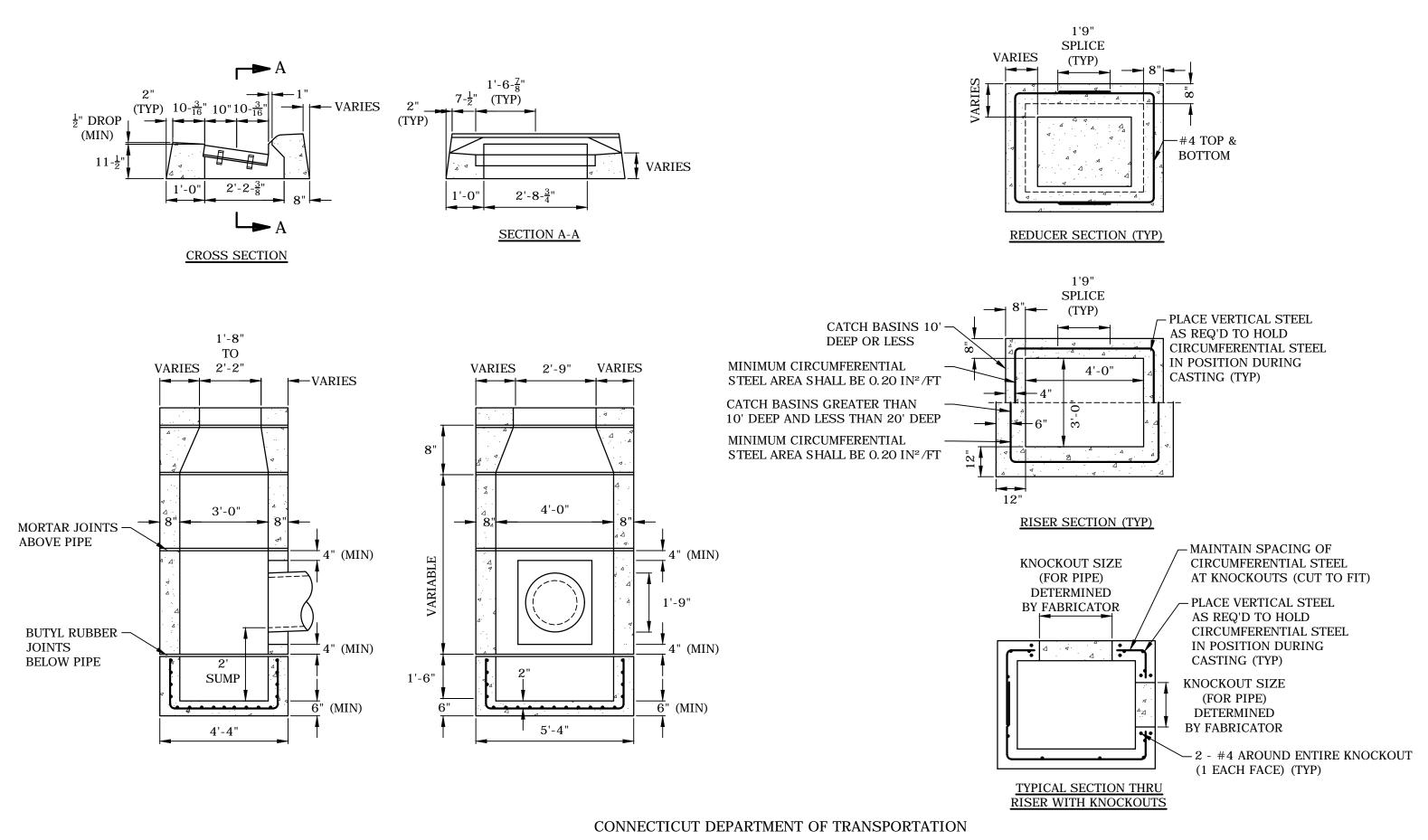
Wilton, Connecticut

1 7/15/2021 REV'D BLDG & SITE LAYOUT
MARK DATE DESCRIPTION
PROJECT NO: F0173-002

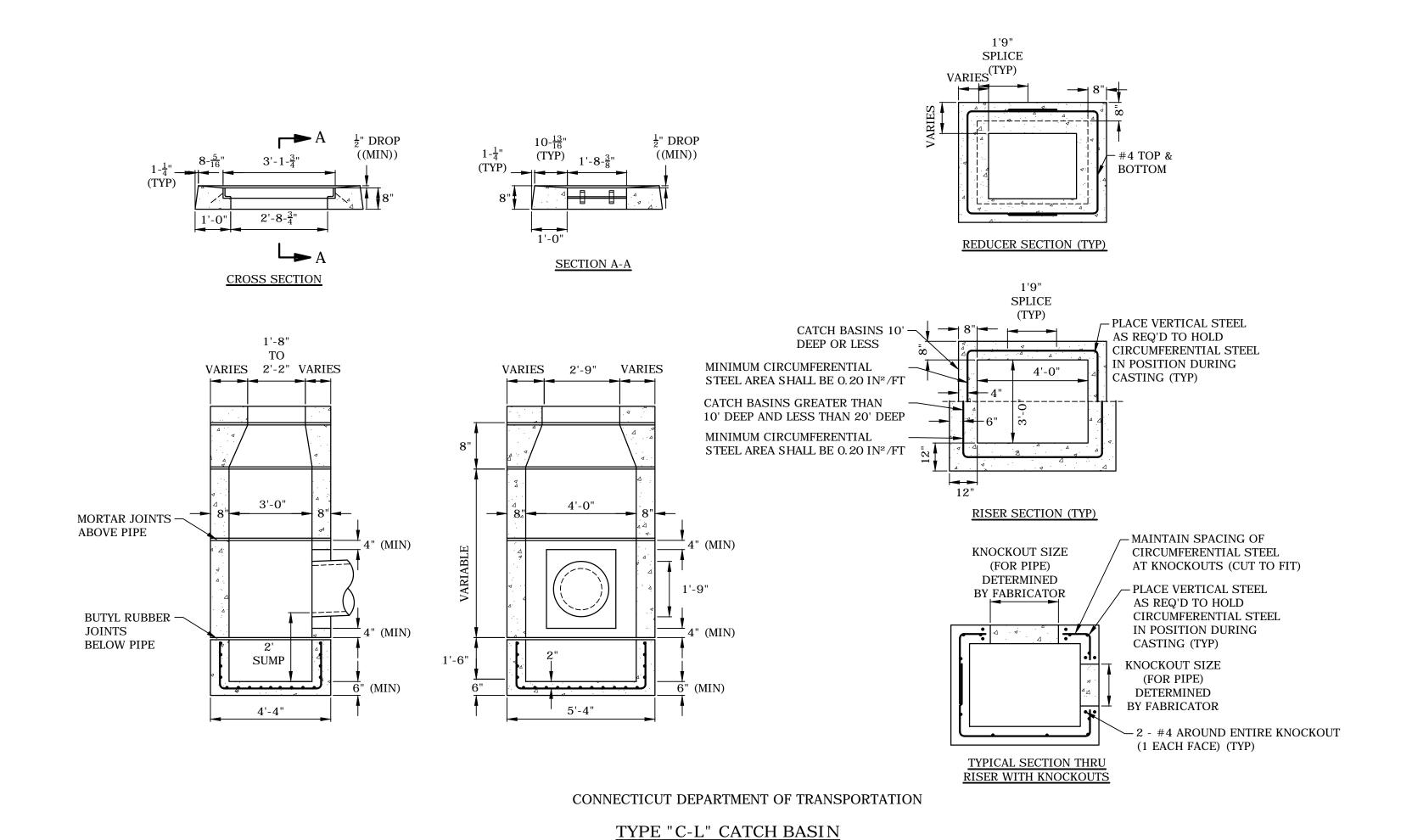
PROJECT NO: F0173-002

DATE: 06/07/2021

FILE: F0173-02-C-601-DETL.dwg

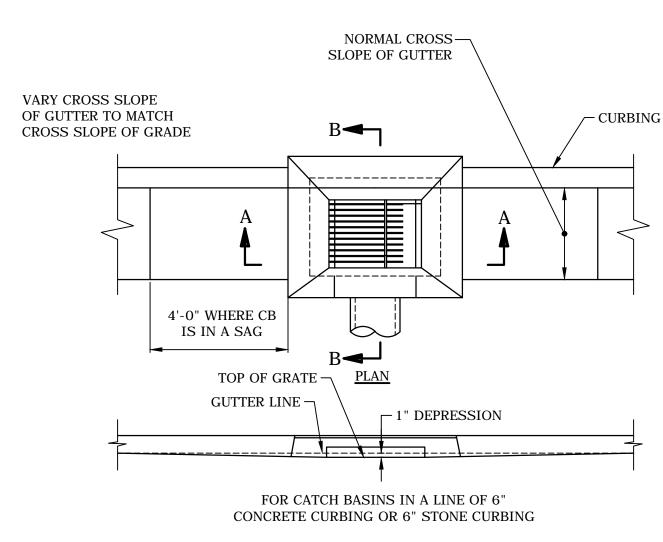

DRAWN BY: MDS

CHECKED: EWL


DETAILS - 3

APPROVED:

SCALE: AS SHOWN



TYPE "C" CATCH BASIN

NOTI

- 1. REINFORCEMENT SHALL CONFORM TO ASTM A615, GRADE 60.
- 2. DETAILS ON THIS SHEET SHOW STANDARD REINFORCEMENT. WELDED WIRE FABRIC WITH AN AREA EQUAL TO OR GREATER THAN THE REINFORCING SHOWN MAY BE SUBSTITUTED.
- 3. ALL LAP SPLICES, DEVELOPMENT LENGTHS, BENDS FOR REINFORCEMENT, AND WELDED WIRE FABRIC SHALL CONFORM TO AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES.
- 4. ALL REINFORCEMENT SHALL HAVE A MINIMUM CLEAR COVER OF 2", EXCEPT FOR BENEATH BOTTOM REINFORCEMENT IN TOP SLABS, WHERE THE MINIMUM MAY BE $1\frac{1}{2}$ "
- 5. MINIMUM CONCRETE COMPRESSIVE STRENGTH FC'=4,000PSI SHALL BE OBTAINED BEFORE SHIPPING.
- 6. BASES AND RISERS AT A DEPTH OF 20' AND GREATER SHALL BE DESIGNED BY THE CONTRACTOR AND WORKING DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW.
- 7. SEE STANDARD DRAWING 507-K FOR CATCH BASIN FRAMES AND GRATES.
- 8. FOR DOT MAINTENANCE PERSONNEL, RISERS MAY BE PREFABRICATED WITH PIPE OPENINGS IN ALL FOUR WALLS. ADEQUATE REINFORCING AROUND PIPE OPENINGS TO CONFORMING TO THESE PLANS SHALL BE PROVIDED. ANY RISERS USED WHERE A PIPE OPENING IS TO REMAIN IN PLACE MUST BE FORMED UP WITH BRICK AS DIRECTED BY THE ENGINEER.
- 9. RISERS SHALL NEVER HAVE CORNER PIPE ENTRIES. WHERE THE ALIGNMENT OF THE PIPE WITH RESPECT TO THE CORNER OF THE CATCH BASIN CANNOT BE CHANGED, A ROUND STRUCTURE CONFORMING TO ASTM C478 SHALL BE USED. REINFORCING FOR THE ROUND TOP SLAB WITH A RECTANGULAR OPENING SHALL CONFORM TO DETAILS SHOWN HERE.
- 10. ALL PIPE OPENINGS SHALL BE CLOSED USING MATERIALS WHICH CONFORM TO STATE OF CONNECTICUT STANDARD SPECIFICATIONS SECTION M.08.02. IF THE ENGINEER DETERMINES THAT THE CLOSURE OF ANY PIPE OPENING IS UNSATISFACTORY, THE CONTRACTOR SHALL RECLOSE SAID OPENING AT NO ADDITIONAL COST TO THE STATE. KNOCKOUTS FOR PIPE OPENINGS SHALL NOT RESULT IN A REDUCED WALL THICKNESS
- 11. THE LATEST STATE OF CONNECTICUT STANDARD SPECIFICATIONS AND SUPPLEMENTALS SHALL GOVERN.
- 12. FOR ADDITIONAL DETAILS, SEE OTHER CATCH BASIN SHEETS.
- 13. WALL THICKNESS OF ALL CB'S OVER 10' DEEP SHALL BE INCREASED TO 12" THICK. INSIDE DIMENSION SHALL REMAIN THE SAME. (THE 12" THICKNESS SHALL START AFTER THE FIRST 10")
- 14. BUTYL RUBBER JOINT SEAL SHALL CONFORM TO AASHTO M-198 AND MORTAR SHALL CONFORM TO THE LATEST STATE OF CONNECTICUT STANDARD SPECIFICATIONS MATERIAL SECTION M11.04.
- 15. SHRINKAGE AND TEMPERATURE REINFORCEMENT SHALL BE PROVIDED IN THE TOPS OF SLABS. THE TOTAL AREA OF REINFORCEMENT PROVIDED SHALL BE AT LEAST 0.125 IN²/FT IN EACH DIRECTION. THE MAXIMUM SPACING OF THIS REINFORCEMENT SHALL NOT EXCEED 18 INCHES.
- 16. THE DETAILS SHOWN IN THE PLAN VIEW FOR THE PRECAST CONCRETE ROUND STRUCTURES SHALL ALSO BE USED FOR CONVERTING MANHOLES TO CATCH BASINS.

TOP OF GRATE — VERTICAL FACE BETWEEN THESE LINES

2" DEPRESSION

FOR CATCH BASINS IN A LINE OF 6" BITUMINOUS CONCRETE LIP CURBING (MACHINE FORMED)

1000 Bridgeport Avenue
Suite 320
Shelton, CT 06484

(203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836

info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

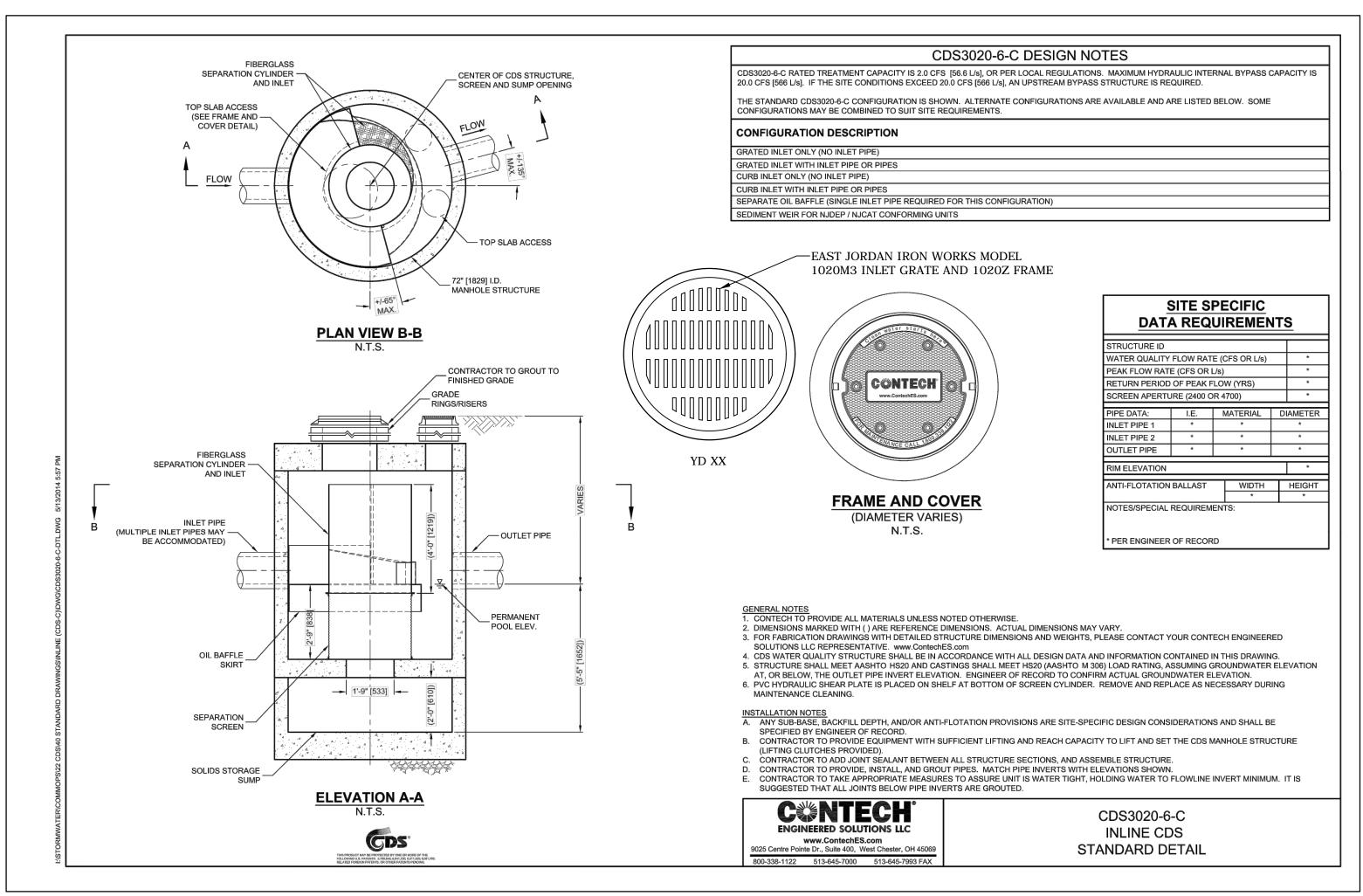
1 7/15/2021 REV'D BLDG & SITE LAYOUT
MARK DATE DESCRIPTION
PROJECT NO: F0173-002

JWB

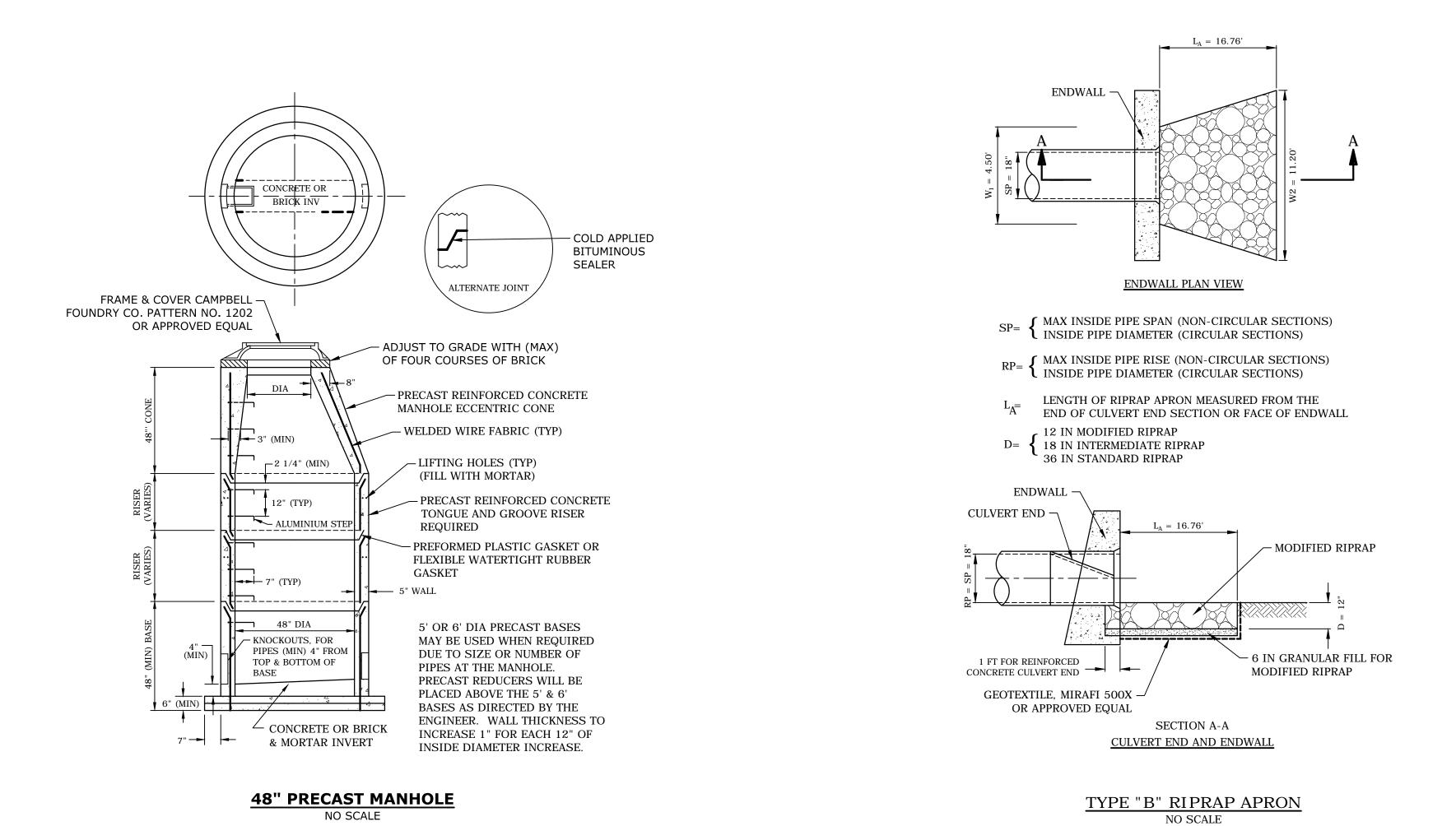
PROJECT NO: F0173-002

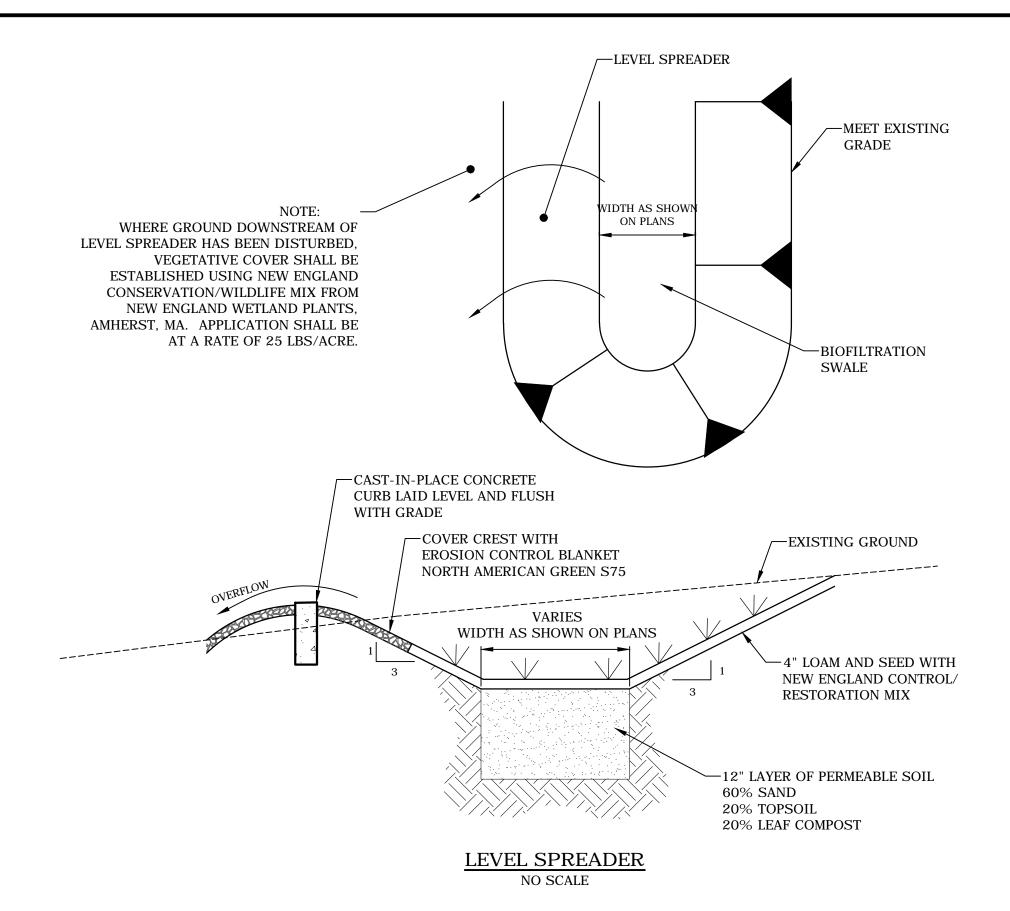
DATE: 06/07/2021

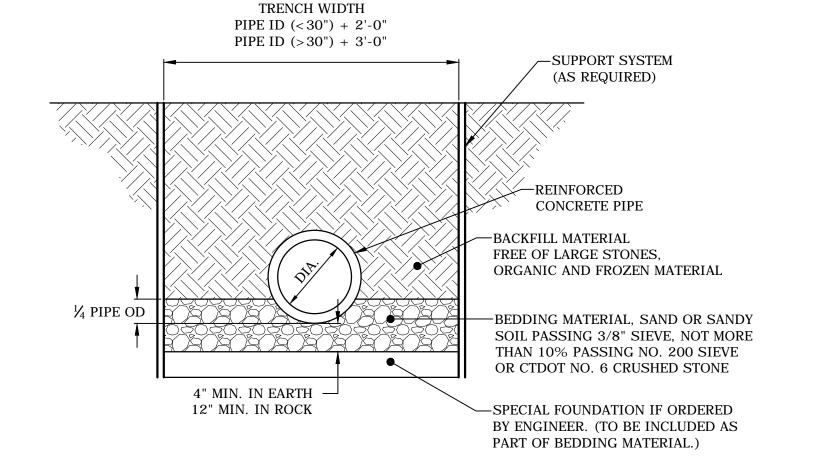
FILE: F0173-02-C-601-DETL.dwg


DRAWN BY: MDS

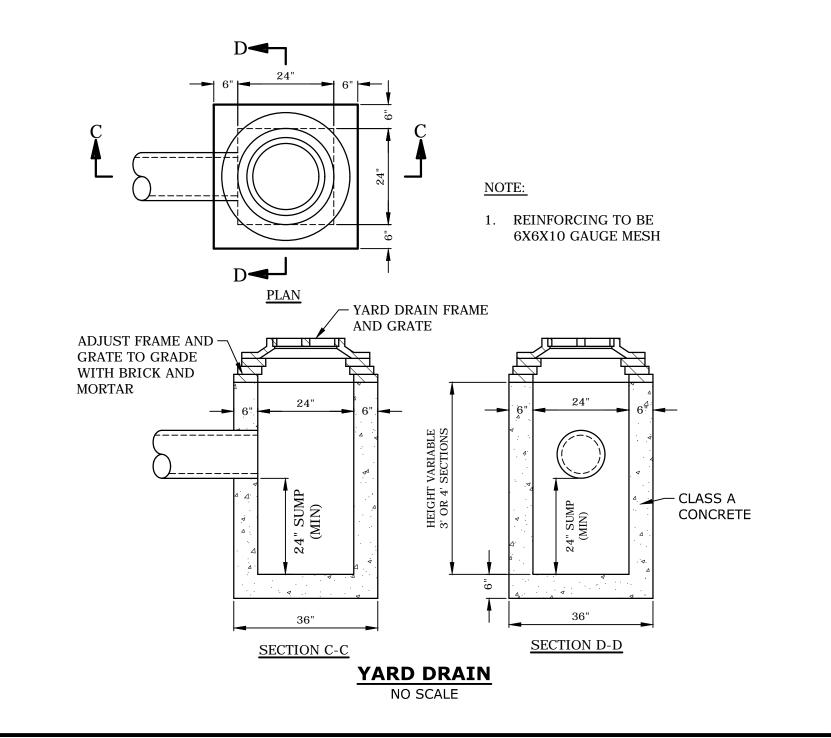
CHECKED: FWI.


DETAILS - 4


APPROVED:


ALE: AS SHOWN

WATER QUALITY STRUCTURE
CDS 3020-6-C
NO SCALE



CIRCULAR R.C.P. TRENCH BEDDING

NO SCALE

Tighe&Bond
1000 Bridgeport Avenue
Suite 320
Shelton, CT 06484

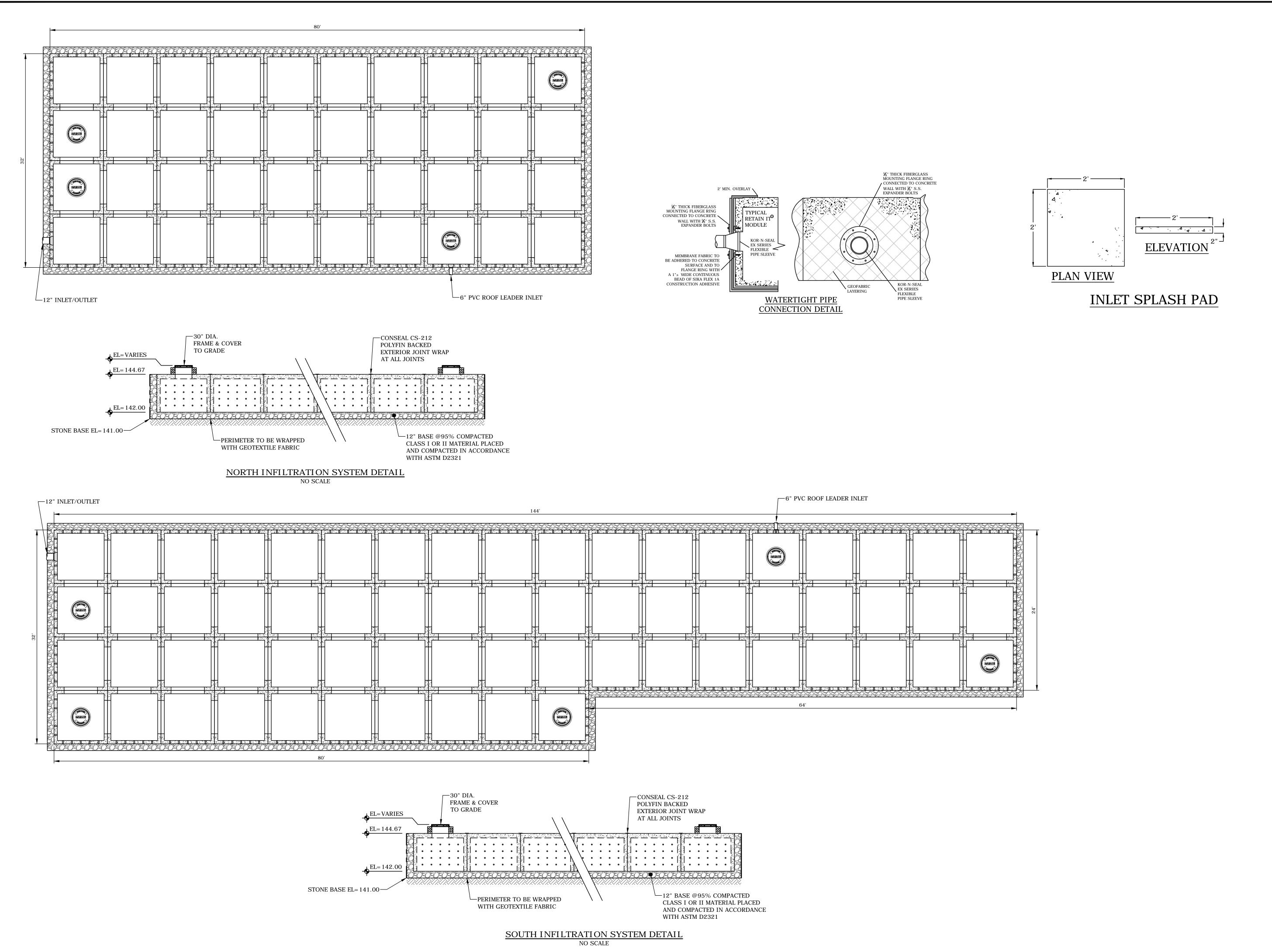
ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning
8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836
info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC


Wilton, Connecticut

1	7/15/2021	REV'D BLDG & SITE LAYOUT	
MARK	DATE	DESCRIPTION	
PROJEC	CT NO:	F0173-002	
DATE: 06/07/2021			
FILE:	FILE: F0173-02-C-601-DETL.dwg		
DRAW	DRAWN BY: MDS		
CHECKED: EWL			

DETAILS - 5

APPROVED:

SCALE: AS SHOWN

Tighe&Bono

Suite 320 Shelton, CT 06484 (203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning
8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851
Tel: (203) 855-7879 Fax: (203) 855-7836

info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

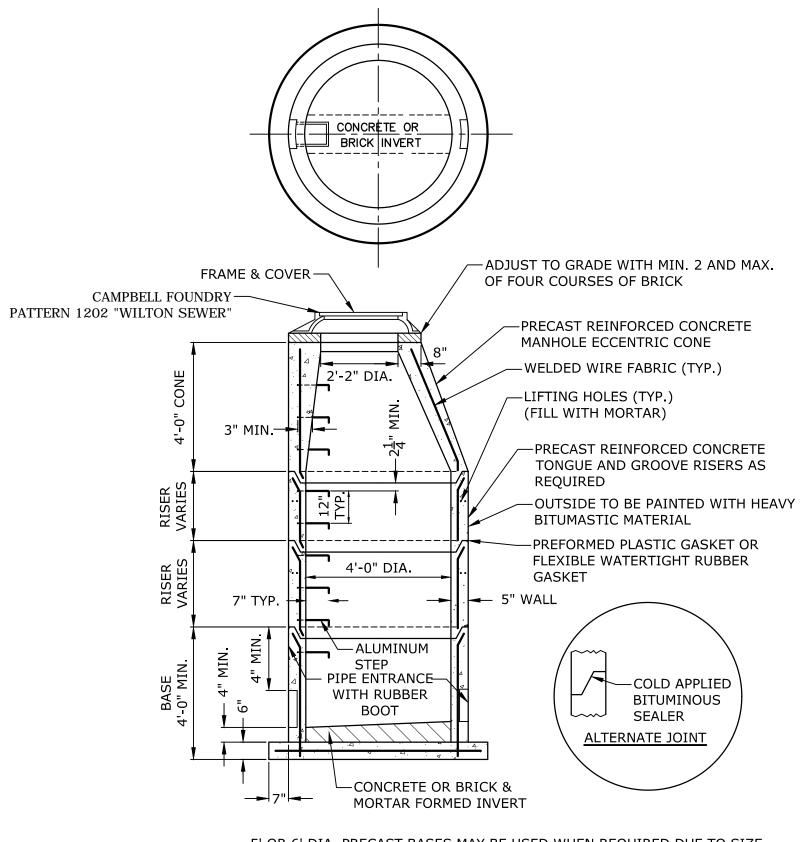
	7/15/2021	REV'D BLDG & SITE LAYOUT			
K	DATE	DESCRIPTION			
JE	CT NO:	F0173-002			
E:	E: 06/07/2021				
: :	F0173-02-C-601-DETL.dwg				

 DATE:
 06/07/2021

 FILE:
 F0173-02-C-601-DETL.dwg

 DRAWN BY:
 MDS

 CHECKED:
 EWL

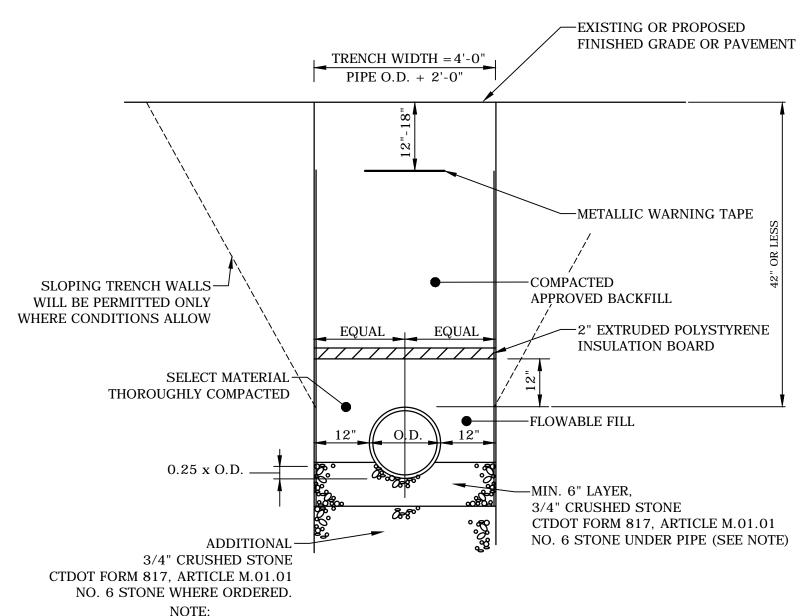

 APPROVED:
 JWB

DETAILS - 6

ALE: AS SHOWN

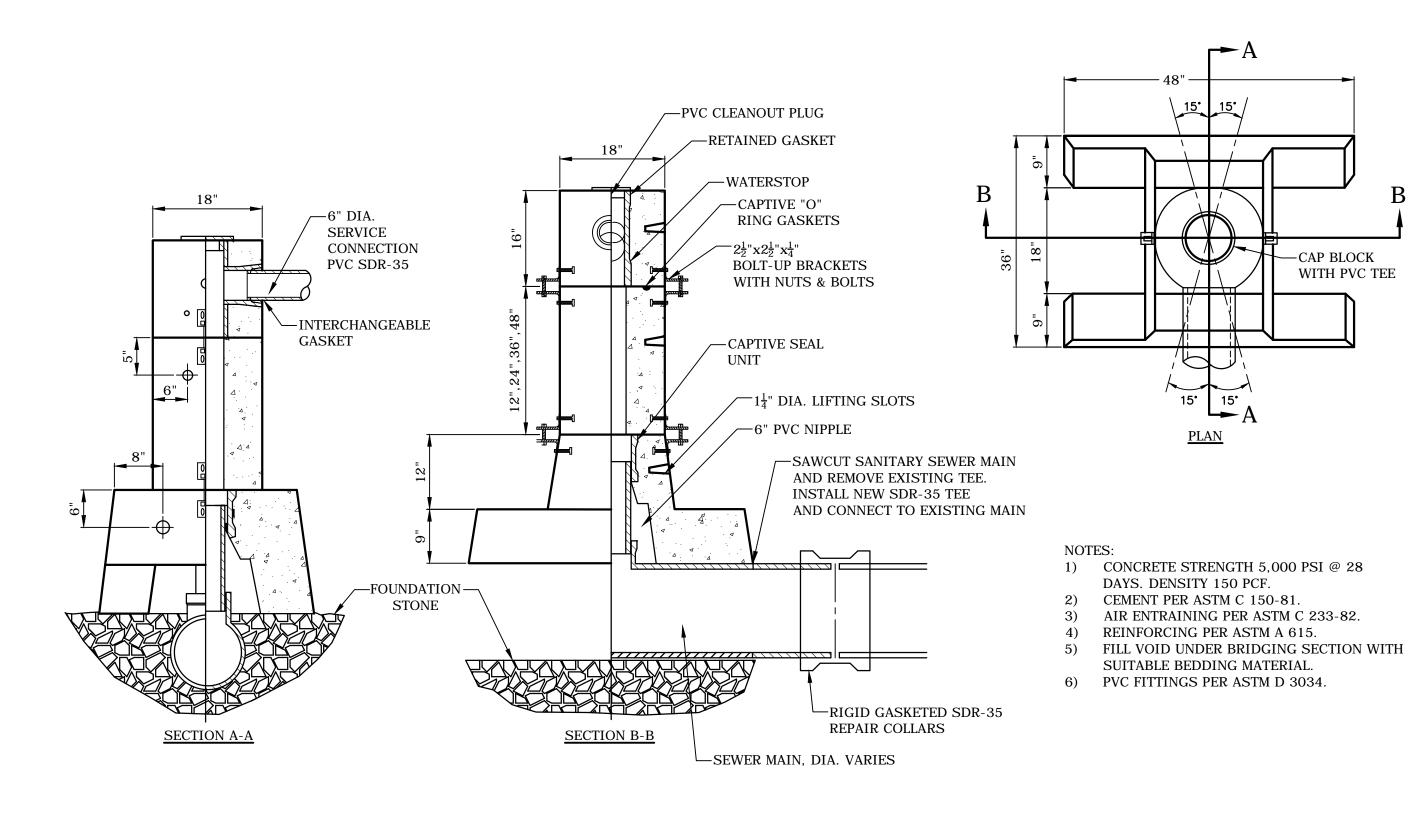
MANHOLE RUNGS ARE TO BE "SAFETY GREEN" PHOSPHORESCENT COPOLYMER POLYPROPYLENE PLASTIC COATED 1/2" GRADE STEEL REINFORCEMENT STEP MODEL No. PS2-PFSL AS MANUFACTURED BY M.A. INDUSTRIES, INC. OR PRESS-SEAL GASKET, STEEL REINFORCED (GRADE 60 STEEL), COPOLYMER POLYPROPYLENE 14" MANHOLE SAFETY STEP PART # P-14850 WITH BUILT-IN REFLECTORS. STEPS ARE TO BE FACTORY INSTALLED BY THE MANUFACTURER OF THE MANHOLES

MANHOLE RUNG

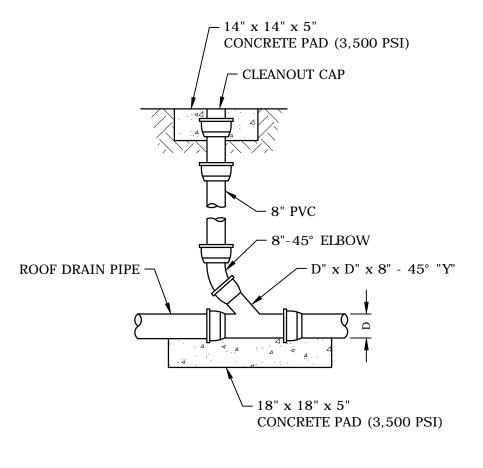


5' OR 6' DIA. PRECAST BASES MAY BE USED WHEN REQUIRED DUE TO SIZE OR NUMBER OF PIPES AT THE MANHOLE.
PRECAST REDUCERS WILL BE PLACED ABOVE THE 5' & 6' BASES AS DIRECTED BY THE ENGINEER.

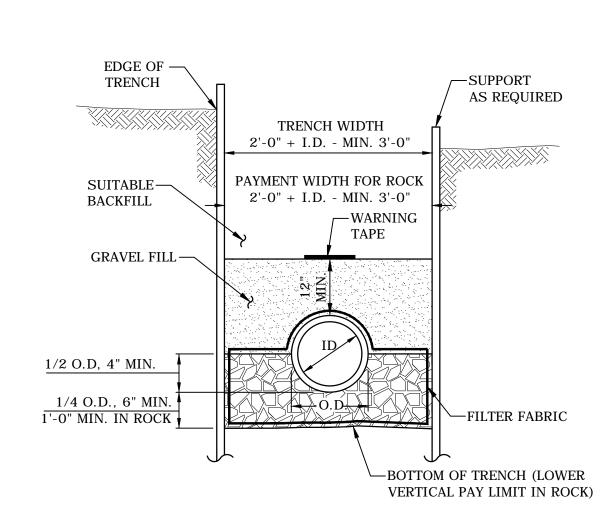
WALL THICKNESS TO INCREASE 1" FOR EACH 1' OF INSIDE DIAMETER INCREASE.


PRECAST SANITARY MANHOLE

NO SCALE



ADJACENT UTILITIES ARE TO BE PROPERLY SUPPORTED AT ALL TIMES DEAD SAND WATERSTOPS ARE TO BE PLACED AT ALL JOINTS INCLUDING JOINTS AT MANHOLES. THEY ARE TO EXTEND 12" BEYOND EACH PIPE JOINT (IN BOTH DIRECTIONS). THE DEAD SAND IS TO BE PLACED TO THE SAME HEIGHT AS THE BEDDING MATERIAL.


SANITARY SEWER TRENCH
FOR SEWER WITH 42" COVER OR LESS

PRECAST CHIMNEY

TYPICAL SANITARY SEWER TRENCH SECTION
NO SCALE

Tighe&Bond
1000 Bridgeport Avenue
Suite 320
Shelton, CT 06484

(203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836
info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

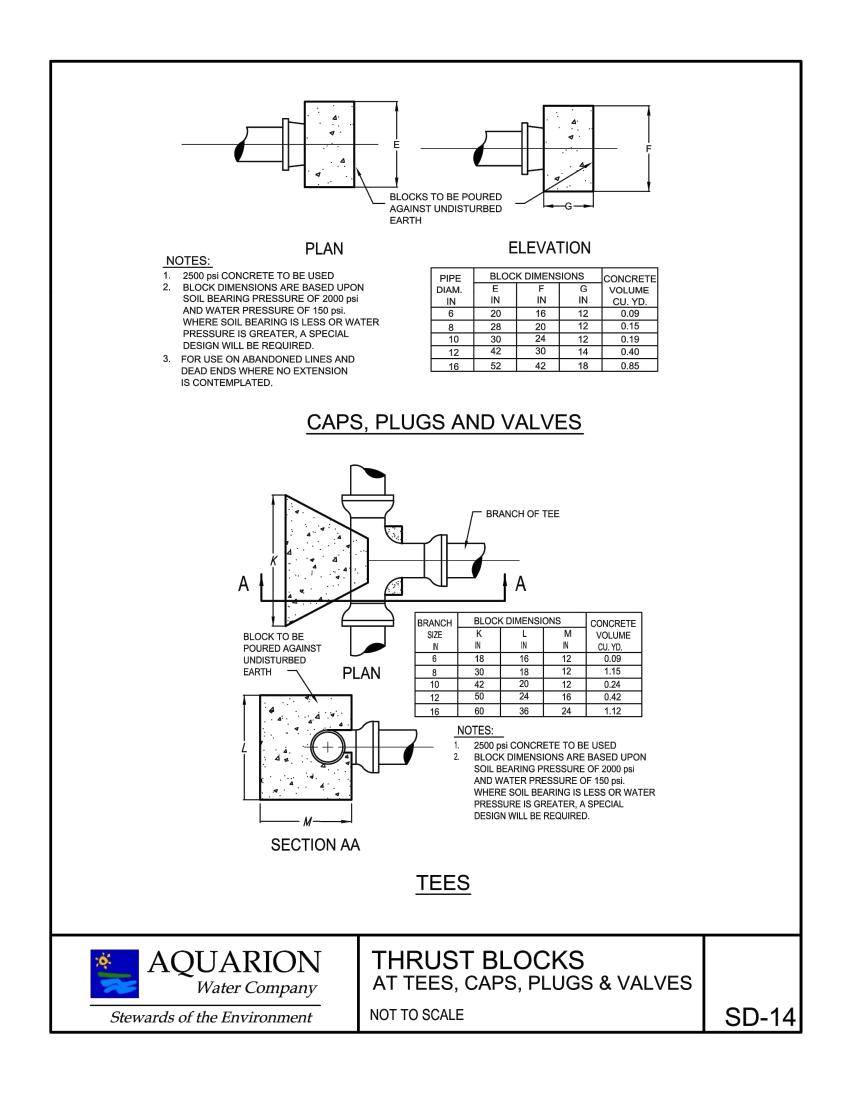
FDSPIN 141 DR, LLC

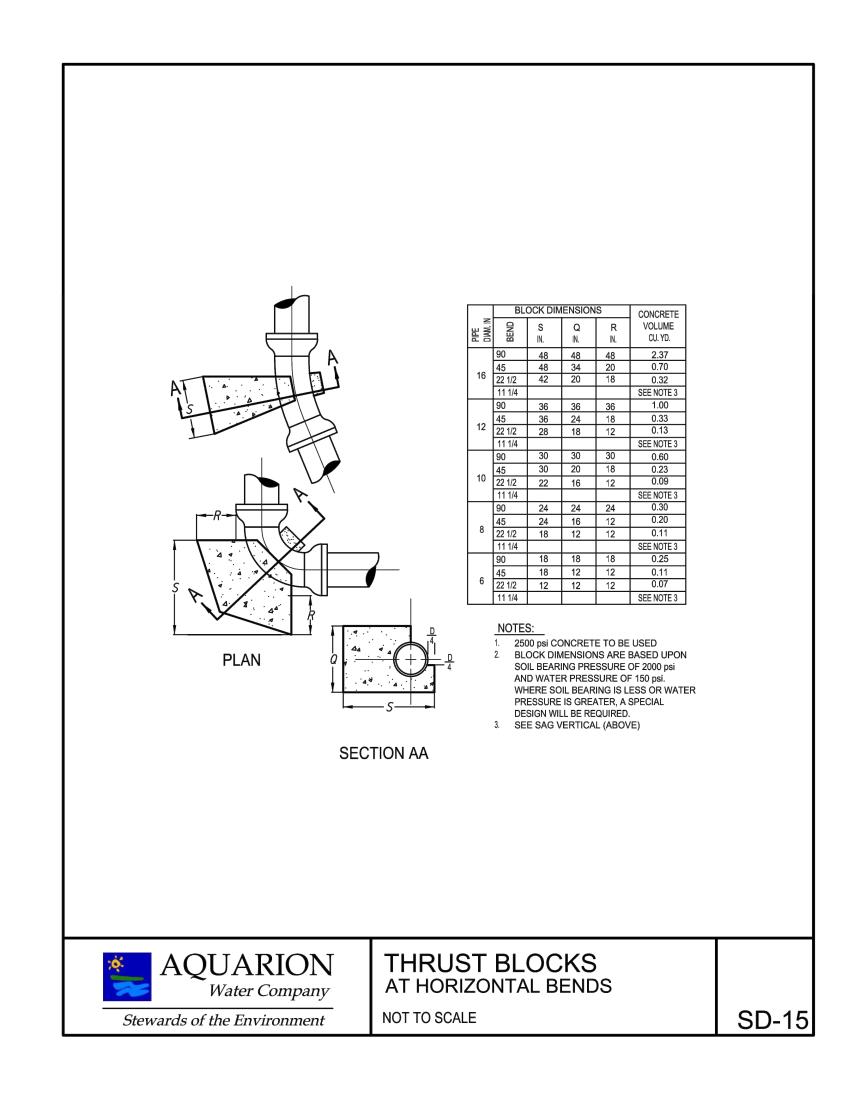
Wilton, Connecticut

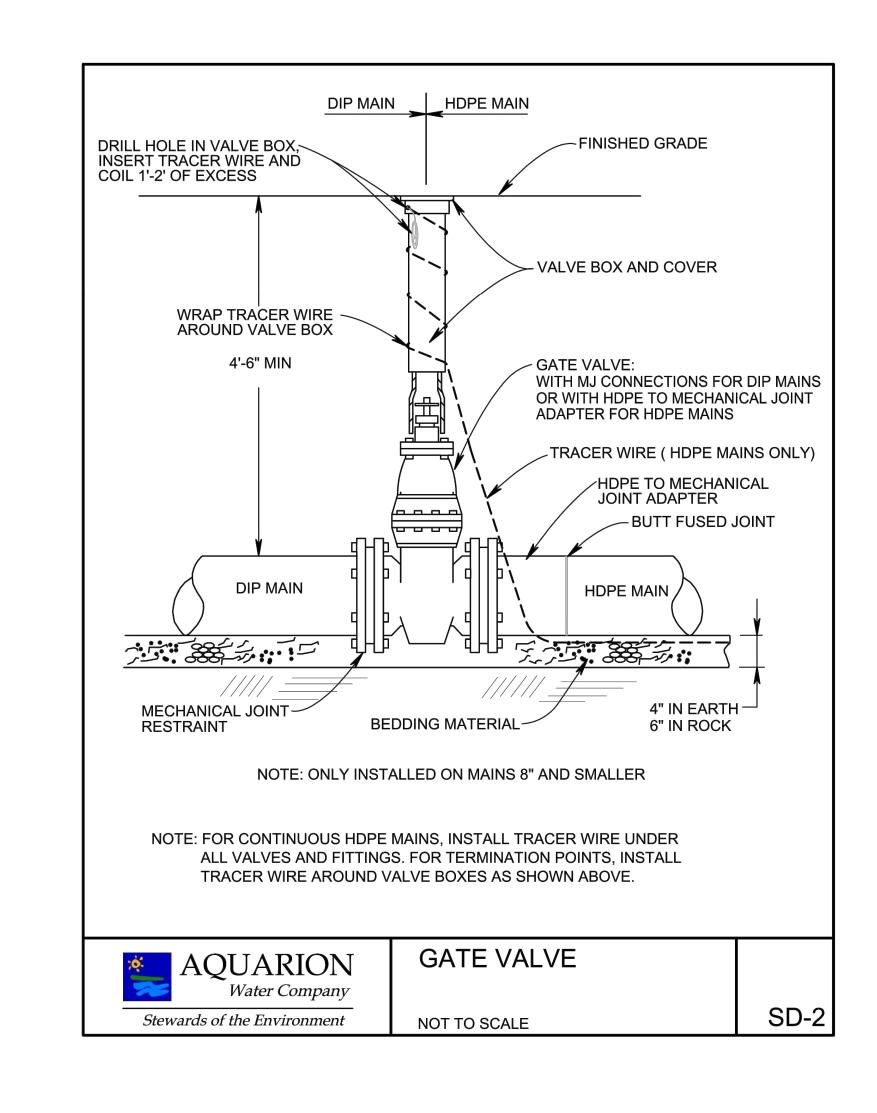
1 7/15/2021 REV'D BLDG & SITE LAYOUT
MARK DATE DESCRIPTION
PROJECT NO: F0173-002
DATE: 06/07/2021
FILE: F0173-02-C-601-DETL.dwg

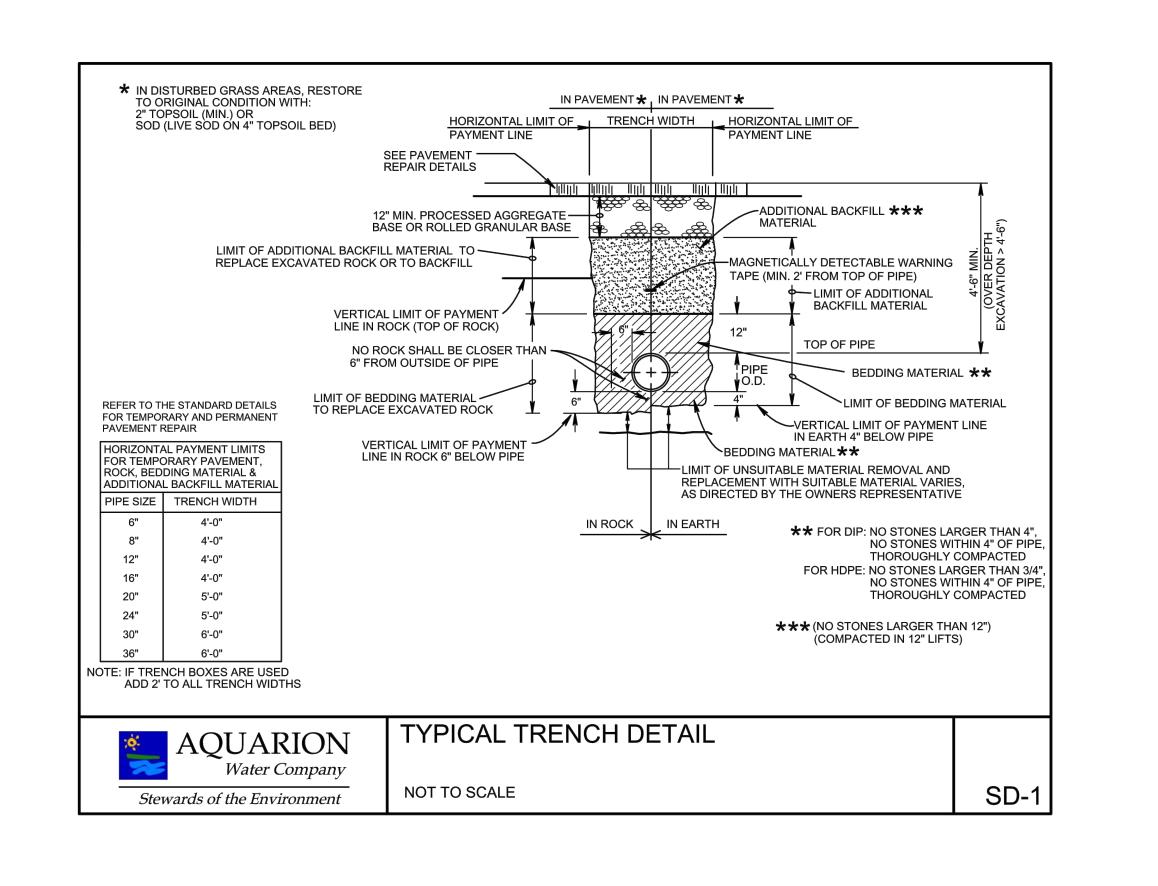
CHECKED: EWL
APPROVED: JWB

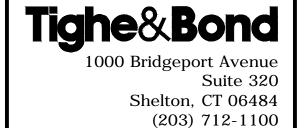
MDS


DRAWN BY:


SCALE:


DETAILS - 7


C-607


AS SHOWN

ENVIRONMENTAL LAND SOLUTIONS, LLC
Landscape Architecture and Environmental Planning

8 KNIGHT STREET, SUITE 203
NORWALK, CONNECTICUT 06851

Tel: (203) 855-7879 Fax: (203) 855-7836
info@elsllc.net www.elsllc.net

TOWN SUBMISSION

141 Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

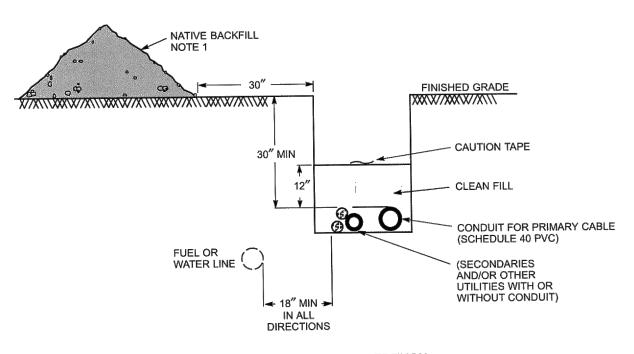
1 7/15/2021 REV'D BLDG & SITE LAYOUT
MARK DATE DESCRIPTION
PROJECT NO: F0173-002
DATE: 06/07/2021

CHECKED: EWL
APPROVED: JWB

DRAWN BY:

SCALE:

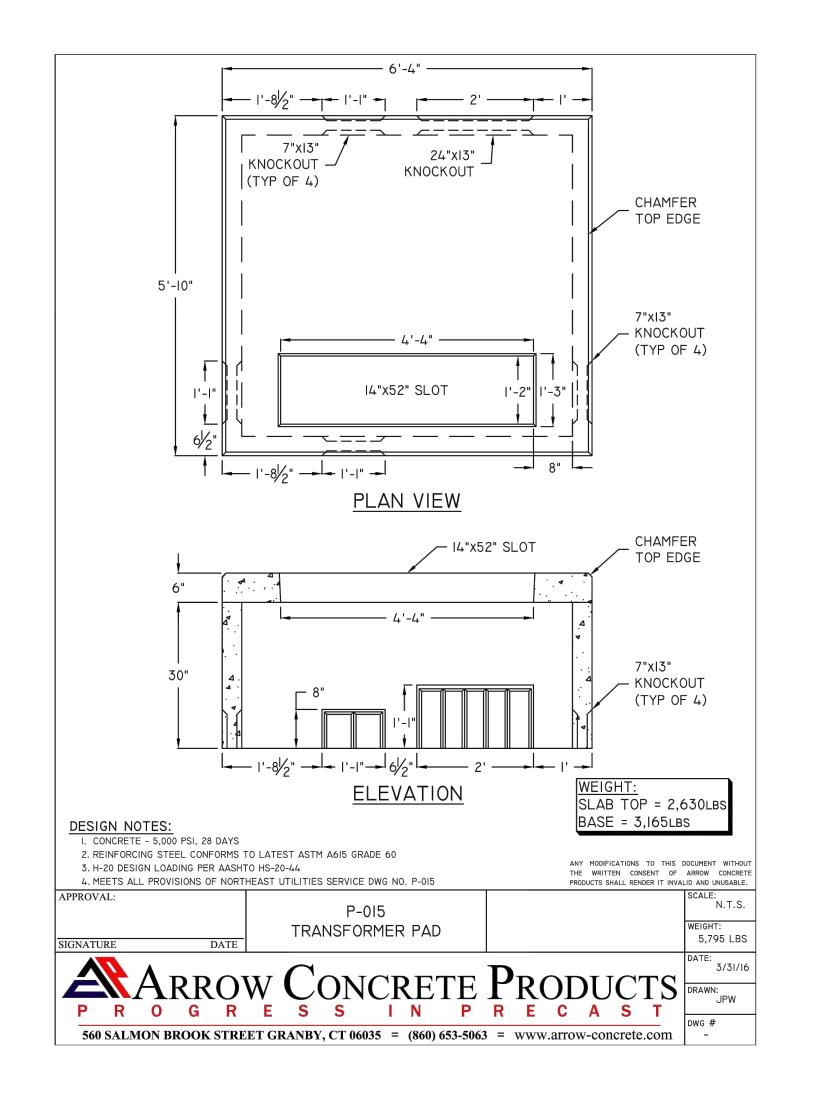
F0173-02-C-601-DETL.dwg

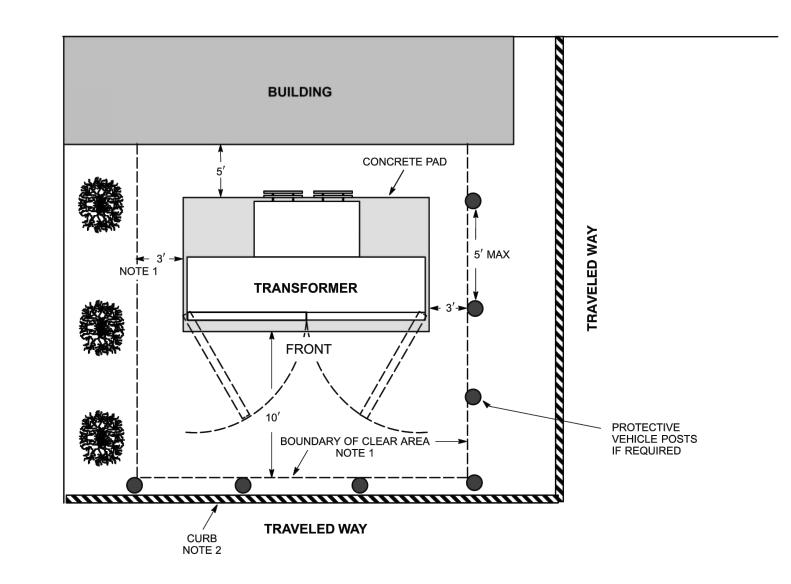

MDS

AS SHOWN

DETAILS - 8

INSTALLATION IN TRENCH - All direct-buried cables shall be installed at a depth of at least 30 inches in the following order:

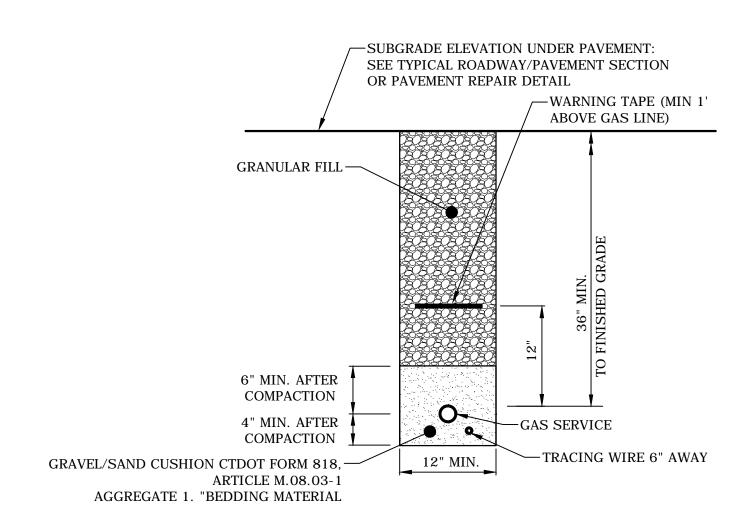

- 1. Ensure that the bottom of the trench is well-tamped and free of rocks.
- 2. Install the conduit, gluing all couplings.
- 3. Install secondaries and other utility cables or conduits in the trench. 4. Backfill with 12 inches clean fill not to contain stones larger than 2 inches in maximum diameter.
- 5. Install cable warning tape 12 inches over the conduit.
- 6. Fill in the remainder of the trench with native backfill.
- 7. Install pull line, including 10 feet of slack, and secure to conduit plug at each end of conduit run.



CROSS SECTION OF JOINT TRENCH

The trench shall be backfilled immediately following placement of the conduit.
 1/4-inch-diameter nylon pull line and plastic conduit plugs to be supplied and installed by contractor.

ORIGINAL		PHASE PRIMARY CABLE INSTALL	ATION	СТ	/MA
6/24/98 APPROVED		DIRECT-BURIED - IN CONDUIT			
	NORTHEAST UTILITIES	CONSTRUCTION STANDARD	DTR	50.103	3



1. To inspect, provide access, operate elbow connectors and ventilate the transformer, the above specified clear area distances to buildings or shrubs shall be maintained. The distance from the building is to the concrete transformer pad. Property line shall be considered an obstruction, since fences, shrubs, etc. may be installed at a future date by adjacent property owners. Because of the possibility of cooling fins overhanging the pad, side clearances to be increased to 5 feet for transformers 1000 kVA and larger.

- 2. If no curb exists, or transformer is located closer than 10 feet to the traveled way, protective vehicle posts () shall be installed as specified in DTR 42.061.
- 3. Top of transformer pad shall be installed 3 inches above final grade.
- 4. Transformer shall not be located on steep grades where access to or elbow operation is made difficult. 5. Transformer shall meet the minimum distances to doors, windows, fire escapes, air intakes and walls as
- specified in DTR 42.061. 6. Transformer *is not* to be located with its doors facing the building.
- 7. Refer to **DTR 58.301** for specific instructions on the installation of the transformer pad.

8. Refer to **DSEM Section 06.32** for information on environmental considerations.

PAD-MOUNTED TRANSFORMERS LOCATION TO BUILDINGS AND ROADWAYS NORTHEAST UTILITIES CONSTRUCTION STANDARD DTR 42.047 6

- 1. ALL EXCAVATION WORK WILL BE IN ACCORDANCE WITH THE DIRECTION OF THE COMPANY AND IN COMPLIANCE WITH THE REGULATIONS OF THE AUTHORITIES HAVING JURISDICTION OVER THE STREETS, ALLEYS, RIGHT-OF-WAYS, OR PROPERTIES WHERE THE WORK IS TO BE
- 2. PRIOR TO THE INSTALLATION OF THE PIPE, SAND PADDING SHALL BE INSTALLED, A MINIMUM OF 4" (MEASURED AFTER COMPACTION.)
- 3. SAND PADDING ABOVE THE GAS PIPE SHALL BE A MINIMUM OF 6" (MEASURED AFTER COMPACTION).
- 4. BACKFILL SHALL BE FREE OF LARGE STONES (6" DIAMETER) WITHIN 1' OF THE PIPE. IF THE MATERIAL REMOVED FROM THE TRENCH IS NOT SUITABLE FOR BACKFILL, REPLACEMENT FILL SHALL BE USED.
- 5. ALL GAS SERVICE INSTALLATIONS SHALL BE COORDINATED WITH EVERSOURCE.
- 6. ALL GAS SERVICES SHALL BE INSTALLED ACCORDING TO EVERSOURCE STANDARDS AND REQUIREMENTS.

GAS SERVICE TRENCH NO SCALE

Suite 320 Shelton, CT 06484

(203) 712-1100

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning 8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

> Tel: (203) 855-7879 Fax: (203) 855-7836 info@elsllc.net www.elsllc.net

TOWN SUBMISSION

Danbury Road

FDSPIN 141 DR, LLC

Wilton, Connecticut

1	7/15/2021	REV'D BLDG & SITE LAYOUT
ARK	DATE	DESCRIPTION
ROJECT NO:		F0173-002
ATE:		06/07/2021
LE	FO1	73-02-C-601-DETL.dwg

APPROVED:

DETAILS - 9

MDS

EWI.

DRAWN BY:

CHECKED:

SCALE:

C-609

AS SHOWN

Environmental Land Solutions, LLC

Landscape Architecture & Environmental Planning 8 Knight Street, Suite 203, Norwalk, CT 06851 Tel: (203) 855-7879 Fax: (203) 855-7836

July 15, 2021

Inland Wetlands Commission Town Hall Annex 238 Danbury Road Wilton, CT 06897

Re: Inland Wetlands Application 141 Danbury Road, Wilton, CT

Dear Members of the Commission:

The applicant, FDSPIN 141 DR, LLC, is proposing to redevelop the above referenced property from an existing commercial building to a multi-family residential building. The site fronts on the western side of Danbury Road, with the Norwalk River to its west and existing light industry uses to the north and south. Lambert Commons, a multi-family residential development is located across the street.

The Norwalk River and its riparian wetlands occur along the western boundary of the site. Environmental Land Solutions, LLC (ELS) has been authorized by FDSPIN 141 DR, LLC to prepare this biological assessment report as required for this application and to prepare a new riparian buffer planting plan with recreational area to the rear of the site. To complete this evaluation, site visits were made by ELS staff on April 8, May 8 and June 27, 2021. Site plans prepared by Tighe & Bond were reviewed as part of this evaluation.

EXISTING CONDITIONS

The subject $4.2\pm$ acre property is located at 141 Danbury Road. The existing building is centrally located with paved parking extending along the south and west portion of the site. The east and north areas of the site are maintained as lawn. The site is presently developed with impervious surfaces covering $67\% \pm$ of the property that gently slope toward the river. The paved parking lot extends down to the river's edge. Clearing along the rivers edge occurred over the last year and was replanted as part of Corrective Action Permit.

Wetlands and Watercourses

The Norwalk River is the predominate wetland resource feature of the site and defines the development to the west. A narrow riparian wetland corridor occurs between the river bank and the parking lot. The wetland line was recently delineated by William Kenny Associates.

The wetland adjacent to the river is a seasonally flooded palustrine wetland. Flagged wetland soils were identified as Rippowam fine sandy loam and Fluvaquent-Udifluvents complex, poorly to well drained alluvial soils. Please refer to the soil report for additional information. The Norwalk River is a perennial watercourse that has been channelized but includes riffle-pool morphology.

The northwest shoreline of the site is defined by riprap, poured and broken pieces of concrete with two sycamore trees on the shoreline. The southwestern shoreline is partially naturalized, but recently cleared of large trees and replanted under a Corrective Action Permit in 2020. This portion of the shoreline is define by a large woodchip berm and 9 planted tree and several shrubs. Existing naturalized vegetation growing along the shoreline includes, Asiatic Bittersweet, Mugwort, Japanese Honeysuckle, Ash saplings, shrub Honeysuckle, Poison Ivy, Garlic Mustard, Euonymus, and Multiflora Rose.

There appears to be no treatment of stormwater runoff from impervious surfaces at the site.

Wetland and Watercourse Functions

The functional evaluation of the wetlands is based on professional experience and the suggested criteria cited in the publication entitled "The Highway Methodology Workbook Supplement," Wetland Functions and Values, *A Descriptive Approach*," prepared by the US Army Corps of Engineers, NEDEP-360-1-30a, September 1999.

Using this publication, the primary functions provided by the wetlands include sediment retention, nutrient removal and transformation, stormwater storage, wildlife habitat, visual quality, and limited recreational usage such as nature photography and wildlife observations. The Norwalk River corridor functions as a habitat for finfish and aquatic waterfowl and other aquatic-dependent species, serves as a wildlife corridor (together with its fringe wetlands), a groundwater discharge point, and offers recreational potential such as fishing and small craft boating.

Wildlife

The existing site provides little to no wildlife habitat due to existing improvement adjoining the river. However, naturalized areas to the south, north and west are expected to support a range of species adapted to suburban residential habitats, small woodland tracts, and woodland edges. Theses may provide habitat for wetland dependent wildlife species within the river and riparian edge and provide a small refuge for suburban tolerant wildlife, and are capable of providing habitats for suburban tolerant wildlife species in the form of cover, nesting areas, and food.

The site is not located within a highlighted DEEP Natural Diversity Data Base (NDDB) map for Wilton (May Dec. 2020).

PROPOSED CONDITIONS

The development will place a new multi-family single building central locally on the site. The existing paved parking lot adjacent to the river will be removed and a recreational area and planted riparian buffer installed in its place. The bulk of the building is outside of the wetland 100' upland review area, with the closer corner (western) at 88' from the river. Most of the parking is located beneath the building, however some small areas of parking extends outside of the building at the northwestern corner of the building, where the closest corner is $60' \pm$ from the river. However, surface parking behind and next to the building (up to 300' from the river) will be constructed with porous pavements. No work is occurring in the wetlands, and 85% of the 100' buffer, totaling 25,020 sf \pm , will be refurbished from a paved parking lot to a recreational area for the new residences, with extensive replanting of native trees, shrubs, and perennials.

The new development will slightly increase the impervious surfaces on the site. However, significantly improvements to the river buffer and the new stormwater drainage system will dramatically improve water quality leaving the site. The proposed storm drainage management for the site has been developed by Tighe & Bond to provide collection, removal of suspended solids, treatment and infiltration of the first 1" of rainfall.

The following list reflects the proposed activities within the 100' upland review area of the site that encompasses $32,640\pm$ sf of the property. This area is now encumbered by 25,020 sf \pm (75% of the upland review area) of asphalt surface parking.

- 1. Temporary installation of sediment and erosion controls.
- 2. Removal of surface asphalt, concrete and the underlying base (24,550 sf \pm sf).
- 3. Installation of pervious asphalt (4,635 sf sf).
- 4. Construction of building (above the ground) totaling 365 sf \pm sf, in the upland review area.
- 5. Construction of a fire lane with grass pavers (3490 sf \pm sf).
- 6. Construction of a level spreader.
- 7. Import of topsoil to replace asphalt parking for new landscape areas ($780 \pm \text{ cy}$).
- 8. Landscaping areas with native trees, shrubs, and perennials $(11,650 \pm \text{ sf})$.
- 9. Planting of new lawn $(11,615 \pm sf)$.
- 10. Pervious walking paths $(9,375 \pm sf)$.

11. Removal and management of invasive species along the river's edge $(300' \pm)$.

Wetland/Watercourse Potential Impacts and Mitigation Measures

The majority of the site work proposed within the 100' upland review area is intended to restore and expand the functions provided by the river's riparian buffer, while also providing outdoor recreation spaces for the residences. This will be accomplished by removing existing pavement and providing treatment of stormwater runoff treatment to diminish direct discharge to the river, and significantly planting the 100' upland review area with native plants.

The project does not anticipated any long term impacts to the wetland resources. There are no direct disturbances proposed with this development. However, short term disturbances will be managed adjacent to the resources to prevent exposed soil surfaces from entering the wetland and the river.

The following Best Management Practices (BMPs) have been incorporated into the site plans for the purposes of avoiding and/or minimizing potential adverse environmental impacts disturbances and site improvements over the site.

- a. *erosion and sedimentation controls* the site plans indicate that erosion and sedimentation will be controlled by the use of silt fencing to trap sediments within stormwater runoff, anti-tracking pads to remove sediments from tires of construction vehicles, and watering of the site's soils as needed to prevent dust.
- b. *catch basins fitted with sumps* designed to improve water quality by trapping sediments from roadway stormwater runoff. Accumulated sediments will be periodically removed as needed to maintain the basins in proper working order.
- c. *swirl concentrators* designed to maintain water quality by trapping road sediments, floatables (litter), and vehicle oils and grease from stormwater runoff. Accumulated sediments, litter and oils will be periodically removed as needed to maintain the system in proper working order.
- d. *underground infiltration galleries* designed to store stormwater runoff for a period of time and infiltrate stormwater runoff into the ground. Underground infiltration galleries reduce flooding, recharge groundwater, and remove dissolved pollutants as it filters through the soil below. Underground galleries also reduce thermal pollution associated with heated runoff from pavement areas.
- e. *porous pavement* porous pavement can help reduce runoff by infiltrating rain water and melting snow. These materials allow rain and snow melt to seep through the surface down to underlying layers of soil and gravel. In addition to reducing the runoff, permeable pavements can help filter out pollutants that contribute to water pollution. Permeable pavements can also reduce the need for road salt during the winter months. The western portion of the surface pavement is proposed to be pervious.

- f. stone trenches proposed stone trenches surround the western edge of the porous pavement. Stone trenches will capture any excess runoff from the porous pavement. Stone trenches will help cleanse stormwater runoff collected from the new driveway, building roof, and landscape areas by trapping sediments and removing nutrients through plant uptake, and by infiltration. As infiltration occurs, thermal pollution will be reduced from development areas, runoff volume from the development will be reduced and recharge groundwater will occur.
- g. *overland flow* stormwater runoff flowing over newly vegetated buffer areas will result in the trapping of sediments, uptaking of nutrient by plants, and infiltrating runoff. This BMP will occur over the site's proposed landscaped areas.
- h. *planted buffers* native shade trees, understory trees, shrubs, and herbaceous plants are proposed within the wetland buffer for wildlife habitat and aesthetic purposes. Planted buffers will also help to maintain water quality aiding to remove pollutants within stormwater runoff by plant uptake. The new riparian buffer along the river will change from a width of 0 to 35' ± to 60 to 100' ± in width. The new river buffer will include planting of 49 shade and understory trees, over 375 shrubs and over 500 perennials known to benefit pollinators.
- i. *level spreader* a linear level area of stone is proposed at the end of the drainage pipe from the storm drainage system to slow the velocity of the discharged stormwater runoff and prevent erosion.
- j. *control of invasive nonnative plant species* the Landscape Plan indicates the control of Japanese Knotweed, Mugwort, Multiflora Rose, and Porcelainberry for a minium of a two year period during the bonding period and is expected to be included in the regular maintenance for the site.

HABITAT IMPROVEMENTS

The existing site is lacking a significant habitat to support local wildlife, primarily due to the existing paved parking lot which consumes most of the river's riparian buffer. The proposed plan will enhance wildlife habitat planting native trees and shrubs that native species, and provide food sources, nesting site, and cover for local and migratory wildlife.

In addition the plan includes:

- 1. Placement of 3 bird houses, final location to be determined in the field.
- 2. Placement of one bat box, final location to be determined in the field.
- 3. Provide allowances of some plant debris to remain in riparian buffer, with appropriate signage to alert residence of the areas value.
- 4. Replacement of solid concrete slabs along the river's edge, with broken stones, providing niches for wildlife and allowing vegetation to expand and stabilized the river's edge.

- 5. Planting a grove of American Holly trees within the riparian buffer for food source, nesting and winter protection.
- 6. Planting perennials in the buffer enhancement area known for their pollinator value.

In addition, the applicant is willing to adopted an Organic Land Care Practice for the on going project maintenance. ELS will submit a packet for the staff's review and adoption for the project.

ALTERNATIVES

As part of the application for a Significant Regulated Activity, the applicant has included two earlier versions of the site plan as required by Section 7.5-c of the Inland Wetlands and Watercourses Regulations for the Town of Wilton (the "Regulations"). These preliminary site analysis plans (Sheet A.01A, dated 3/15/20 and Sheet A.01, dated 1/21/21), prepared by Lessard Design, are included as alternative plans that were explored, discussed and ultimately discarded during the design process. It is important to note that, while the disturbance in the regulated area is considered significant based on the thresholds in the Regulations, all work within this area involves landscape enhancements and water quality improvements.

The alternative plans were eliminated after review and further discussion with the design team, town staff and the Planning & Zoning Commission (during a pre-application review). In lieu of utilizing existing developed areas, the applicant was encouraged to relocate units from the rear of the site to the top of the building thereby significantly enhancing the landscape buffer adjacent to the river and adding additional height to the building to compensate for the loss of units at the back of the site.

Both of these alternatives would leave developed areas on the site essentially "undisturbed" with asphalt approaching the river's edge, but do not provide the room to replace and significantly enhance the buffer along the river. Instead, the applicant has chosen to modify the zoning regulations to permit additional height and the consolidation of the development further from the river. This provides an added opportunity for water quality improvements as well as wetland buffer enhancements. These changes make this submitted site plan superior to these earlier plans, as it relates to protection and enhancements to the river and wetland resources.

SUMMARY

This proposal has incorporated techniques to reduce impacts to the wetland resources within the site by decreasing the existing impacts to the Norwalk River and its associated resources. The proposed site redevelopment will significantly reduce existing manmade intrusions into the 100' upland review area, improve water quality and significantly expanded native plants on the site. The expanded river buffer will also serve as a passive recreation area for the residents of the new building. These site improvements are expected to enhance the wetland's sediment retention, nutrient removal and transformation, stormwater storage, wildlife habitat, visual quality, and recreational usage.

The proposed site work, taken in total, will provide a net environmental benefit to the Norwalk River and the riparian wetland. The character and functions of the onsite regulated areas are expected to be significantly improvement after the completion of this site work.

Sincerely,

Kate Throckmorton, ASLA Landscape Architect

Professional in Erosion and Sediment Control Certified NOFA Professional Professional Wetland Scientist Landscape Architect

Matthew J. Popp, ASLA

Matter Africa

Danbury Road 141-wilton-ea2.wpd

WILLIAM KENNY ASSOCIATES LLC

SOIL SCIENCE
ECOLOGICAL SERVICES
LAND USE PLANNING
LANDSCAPE ARCHITECTURE

March 15, 2021

Mr. Leonard D'Andrea Rocco V. D'Andrea, Inc. Six Neil Lane P. O. Box 549 Riverside, CT 06878

Re: Wetland and Watercourse Delineation 141 Danbury Road, Wilton, Connecticut

Dear Mr. D'Andrea:

As requested, we visited the referenced property to determine the presence or absence of wetlands and/or watercourses, to demarcate (flag) the boundaries of wetlands and watercourses identified, and to identify onsite soil types. This letter includes the methods and results of our investigation, which we completed today, March 15, 2021. In summary, one inland wetland and watercourse system was identified and delineated. The system, which extends and flows north to south along the western property boundary, is a segment of the Norwalk River with a bordering wet floodplain wetland.

Regulatory Definitions

The Inland Wetlands and Watercourses Act (Connecticut General Statutes §22a-38) defines <u>inland</u> wetlands as "land, including submerged land...which consists of any soil types designated as poorly drained, very poorly drained, alluvial, and floodplain." <u>Watercourses</u> are defined in the act as "rivers, streams, brooks, waterways, lakes, ponds, marshes, swamps, bogs and all other bodies of water, natural or artificial, vernal or intermittent, public or private, which are contained within, flow through or border upon the state or any portion thereof." The Act defines <u>Intermittent Watercourses</u> as having a defined permanent channel and bank and the occurrence of two or more of the following characteristics: A) evidence of scour or deposits of recent alluvium or detritus, B) the presence of standing or flowing water for a duration longer than a particular storm incident, and C) the presence of hydrophytic vegetation.

Mr. Leonard D'Andrea March 15, 2021 Page 2

Re: 141 Danbury Road, Wilton, Connecticut

Methodology

A second order soil survey in accordance with the principles and practices noted in the USDA publication Soil Survey Manual (1993) was completed at the subject site. The classification system of the National Cooperative Soil Survey was used in this investigation. Soil map units identified at the project site generally correspond to those included in the Soil Survey of the State of Connecticut (USDA 2005).

Wetland determinations were completed based on the presence of poorly drained, very poorly drained, alluvial, or floodplain soils. Soil types were identified by observation of soil morphology (soil texture, color, structure, etc.). To observe the morphology of the property's soils, test pits and/or borings (maximum depth of two feet) were completed at the site.

Intermittent watercourse determinations were made based on the presence of a defined permanent channel and bank and the occurrence of two or more of the following characteristics: A) evidence of scour or deposits of recent alluvium or detritus, B) the presence of standing or flowing water for a duration longer than a particular storm incident, and C) the presence of hydrophytic vegetation.

Wetland boundaries were demarcated (flagged) with pink surveyor's tape (hung from vegetation) or small flags (on wire stakes) labeled "William Kenny Associates" that are generally spaced a maximum of every 50 feet. Complete boundaries are located along the lines that connect these sequentially numbered flags. The wetland boundaries are subject to change until adopted by local, state, or federal regulatory agencies.

Results

The approximate 4.3-acre commerical property is located at 141 Danbury Road in Wilton, Connecticut. Danbury Road borders the eastern property boundary. Property improvements include a commercial building and an asphalt parking area and driveway. The primary vegetative cover at the property is lawn with other ornamentals and some shade trees. A meadow is present in the southwestern portion of the property.

One inland wetland and watercourse system was identified and delineated. The system, which extends and flows north to south along the western property boundary, is a segment of the Norwalk River with a bordering wet floodplain wetland. Wetland soils are primarily poorly drained and formed from alluvial deposits. The approximate location of the system is shown on the attached map. The boundary of the system was marked at the site with flags numbered 1 to 17.

Three soil map units were identified on the property (two wetland and one upland). Each map unit represents a specific area on the landscape and consists of one or more soils for which the unit is named. Other soils (inclusions that are generally too small to be delineated separately) may account for 10 to 15 percent of each map unit. The mapped units are identified in the following table by name and symbol and typical characteristics (parent material, drainage class, high water table, depth to bedrock, and slope). These characteristics are generally the primary characteristics to be considered in land use planning and management. A description of each characteristic and their land use implications follows the table. A complete description of each soil map unit can be found in the Soil Survey of the State of Connecticut (USDA 2005), and at

Page 3

https://soilseries.sc.egov.usda.gov/osdname.aspx. On the day of the review, there was no soil frost

and no snow cover. The upland soil was moist and the wetland soil was wet to inundated. The sky was clear and air temperatures were in the 30's ° F.

<u>Sym</u> .	<u>Map Unit</u> <u>Name</u>	Parent <u>Material</u>	<u>Slope</u> (%)	Drainage <u>Class</u>	<u>Hig</u> <u>Depth</u> (ft)	gh Water Ta <u>Kind</u>	<u>able</u> <u>Mos</u> .	Depth To <u>Bedrock</u> (in)
<u>L</u>	Ipland Soil							
308	Udorthents, Smoothed	Excavated or Filled Soil (>2 feet)	0-45	Well Drained to Somewhat Poorly Drained	1.5->6.0	Apparent	Nov-May	>60
<u> </u>	Vetland Soil							
103	Rippowam fine Sandy loam	Alluvium	0-3	Poorly Drained	0.0-1.5	Apparent	Nov-Jun	>60
109	Fluvaquents- Udifluvents complex, frequently flooded	Alluvium Alluvium	0-3 0-3	Poorly Drained Well Drained	0.0-1.0 >6.0	Apparent 	Oct-May 	>60 >60

Parent material is the unconsolidated organic and mineral material in which soil forms. Soil inherits characteristics, such as mineralogy and texture, from its parent material. Glacial till is unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice. Glacial outwash consists of gravel, sand, and silt, which are commonly stratified and deposited by glacial melt water. Alluvium is material such as sand, silt, or clay, deposited on land by streams. Organic deposits consist of decomposed plant and animal parts.

A soil's texture affects the ease of digging, filling, and compacting and the permeability of a soil. Generally sand and gravel soils, such as outwash soils, have higher permeability rates than most glacial till soils. Soil permeability affects the cost to design and construct subsurface sanitary disposal facilities and, if too slow or too fast, may preclude their use. Outwash soils are generally excellent sources of natural aggregates (sand and gravel) suitable for commercial use, such as construction sub base material. Organic layers in soils can cause movement of structural footings. Compacted glacial till layers make excavating more difficult and may preclude the use of subsurface sanitary disposal systems or increase their design and construction costs if fill material is required.

Generally, soils with steeper slopes increase construction costs, increase the potential for erosion and sedimentation impacts, and reduce the feasibility of locating subsurface sanitary disposal facilities.

Drainage class refers to the frequency and duration of periods of soil saturation or partial saturation during soil formation. Seven classes of natural drainage classes exist. They range from excessively drained, where water is removed from the soil very rapidly, to very poorly drained, where water is removed so slowly that free water remains at or near the soil surface during most of the growing season. Soil drainage affects the type and growth of plants found in an area. When landscaping or gardening, drainage class information can be used to assure that proposed plants are adapted to

Mr. Leonard D'Andrea March 15, 2021 Page 4

Re: 141 Danbury Road, Wilton, Connecticut

existing drainage conditions or that necessary alterations to drainage conditions (irrigation or drainage systems) are provided to assure plant survival.

High water table is the highest level of a saturated zone in the soil in most years. The water table can affect the timing of excavations; the ease of excavating, constructing, and grading; and the supporting capacity of the soil. Shallow water tables may preclude the use of subsurface sanitary disposal systems or increase design and construction costs if fill material is required.

The depth to bedrock refers to the depth to fixed rock. Bedrock depth affects the ease and cost of construction, such as digging, filling, compacting, and planting. Shallow depth bedrock may preclude the use of subsurface sanitary disposal systems or increase design and construction costs if fill material is required.

Conclusions

Today, we investigated the property at 141 Danbury Road in Wilton, Connecticut and identified and delineated one inland wetland and watercourse system. Thank you for the opportunity to assist you. If you should have any questions or comments, please do not hesitate to contact us.

Sincerely,

William L. Kenny, PWS, PLA Soil Scientist

Soil Scientist

Alexander Wojtkowiak

Enclosure

Ref. No. 4798

JPLAND

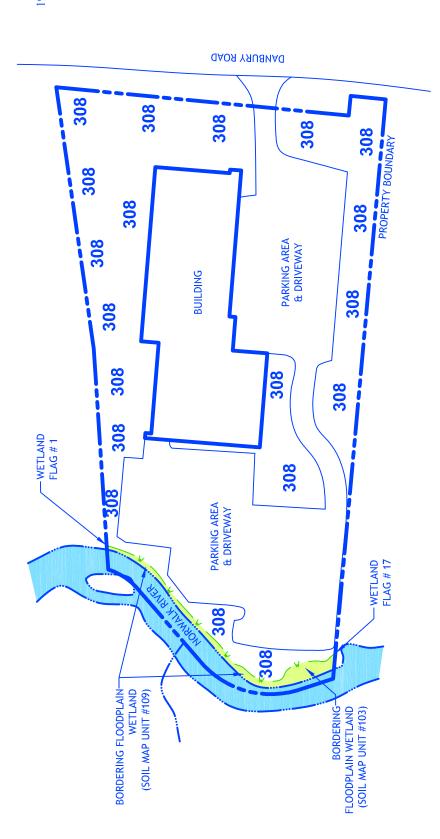
308 UDORTHENTS, SMOOTHED

WETLAND

RIPPOWAM FINE SANDY LOAM

FLUVAQUENTS-UDIFLUVENTS COMPLEX 103 109

195 TUNXIS HILL CUTOFF S FAIRFIELD, CT 06825 PHONE: 203 366 0588 FAX: 203 366 0067 www.wkassociates.net


ASSOCIATES LLC SOIL SCIENCE

WILLIAM KENNY

ECOLOGICAL SERVICES

LAND USE PLANNING

LANDSCAPE ARCHITECTURE

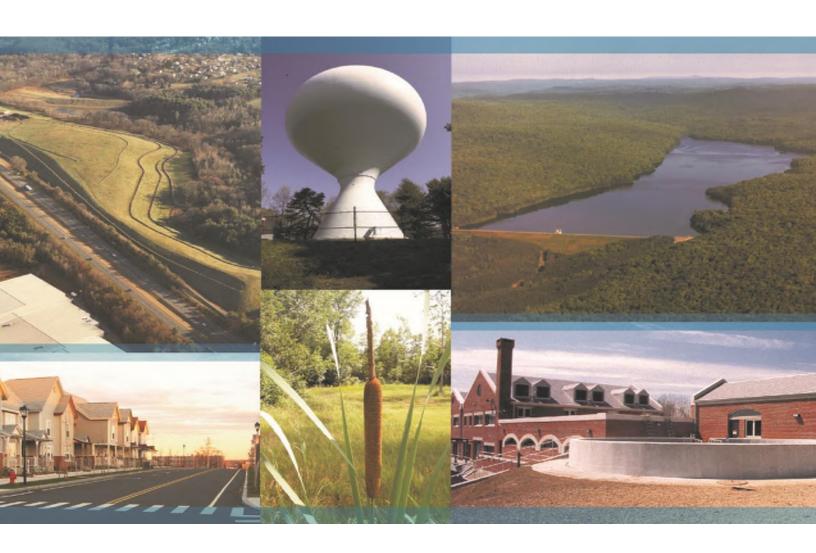
NOTES:

- INFORMATION SHOWN ON THIS DRAWING, INCLUDING THE WETLAND BOUNDARY, IS APPROXIMATE. THE BOUNDARY IS NOT A SURVEYED REPRESENTATION OF WHAT WAS FIELD MARKED (FLAGGED).
- WETLAND AND SOIL INFORMATION PROVIDED BY WILLIAM KENNY ASSOC. OTHER INFORMATION TAKEN FROM A TOWN OF WILTON GIS MAP.
 - DELINEATION REPORT FOR THE SOIL MAP UNIT NAMES AND ADDITIONAL 308, 103 AND 109 ARE SOIL MAPPING UNIT SYMBOLS. SEE WETLAND RELATED INFORMATION.

SUBSTANTIALLY REPRESENTS THE SOILS THE FIELD CERTIFY THAT THIS WETLAND MAP

WETLAND & WATERCOURSE MAP

WILTON, CONNECTICUT 141 DANBURY ROAD


DATE: MARCH 15, 2021 SCALE: NOT TO SCALE

CIENTIS

VILLIAM L. KE

Ref. No. 4798

141 Danbury Road Wilton, Connecticut

ENGINEERING REPORT

Prepared For:

FDSPIN 141 DR, LLC 1 North Water Street, Suite 100 South Norwalk, CT 06854

June 7, 2021 Revised July 15, 2021

Section 1	Introduction and Site Conditions	
1.1	Existing Conditions	1-1
1.2	Project Proposal	1-1
1.3	Site Soils	1-2
1.4	Wetlands	1-2
Section 2	2 Stormwater Management	
2.1	Existing Site Hydrologic Analysis	2-1
	2.1.1 Floodplain Management	2-1
2.2	Proposed Site Hydrologic and Hydraulic Analysis	2-1
	2.2.1 Proposed Site Hydrology	2-2
	2.2.2 Water Quality Volume	2-2
	2.2.3 Hydraulic Capacity and Outlet Velocity	2-3
2.3	Method of Hydrology and Hydraulic Analysis	
2.4	Best Management Practices	2-4
2.5	Pollutant Loading Analysis	2-4
2.6	Stormwater Maintenance and Inspection Schedule	2-5
Section 3	Floodplain Management & Hydraulics	
3.0	Background	3-1
3.1	Basis of Modeling	3-1
	3.1.1 Calibrated Model	3-1
3.2	Flow Rates	3-2
3.3	Existing Conditions Model	
3.4	Proposed Conditions Model	
3.5	Compliance with Local Floodplain Regulations	
	3.5.1 Equal Conveyance	
	3.5.2 Compensatory Storage	3-4
Section 4	Site Utility Services	
4.1	Water and Fire Protection Services	4-1
4.2	Electric Service	4-1
4.3	Gas Service	4-1
4.4	Tele-Data and Cable TV Services	4-1
4.5	Sanitary Sewer Service	4-2
Section 5	Soil Erosion and Sedimentation Control	
5.1	SESC Narrative	5-1
5.2	Soil Erosion and Sedimentation Control Notes	5-3

Table of Contents

Tighe

Bond

Appendix A Figure 1 – Site Location Map

Figure 2 – FEMA FIRM Map

Figure 3 – Cross Section Location Map

Appendix B Site Soils Information

Appendix C Existing Hydrologic Calculations

Appendix D Proposed Hydrologic Calculations

Appendix E Water Quality Volume and Flow Calculations, Pollutant Loading Calculations

Appendix F Proposed Hydraulic Calculations

Appendix G Maintenance & Inspection Forms

Appendix H VERTCON, FIS Discharge Table, HEC-RAS River Modeling Output Tables

Appendix I Riprap Apron Sizing Worksheet, Temporary Sediment Trap Worksheet

Appendix J Sanitary Sewer Calculation Worksheet

Section 1 Introduction and Site Conditions

Tighe & Bond has prepared this report at the request of FDSPIN 141 DR LLC ("Applicant"), to support their applications to the Town of Wilton Planning & Zoning Commission and Inlands Wetlands Commission for a proposed $4\frac{1}{2}$ story multi-family residential building with 173 apartments.

The project site is located on a 4.28-acre parcel bounded by Danbury Road to the east, the Norwalk River to the west, and commercial properties to the north and south. The proposed development consists of the construction of a 173-unit residential building, atgrade parking, stormwater management systems, utility services, lighting, and associated landscaping. Refer to **Figure 1**, Site Location Map, in **Appendix A**.

Tighe & Bond has inspected the property and analyzed available soils, drainage, utility, wetland, and topographic information. Drainage calculations and stormwater management design have been prepared in accordance with the 2000 Connecticut Department of Transportation (CTDOT) Drainage Manual, and the Connecticut Department of Energy and Environmental (DEEP) Protection 2004 Stormwater Quality Manual. The drainage calculations include a hydrologic and hydraulic analysis of the existing conditions and the proposed development. Specifically, the calculations include an analysis of the on-site stormwater management measures and their performance in handling peak flow attenuation and pollutant removals. The report also includes a summary of the site floodplain management, the available existing and proposed utilities to serve the property, and the proposed soil erosion and sedimentation control measures incorporated during construction.

1.1 Existing Conditions

The existing site consists of a 47,000 square foot commercial building with at-grade parking. The 4.28-acre parcel is located within Wilton's DE-5 Design Enterprise District Zone. A significant portion of the site is impervious with paved parking areas, sidewalks, and building, with landscaping and lawns generally around the perimeter of the site. Utility services to the site include underground water, natural gas, overhead electric, and tele-data, connecting to service mains in Danbury Road.

The site is located on Danbury Road (Route 7) which is a north-south three lane State maintained major arterial roadway. The roadway is generally 40 feet wide along the frontage of the site with two lanes northbound and one lane southbound.

The topography of the site generally slopes from east to west towards the Norwalk River. Due to the lack of drainage structures within the property, stormwater runoff flows overland across the paved and landscaped surfaces. The Norwalk River runs adjacent to the western edge of the property, flowing from north to south. Approximately one third of the property lies within the Special Flood Hazard Zone AE of the Norwalk River.

1.2 Project Proposal

The proposed $4\frac{1}{2}$ story multi-family residential building will be home to 173 apartments consisting of one-bedroom (37), two-bedroom (122), and three-bedroom (14) units. The

proposed building is situated in the central portion of the site, with driveway and parking areas along the northern and southern sides. The ground floor will include surface parking spaces (covered and uncovered) as well as utility/trash rooms and building access points. All uncovered parking will be screened from view by landscaping. The existing driveway into the property will be widened to accommodate the traffic to and from the site, with dedicated turning lanes onto Danbury Road. The western end of the property will be converted into green space with associated landscaping and walking paths along the Norwalk River. New utility services to the property are proposed including underground water, natural gas, electric, and tele-data.

Stormwater management will be accommodated on-site. Surface runoff will be collected in catch basins and inlet structures located throughout the site. Underground infiltration and porous pavement systems have been designed to reduce peak flows and provide stormwater treatment, prior to discharge into the Norwalk River. The stormwater management system has been designed to treat the water quality volume and remove a high level of pollutants.

1.3 Site Soils

The U.S. Department of Agriculture's National Resource Conservation Service (NRCS) Web Soil Survey indicates the following soil types are present on the site:

Urban Land (307): Urban land is mostly covered by streets, parking lots, buildings, and other structures of urban areas. Slopes range from 0 to 45 percent. No drainage class is assigned, and the complex does not meet hydric criteria.

Rippowam Fine Sandy Loam (103): This series consist of very deep, poorly drained loamy soils formed in alluvial sediments. They are nearly level soils on flood plains subject to frequent flooding. Slope ranges from 0 to 3 percent.

A copy of the NRCS Soil Resource Report is included in **Appendix B** of this report.

Soil permeability for the site was estimated to be 2 inches per hour for the design of the proposed stormwater management systems. Estimates were conservative based on the soil classifications observed in the soil exploration program previously performed on site by GZA Environmental, LLC. Permeability estimates will be confirmed in the field prior to the completion of construction documents. See **Appendix B** of this report for boring logs and observed groundwater elevations.

1.4 Wetlands

Wetlands soils were delineated and flagged by William Kenny Associates LLC, William L. Kenny, soil scientist on March 15, 2021 and located in the field by D'Andrea Surveying & Engineering, P.C. Wetland flags and limits are depicted on the project drawing sheets.

Section 2 Stormwater Management

2.1 Existing Site Hydrologic Analysis

To review the impact of the proposed development on the existing site, an existing conditions hydrologic analysis was performed. Under existing conditions, stormwater runoff from the site generally flows from east to west towards the Norwalk River. Since there are no catch basins or inlet structures on the existing site, runoff flows overland and discharges to the river at the western end of the site. The edge of the river along the property has been designated as the design point for the analysis. The drainage area of the existing site has been delineated into sub-watershed areas. The Existing Conditions Watershed Map (Figure WM-01) is included in **Appendix C** of this report.

Impervious and pervious areas, weighted curve number, and time of concentration were calculated for each watershed area and developed into hydrologic model to determine the project's peak flow and volume, as part of the comparative hydrology analysis. Precipitation data for the hydrologic modeling were developed from NOAA's Atlas 14 Point Precipitation Frequency Estimates online utility. The site specific precipitation depths for a 24-hour durations storm are shown in **Table 2-1**.

Table 2-1
24-hour Duration Precipitation Depth

	2-Year	10-Year	25-Year	50-Year	100-Year
Depth (in)	3.54	5.40	6.57	7.44	8.37

A breakdown of existing watershed areas, existing volumetric hydrographs, and existing watershed map are included in **Appendix C** of this report.

2.1.1 Floodplain Management

The Federal Emergency Management Agency's Flood Insurance Rate Map (FIRM) for Fairfield County, effective June 18, 2010 and revised October 16, 2013 shows a portion of the site within the floodway and Zone AE of the Norwalk River, as shown in **Figure 2** in **Appendix A**. Refer to **Section 3 Floodplain Management & Hydraulics** of this report for additional information.

2.2 Proposed Site Hydrologic and Hydraulic Analysis

A stormwater management system has been designed for the proposed development to reduce peak flows and improve water quality for the site. The proposed drainage system consists of catch basins and inlets throughout the development site as well as water quality structures, underground infiltration systems, porous pavement systems, and outlet protection. The stormwater management system will maintain existing drainage patterns and utilize Best Management Practices for stormwater treatment.

Under proposed conditions, drainage patterns will generally remain the same, flowing in a westerly direction and ultimately discharging to the Norwalk River. Drainage structures

have been located throughout the site to collect stormwater runoff from paved and landscaped surfaces. Due to the location of the proposed building in the central portion of the site, the drainage system has been split into northern and southern systems around the building. Infiltration systems and porous pavement systems have been designed and located on either side of the proposed building, promoting infiltration and treatment of the stormwater runoff. These systems converge into a single outlet pipe located at the western end of the building, with a single outlet located at the southwestern corner of the site. A riprap apron and level spreader have been designed to reduce outlet velocities and provide erosion control prior to discharge to the Norwalk River.

2.2.1 Proposed Site Hydrology

The proposed conditions hydrologic analysis consists of sub-watershed areas at each inlet structure of the development property. For each proposed watershed area, weighted curve numbers and times of concentration were calculated and utilized in the proposed conditions hydrologic model. The infiltration and porous pavement systems were also modeled to determine the effectiveness in reducing peak discharges from the site.

Table 2-2 provides a summary of the peak discharges under existing and proposed conditions for the 2, 10, 25, 50, and 100 year storm events.

Table 2-2
Summary of Stormwater Peak Discharge (cfs)

			Storm I	Frequency (Years)	
Discharge Location	Condition	2	10	25	50	100
Norwalk River	Existing	7.662	13.50	17.25	20.05	23.05
Norwalk River	Proposed	1.636	6.762	10.69	13.64	17.35

The proposed conditions watershed map, curve number and time of concentration worksheets, and volumetric hydrographs are included in **Appendix D**.

2.2.2 Water Quality Volume

The water quality volume (WQV) is equivalent to the first inch of runoff from the site that should be captured and treated in order to remove a majority of stormwater pollutants on an average annual basis. For the proposed development, the infiltration and porous pavement systems have been designed to provide the required WQV. **Table 2-3** summarizes the required and provided WQV for the site.

Table 2-3
Summary of Water Quality Volume (cu ft)

Required WQV		10,603	
	North Infiltration System	2,912	
Drovided WOV	South Infiltration System	4,284	
Provided WQV	North Porous Pavement System	2,191	
	South Porous Pavement System	1,415	
Total Provided WQV	Total Provided WQV		

The water quality volume calculation sheets are included in **Appendix E**.

2.2.3 Hydraulic Capacity and Outlet Velocity

The stormwater collection system has been designed to convey the 25-year storm event as required by the CTDOT 2000 Drainage Manual. The system was designed by analyzing sub-areas corresponding to each inlet structure and calculating weighted runoff coefficients and times of concentration. These values were entered into a storm sewers model using Hydraflow Storm Sewers Extension for AutoCAD Civil 3D 2018, Version 2018.3. Based upon this analysis, the proposed storm system has the capacity to convey the 25-year storm event. At the outlet of the system, a riprap apron and level spreader have been designed to reduce outlet velocities and prevent scour along slopes. Hydraulic calculation worksheets and storm sewers output results are included in **Appendix F**.

2.3 Method of Hydrology and Hydraulic Analysis

The following storm drainage design criteria were used for all drainage pipe systems:

- 1. Design storm rainfall data from NOAA Atlas 14 Point Precipitation Frequency Estimates
- 2. Piped storm drainage system and the outlets are designed for a 25-year storm event.
- 3. Minimum time of concentration = 5 minutes
- 4. For SCS peak flow calculations, Curve Number were as follows:
 - a. Impervious (Pavement/Roof Areas) = 98
 - b. Landscaped and Lawn Areas = 69
- 5. For rational peak flow calculations, runoff coefficients were as follows:

- a. Impervious (Pavement/Roof) areas = 0.95
- b. Landscaped and Lawn Areas = 0.30
- 6. Minimum diameter of pipes = 12 inches, excluding roof leaders, underdrains, yard drains and foundation drains
- 7. Minimum pipe slope = 0.5 percent
- 8. Watershed areas delineated using polylines in AutoCAD Civil 3D 2018.
- 9. Comparative hydrology analyzed using Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2018, Version 2018.3
- 10. Storm drainage system analyzed using Hydraflow Storm Sewers Extension for AutoCAD Civil 3D 2018, Version 2018.3

2.4 Best Management Practices

The stormwater management plan for the proposed site uses "Best Management Practices" (BMPs) to remove a high percentage of sediments in accordance with the Connecticut Department of Energy and Environmental Protection "Stormwater General Permit Criteria".

The BMPs include:

<u>Catch Basins and Yard Drains with Sumps:</u> Catch basins and yard drains with sumps collect sediment and prevent discharge of oil and other pollutants into the storm drainage system. All new catch basins and yard drains on-site will have 24-inch sumps.

<u>Hydrodynamic Separators:</u> Hydrodynamic separators serve as pretreatment and prevent transport of oils and sediment further downstream. The proposed stormwater management system utilizes Contech CDS units prior to discharge into the underground infiltration systems. The Contech CDS units have been sized in accordance with the 2004 CTDEEP Stormwater Quality Manual. Sizing calculations are provided in **Appendix E.**

<u>Underground Infiltration</u>: Underground Infiltration serves as a primary treatment practice, reduces peak flow rates, and promotes groundwater recharge. The proposed stormwater management system utilizes concrete chambers surrounded by stone and filter fabric and an outlet control structure designed to attenuate peak flows.

<u>Level Spreader</u>: Level Spreaders serve as a secondary treatment practice that are utilized to reduce stormwater discharge velocities to non-erosive levels.

2.5 Pollutant Loading Analysis

Pollutant loadings for the existing and proposed conditions were calculated using the method prescribed by Debo and Reese in "Municipal Stormwater Management", 1995. This method determines the mass of pollutant loading by inputting the fraction of

impervious area, the contributing area, the mean annual rainfall, and the event mean concentration of pollutant (EMC). The EMC is based upon the pollutant analyzed and the general characteristic of the contributing area – residential, commercial, or open space.

For the proposed conditions, the contributing area was further broken down into contributing areas to certain best management practices (BMPs). Pollutant loading reductions were taken at certain BMPs, depending upon the removal efficiency of the BMP as stated in the 2003 edition of Debo and Reese. Pollutant removal efficiencies for proprietary products were taken from a report entitled "Final Report: Stormwater Treatment Devices Section 319 Project" submitted to the Connecticut Department of Environmental Protection, Bureau of Water Management by the University of Connecticut Department of Natural Resources Management and Engineering, April 15, 2002. This report provides results of field testing for pollutant removal on different types of proprietary stormwater treatment devices installed throughout the State of Connecticut. Based upon these pollutant reductions, we have determined that pollutant loadings will be less for the proposed conditions, as shown in **Table 2-4** below. The pollutant loading calculation sheets are included in **Appendix E**.

Table 2-4
Pollutant Loading Summary

	Pollutant							
Item	Units	TKN	Р	TSS	Pb	Cu	Zn	
Proposed, Pre-Treatment	lb/yr/1-in	0.456	0.092	24.226	0.035	0.008	0.032	
Proposed, Post-Treatment	lb/yr/1-in	0.284	0.037	5.121	0.015	0.003	0.009	
Reduction, Pre to Post Treat		38%	59%	79%	57%	60%	71%	

2.6 Stormwater Maintenance and Inspection Schedule

Stormwater management systems require periodic maintenance to ensure they function as designed. The initial inspection will be made during an intense rainfall to check the adequacy of the catch basins, roof leaders, piping, hydrodynamic separators, underground infiltration systems, and system outlet.

The following is a checklist of items that will be checked and maintained during scheduled maintenance operations.

<u>Drainage Structures:</u> The Owner will be responsible for cleaning the catch basins, yard drains, manholes, piping, and outlet protection on their property. A Connecticut licensed hauler shall clean the sumps, and legally dispose of removed sand at an off-site location. The road sand may not be reused or stored on-site. As part of the hauling contract, the hauler shall notify the Owner in writing where the material is being disposed.

Each catch basin and yard drain shall be inspected every four months, with one inspection occurring during the month of April. Any debris occurring within one foot from the bottom of each sump shall be removed by Vacuum "Vactor" type of maintenance equipment.

Maintain a log of inspections. Remove organic matter, sand, and debris from catch basins as necessary and dispose of legally.

<u>Hydrodynamic Separator:</u> The Contech CDS Units (hydrodynamic separator) will be skimmed and oil and scum removed. In a separate operation, silt, sand, and sediment will be removed. Once the structure is cleaned of debris, the chamber will be refilled with clean water to prevent wash through of debris and oil during next storm event.

<u>Underground Infiltration:</u> The underground infiltration system will be cleaned of all silt, debris and sediment from the inlet structure, outlet structure and the chamber lengths. The outlet control structure will be inspected and cleaned to make sure nothing is clogging the discharge pipe.

<u>Level Spreader:</u> The level spreader shall be inspected two times annually. Regular maintenance includes removing accumulated debris and sediment, checking for erosion, vegetative bare spots, and removing invasive plant species or tree saplings.

<u>Pavement:</u> Paved areas shall be swept periodically by the Owner to clean trash and other debris. The Owner will sweep paved areas on its property in the spring to remove winter accumulations of road sand.

Perform a visual inspection of paved areas four times per year with one inspection after the last snowfall, but no later than April 1. Sweep accumulated sediment and debris from the paved areas. Clean paved areas as necessary during the remainder of the year.

Maintenance & Inspection Forms are included in **Appendix G.**

Section 3 Floodplain Management & Hydraulics

3.0 Background

The Norwalk River was studied by FEMA as a part of the Flood Insurance Study (FIS) for Fairfield County, dated June 18, 2010. The 2010 FIS updated the modeling of the Norwalk River that was originally done for the 1982 Town of Wilton Flood Insurance Study by incorporating Letters of Map Revision issued between 1982 and 2010. The river system itself was not restudied. It is important to note that the vertical datum of the two studies was changed from the National Geodetic Vertical Datum of 1929 (NGVD29, prior to 1973 also known as the Sea Level Datum of 1929) to the North American Vertical Datum of 1988 (NAVD88). The modeling data provided by FEMA is in the NGVD29 datum and the reported water surface elevations in the 2010 FIS are in the NAVD88 datum.

The National Oceanic and Atmospheric Administration (NOAA) offers an online utility, VERTCON, to calculate the difference between the two datums at a given latitude and longitude coordinate. In the area of the project, the NGVD29 datum is 1.07 feet higher than the NAVD88 datum. Refer to the VERTCON conversion in **Appendix H**.

3.1 Basis of Modeling

Tighe & Bond obtained a copy of the hydraulic model from FEMA for the Norwalk River. This model was used for the hydraulic analysis of the project since it is the effective FEMA model for the project area. The model was developed using the U.S. Army Corps of Engineers HEC-RAS hydraulic analysis modeling environment.

3.1.1 Calibrated Model

To verify the accuracy of the modeling provided by FEMA, a model was created to replicate the data in the FIS. This is the calibrated model, also known as the duplicate effective model. The calibrated model encompasses the Norwalk River, generally spanning from Wolfpit Road to Kent Road in Wilton, corresponding with cross sections O and K of the FIS, respectively. The project site at 141 Danbury Road falls between cross sections O and N of the model. The comparison of the 100-year (1% chance) calibrated model water surface elevations with the elevations reported in the FIS Floodway Table are summarized in **Table 3-1**. The output table of the calibrated model is included in **Appendix H**.

Table 3-1
Calibrated Model Output

		Water Surface Elevation (NAVD88)				
FIS Cross Section Identifier	Calibrated Model Cross Section Number	Floodway Data Table	Calibrated Model			
K	21745	123.4	123.41			
L	22765	130.6	130.57			
М	24525	138.8	138.69			
N	24597	141.2	140.19			
0	29920	153.1	152.89			

As shown in the table, the water surface elevations of the Calibrated Model closely mirror the values reported in the FIS Floodway Table. Slight variations in water surface elevations can be attributed to the differences between the HEC-2 and HEC-RAS modeling environments. The effective modeling and data provided by FEMA of the Norwalk River is in or has been developed from HEC-2 modeling. The HEC-RAS modeling environment is the successor to HEC-2 and is FEMA's current standard for flood studies. Based on the results shown, the Calibrated Model is suitable for modeling the proposed conditions of the project.

3.2 Flow Rates

The established flow rates for the Norwalk River are documented in Volume 1 of the FIS. Tighe & Bond is not challenging the flow rates established by the FIS and will be using the rates for modeling existing and proposed conditions. The flow rates for the river at the location of the site based on the FIS are summarized in **Table 3-2.** See **Appendix H** for a copy of the Norwalk River discharges included in the FIS.

Table 3-2
FIS Norwalk River Flow Rates at the Site

Return Frequency (years)	Annual Chance Probability	Flow Rate (cfs)		
10	10%	2,980		
50	2%	5,840		
100	1%	7,455		
500	0.2%	12,505		

3.3 Existing Conditions Model

In order to best evaluate the impact of the proposed project, we inserted cross sections into the effective model to create an existing conditions model, also known as the corrected effective model. Due to the spacing of the sections in the effective model, the variations in floodplain topography are not accurately reflected in the vicinity of the project area. A total of four cross sections were added to the model and developed from the topographic survey of the site. Since the topographic survey is in the NAVD88 datum, the elevations of the geometry points were converted to NGVD29 before entering into the model. **Figure 3** in **Appendix A** shows the locations of the cross sections through the project site. **Table 3-3** summarizes the resulting water surface elevations of the added sections in the existing conditions model.

Table 3-3
Existing Conditions 100-Year Water Surface Elevations (NAVD88)

Existing Conditions Model Added Sections	100-year Water Surface Elevation (NAVD88)
28020	146.48
27930	146.47
27830	146.46
27790	146.46

Refer to **Appendix H** for the model output table of the existing conditions model.

3.4 Proposed Conditions Model

The next step in the modeling process is to determine the resultant water surface elevations of the project, including the proposed building and grading changes. We modified the appropriate sections in the Existing Conditions model accordingly. **Table 3-4a** and **3-4b** compare the proposed conditions results to the existing conditions for the 100-year and 10-year events, respectively.

Table 3-4a
100-Year Water Surface Elevation Comparison (NAVD88)

	100-year Water Surface Elevation (NAVD88)						
Section	Existing	Proposed	Difference				
28020	146.48	146.48	0.00				
27930	146.47	146.47	0.00				
27830	146.46	146.46	0.00				
27790	146.46	146.46	0.00				

Table 3-4b
10-Year Water Surface Elevation Comparison (NAVD88)

	10-year Water Surface Elevation (NAVD88)						
Section	Existing	Proposed	Difference				
28020	144.93	144.93	0.00				
27930	144.93	144.93	0.00				
27830	144.92	144.92	0.00				
27790	144.92	144.92	0.00				

Based upon the hydraulic analysis, the proposed construction will not adversely impact 100-year and 10-year flood elevations along the Norwalk River.

3.5 Compliance with Local Floodplain Regulations

Section 29-9.F.7 of the Wilton Zoning Regulations requires the following:

- k. Equal Conveyance: Within the floodplain, except those areas which are tidally influenced, as designated on the Flood Insurance Rate Map (FIRM) for the community, encroachments resulting from filling, new construction or substantial improvements involving an increase in footprint of the structure, are prohibited unless the applicant provides certification by a registered professional engineer demonstrating, with supporting hydrologic and hydraulic analyses performed in accordance with standard engineering practice, that such encroachments shall not result in any (0.00 feet) increase in flood levels (base flood elevation). Work within the floodplain and the land adjacent to the floodplain, including work to provide compensatory storage shall not be constructed in such a way so as to cause an increase in flood stage or flood velocity.
- I. Compensatory Storage: The water holding capacity of the floodplain, except those areas which are tidally influenced, shall not be reduced. Any reduction caused by filling, new construction or substantial improvements involving an increase in footprint to the structure, shall be compensated for by deepening and/or widening of the floodplain, storage shall be provided on-site, unless easements have been gained from adjacent property owners; it shall be provided within the same hydraulic reach and a volume not previously used for flood storage; it shall be hydraulically comparable and incrementally equal to the theoretical volume of flood water at each elevation, up to and including the 100-year flood elevation, which would be displaced by the proposed project. Such compensatory volume shall have an unrestricted hydraulic connection to the same waterway or water body. Compensatory storage can be provided off-site if approved by the municipality.

3.5.1 Equal Conveyance

As shown in Table 3-4a, there are no increases in the base flood elevation as a result of the project, so the equal conveyance requirement has been met.

3.5.2 Compensatory Storage

The placement of the building columns and stairways within the floodplain would result in a loss of floodplain storage. Therefore, we propose revised grading to mitigate against the loss of flood storage volume. The grading as proposed results in a net cut of approximately 440 CY within the floodplain boundary, compensating for the approximate 40 CY occupied by the columns and stairways of the proposed building. The project as proposed would not decrease floodplain storage on-site.

Section 4 Site Utility Services

4.1 Water and Fire Protection Services

Water and fire protection services to the site will be provided by The Aquarion Water Company (Aquarion). Services to the proposed buildings will be fed from the reported 12-inch main located in Danbury Road. Existing hydrants are located in the vicinity of the project site on the west and east sides of Danbury Road.

The estimated daily water demand for the proposed residential development is approximately 48,450 gallons per day (GPD). The estimated peak hour demand is 101 gallons per minute (GPM), determined using a maximum-to-average-day ratio of 3.0.

4.2 Electric Service

Electric service to the site is provided by Eversource Electric Company. Overhead primary service lines are located on the west side of Danbury Road and enter the site from the north.

4.3 Gas Service

Eversource Gas Company provides natural gas service to the project area. Eversource Gas Company maintains a 12-inch gas main located in Danbury Road.

Once the estimated peak demand for the total project is determined, Eversource Gas Company will provide a letter of service availability.

4.4 Tele-Data and Cable TV Services

Frontier Communications provides local and long-distance telephone service to the project area and also offers high speed internet and business data services. The existing network in this area is composed of a combination of overhead lines and underground ductbanks. The existing service is provided overhead on the north side of the building. There is also an existing utility pole on the project site along the southerly property line that provides overhead services for 131 Danbury Road. These overhead wires and the routing for this building will need to be relocated in order to accommodate the proposed site improvements. Easements are not identified on the record documents for this utility pole or the service lines.

Telephone service to the proposed development would be provided underground from a utility pole in the adjacent street. The exact location of the service connections will be coordinated with the utility owner during the final design process.

Altice USA provides cable service as well as high speed internet access to the project area. The majority of the existing network runs overhead and follows the same alignment as the telephone service.

4.5 Sanitary Sewer Service

The project site is located within the Wilton WPCA Sewershed.

Based on available Town maps, there is a 24-inch gravity sanitary sewer located in Danbury Road. The proposed building will connect to the existing sewage system by constructing a manhole over the existing sewer pipe in the adjacent street frontage. WPCA approval will be required for all sewer connections.

The projected wastewater flows associated with the proposed development were calculated based on the 173 residential units with 323 total bedrooms and a flow rate of 150 gallons per day (GPD) per bedroom. A peaking factor of 4 was applied to the average daily flows to estimate peak flows. **Table 4-1** below summarizes the projected average and peak daily sanitary sewer flows for the site. Refer to **Appendix J** for a full breakdown of the sanitary sewer flow calculations.

Table 4-1 - Projected Average and Peak Daily Sanitary Sewer Flows

Wastewater Requirements								
Develo	pment	Design	Criteria	Average	Peak Flow			
Use	Units / Bedrooms	GPD	Unit	Daily Flow (GPD)	(GPM)*			
Residential	173 / 323	150	Per Bedroom	48,450	135			

^{*} Peak factor of 4 was applied to average daily flows to estimate peak flows; New England Interstate Water Pollution Control Commission, 2011.

Section 5 Soil Erosion and Sedimentation Control

5.1 SESC Narrative

General

The proposed development is entitled "141 Danbury Road" in Wilton, Connecticut.

Estimated:

Project Start: Fall 2021

Project Completion: Spring 2022

Erosion Control Narrative refers to drawings C-501 through C-503.

The proposed site development will consist of building demolition, clearing and grubbing the existing site, excavation, construction of sedimentation/detention basins, and rough grading of building, parking areas, sidewalks and curbing.

The development is located in Wilton, Connecticut and is located on Danbury Road.

The stormwater management measures will address the stormwater quality once the site has been constructed and stabilized. Sedimentation and erosion control measures will be installed during construction which will minimize adverse impacts from construction activities.

All sedimentation and erosion control measures proposed for this development have been designed in accordance with the "2002 Connecticut Guidelines for Soil Erosion and Sedimentation Control" as published by the Connecticut Council on Soil Erosion and Water Conservation. Additional guidelines have also been followed that are available from the Connecticut Department of Environmental Protection as recommended for sedimentation control during construction activities.

Construction Sequence – Initial Phase

- 1. Conduct a pre-construction meeting with the Owner or Owner's Representative, Town Engineer, Design Engineer, Site Engineer, Contractor and Site Superintendent to establish the limits of construction, construction procedures and material stockpile areas.
- 2. Field stake the limits of construction.
- 3. Install all applicable soil and erosion control measures around the perimeter of the site to the extent possible. this will include siltation fence around the project as shown on the plans.
- 4. Install construction access road and anti-tracking pavement in the areas as shown on the plans. All construction access shall be into the site through the anti-tracking pads.

- 5. Establish temporary staging area.
- 6. Begin building demolition and pavement removal.
- 7. Construct the initial storm drainage and sedimentation trap as shown on the plans.
- 8. Install water quality systems and associated drainage network to the maximum extent practicable. Grade the area around the storm drainage system as necessary.
- 9. Begin rough roadway grading.
- 10. Install remaining drainage system to the extent necessary to provide positive drainage.
- 11. Begin installation of sanitary sewer system, water, and other utilities to extent necessary.
- 12. Provide silt fence/haybale barrier around soil stockpile area. Provide temporary vegetative cover (defined in erosion control notes) on all exposed surfaces.
- 13. Begin building construction.
- 14. Pave binder course on parking and driveways for non-porous pavement areas.
- 15. Establish temporary vegetative cover.
- Construct drainage and subbase for porous pavement and place porous pavement course

Construction Sequence – Final Phase

- 1. Repair perimeter sediment & erosion controls as needed.
- 2. Clean/replace controls from previous phase as needed.
- 3. Fine grade site.
- 4. Continue construction of building.
- 5. Complete construction of sidewalks.
- 6. Establish final vegetative cover and landscaping.
- 7. Pave surface course on roadways.
- 8. Remove erosion controls when site is stabilized.

5.2 Soil Erosion and Sedimentation Control Notes

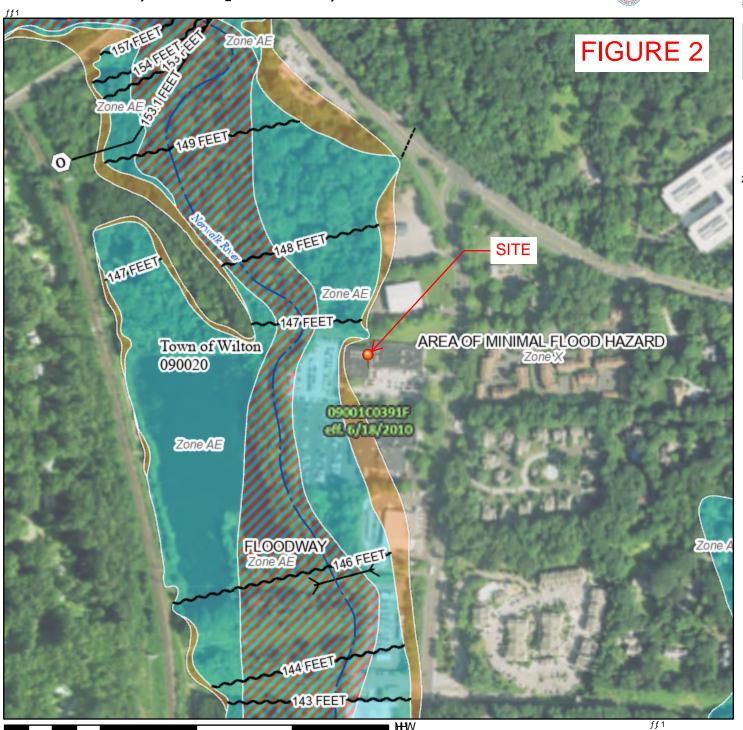
- All sedimentation and erosion control measures shall be constructed in accordance with the standards and specifications of the "2002 Connecticut Guidelines for Soil Erosion and Sediment Control", DEP Bulletin No. 34, and all amendments and addenda thereto as published by the Connecticut Department of Environmental Protection.
- 2. Land disturbance shall be kept to the minimum necessary for construction operations.
- 3. All erosion control measures shall be installed as shown on the plan and elsewhere as ordered by the engineer.
- 4. All catch basins shall be protected with a silt sacks, haybale ring, silt fence or block and stone inlet protection throughout the construction period and until all disturbed areas are thoroughly stabilized.
- 5. Whenever possible, erosion and sediment control measures shall be installed prior to construction. See "Erosion Control Narrative".
- 6. Additional control measures shall be installed during the construction period as ordered by the engineer.
- 7. All sedimentation and erosion control measures shall be maintained in effective condition throughout the construction period.
- 8. Sediment removed shall be disposed of offsite or in a manner as required by the Engineer.
- 9. The construction contractor shall be responsible for construction and maintenance of all control measures throughout the construction period.
- 10. All disturbed areas to be left exposed for more than 30 days shall be protected with a temporary vegetative cover. Seed these areas with perennial ryegrass at the rate of 40 lbs. per acre (1 lb. per 1,000 sq. ft). Apply soil amendments and mulch as required to establish a uniform stand of vegetation over all disturbed areas.
- 11. The construction contractor shall utilize approved methods/materials for preventing the blowing and movement of dust from exposed soil surfaces onto adjacent properties and site areas.
- 12. The construction contractor shall maintain a supply of silt fence/haybales and antitracking crushed stone on site for emergency repairs.
- 13. All drainage structures shall be periodically inspected weekly by the construction contractor and cleaned to prevent the build-up of silt.
- 14. The construction contractor shall carefully coordinate the placement of erosion control measures with the phasing of construction.
- 15. Keep all paved surfaces clean. Sweep and scrape before forecasted storms.

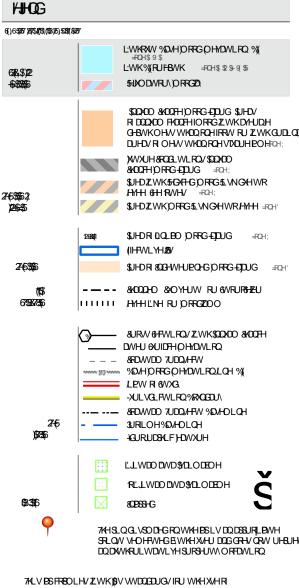
- 16. Treat all unpaved surface with 4" minimum of topsoil prior to final stabilization.
- 17. Haybale barriers and silt fencing shall be installed along the toe of critical cut and fill slopes.
- 18. The contractor shall notify the Town officials prior to the installation of erosion controls, cutting of trees, or any excavation.
- 19. All trucks leaving the site must be covered.
- 20. Some control measures are permanent. These structures shall be cleaned and replenished at the end of construction. locations of the permanent control structures are shown on the drainage plans.
- 21. All sedimentation and erosion controls shall be checked weekly and/or after each rain fall event. Necessary repairs shall be made without delay.
- 22. Prior to any forecasted rainfall, erosion and sediment controls shall be inspected and repaired as necessary.
- 23. After all disturbed areas have been stabilized, erosion controls may be removed once authorization to do so has been secured from the Owner. Disturbed areas shall be seeded and mulched.
- 24. All embankment slopes 3:1 or greater to be stabilized with erosion control blanket, North American Green SC150BN or approved equivalent, unless otherwise noted on plans.

APPENDIX A

141 DANBURY ROAD WILTON, CONNECTICUT

SITE LOCATION MAP




FIGURE 1

1DWLRODO (DRRG-EDUGIDHU)51WWH

7KLVESFREDLH/ZWKJBVWDDDDJJG/IFUWHJXHR GLLWDD IORGEBYLI LW LVQRW YRLGD/GHMJLEHGEHORZ MHDDMESWRZDFREDLH/ZWKJBVEDMES DFFJJFJWDDDDJG/

74HIORGKODUGLARUBWLRQLVG-ULYHGGLUHFWO\IURWKHDWKRULWDWLYH #2EVHUYLFH/SURLG-GE \$\) 74.V BS
20/ HRUWHGRO DW 30 DOGGRH/GRW
UHOHW HRODH/RU BPOGPDWV\XBAHXHOW WRWKLVGDWHDOG
WHO 74H #100GHIHFWLYHLQRUBWLROB HRODHRU
BFFRIXSHUMHGHGE Q-250DWDR/HU WLFI

74LV BSLBHLVYRLGLI WKHRQHRU RUHRI WKHIROORZQJES HOHPQWV CRQW DSSHU) EDHBSLBHUN IORRGIRQHODHOV OHHOG VFDOHEDU BSRUHDWLRQGDWH FFRQLWNLGHQWLILHUV)\$50QHO DQBHU DQG)\$HIHFWLYHGDWH DSLBHVIRU XDBSHGDGXRQHUQJHGDUHDV FDQQRW BHXHGIRU UHXODWRUNSUSSHW

APPENDIX B

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:12.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails . . . Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: State of Connecticut Survey Area Data: Version 20, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Dec 31, 2009—Oct 5. 2016 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol Map unit name		Rating	Acres in AOI	Percent of AOI		
103	Rippowam fine sandy loam	B/D	0.7	13.8%		
307	Urban land	D	4.4	83.3%		
W	Water		0.2	2.8%		
Totals for Area of Intere	est	5.3	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

GZA GEOENVIRONMENTAL, INC. BORING NO. MW-4 Engineers and Scientists 141 Danbury Road PAGE 1 OF 1 FILE NO. 50642 CHKD. BY: JMB 204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808 Wilton, Connecticut CASING 4 1/4" SAMPLER GROUNDWATER READINGS Boring Co. GZA Drilling Type HSA Split Spoon Foreman Al Augustine I.D./O.D. 1 3/8"/ 2" Date Time Depth Casing Stab. Time GZA Rep. ClareAnn Watsh Hammer Wt. 140 lbs. 5/30/92 1610 9.31 10.04 0 hrs. Date Start 5/30/92 End 5/30/92 Hammer Fall 30 in. GS.Elev. __ Datum__ Other Location C Sample Information Equipment Installed ASNG S SAMPLE Stratum Field Testing DESCRIPTION & CLASSIFICATION T Pen./ No. Depth (Ft.) Blows/6" Description H Rec. (ppm) Steel Casing 8-1 24/12 Top 2": TOPSOIL and grey-brown, fine to coarse SAND. 0-2.0 5-10-10-5 ND TOPSOIL - Concrete 0.21 FINE TO Auger COARSE Spoils 8-2 24/16 4.0-6.0 2-3-2-2 ND* Loose, brown, fine SAND grading to black SILT. 4.01 Bentonite Seat AND Loose black SILT grading to brown fine Sand grading back to black Silt. 8-3 24/20 6.0-8.0 3-3-3-3 ND* SAND Riser 5-4 24/22 8.0-10.0 6-5-8-9 Medium dense, grey-brown, fine to coarse SAND, some fine rounded Gravel, trace Rock Fragments. ND 8.04 Screen 10 8-5 24/16 10.0-12.0 8-10-12-12 ND Medium dense, grey, fine to coarse SAND, trace fine Gravel. FINE TO COARSE Sand 15 8-6 24/22 15.0-17.0 5-1-2-3 Very loose, grey, fine SAND, finer towards tip of spoon. ND 15.01 FINE 5-7 24/22 17.0-19.0 11-14-18-20 ND Medium dense, grey, fine SAND. 19.01 150 E.O.B. 25 Soil samples field screened with a 10.2 eV portable HNu photoionization detector for volatile organic compounds (VOCs). "*" Indicates sample sent to laboratory for additional analysis. Sample wet.

Sample wet.

10 feet of 2-inch, schedule 40, threaded, flush-jointed, 10-slot PVC screen set at approximately 17 feet below grade. Well completed to ground surface with 2-inch, schedule 40, threaded, flush-jointed, solid PVC riser. Filter sand placed in annulus around well from 17 to 5 feet below grade. Bentonite seal placed from 5 to 4 feet below grade. Annulus around well backfilled with auger spoils from 4 to 0 feet below grade. Well capped with steel stick-up casing cemented in place.

E.O.B. = End of Boring. tratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings ave been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made. BORING NO. MW-4

G	ZA GE	OENVI ers a	RONMENTA nd Scien	AL, INC. htists			141 Dan	bury Road		_			ORING NO.	
1 2	04 Sp rumbu 203)	ring 11 c 268-0	Hill Ros onnectio 808	ad out 06611			Wilton, C	onnecticut		-		F	TLE NO.	50642
Во	ring	Co.	GZA Dr	illing	Тур	oe .	CASING 4 1/4" HSA	SAMPLER Split Spoon		GROUN	DWATER	RE	ADINGS .	
٠,	remar		AL Aug	ustine	1.0	./O.D.		1 3/8"/ 2"	Date	Time	Dept	h	Casing	Stab. Time
, uZ	A Rep		ClareA	nn Walsh	Har	mer Wt.		140 lbs.	5/30/92	1745	9.0		10.0'	0 hrs.
Da	te St	art	5/30/	92 End 5/	/30/92 Han	mer Fat		30 in.						
1	.Elev			Datum		ner								
100	catio													
10	-		Sc	ample Inform	ation							RE	Equ	ipment
Įń.	CASNG	No.	Pen./	Depth (Ft.)	Blows/6"	Field Testing (ppm)		SAMPLE IPTION & CLASSII	FICATION	Stra Descri	7777	EXX	Ins	
1	-	8-1	24/8	0.5-2.5	1-2-4-6	ND	Loose, dar	brown SILT, so	ome fine	TOPSO	IL	1	WW 7 W	Flush - mount -
1		0-1	24/0	0.5-2.5	1245		Sand, trac	k brown SILT, se coarse Sand.	one The	0.5				- Auger Spoils
5		8-2	24/6	4.0-6.0	16-22-24-25	0.2*	Medium der SAND and gr little fin	nse, brown, fine rey ROCK FRAGMEN e rounded Grave	e to medium NTS, l.					- Riser - Bentonit
r		8-3	24/12	6.0-8.0	27-24-28-31	ND	Dense ROCK to coarse : Gravel.	FRAGMENTS and to	fine e rounded					Seal
J	=	s-4	24/20	8.0-10.0	8-20-30-13	ND	Dense, brown SAND, some trace Rock	en, fine to coar fine rounded Gr Fragments.	rse ravel,	FINE COAI SAI	RSE ND	2		Screen
1.10		8-5	24/14	10.0-12.0	7-9-18-20	ND	A STATE OF THE PARTY OF THE PAR	e, brown, fine and ROCK FRAGE rounded Gravel		GRA			E	
ľ	_													- Sand
15		8-6	24/18	15.0-17.0	WOR-12-18	ND	Brown, fine	s SAND, 2" lens se Sand, return Sand below len	of dark	16.0'		$\ $		-
di T		s-7	24/12	18.0-20.0	6-12-13-10	ND		ie, brown, fine trace fine rour		FI	NE ND		Ħ.	
20	F						FRAGMENTS,	trace fine rour	nded Gravel.	20.0'		3		-
1,										E.0	.в.			
1 25														_
'I'														
, I. -														
Smx Cons	1.	comp	ounds (VOCs). "W"	Indicates sam	ple sent	to laborat	photoionization ory for addition , 10-slot PVC s nch, schedule 4 18 to 6 feet be d with drill cu ce.	nat anatysis.					
st	rati	icati en ma	on line	s represent imes and unc	approximate b	oundarie stated.	s between s Fluctuati	oil types, tran ons of groundwa	sitions may b	e gradua due to	l. Wa factor	ter s o	level re ther than	eadings 1
L.	ose	reser	t at the	e time measu	rements were	made.							ORING NO.	

GZA	GEOENV	IRON	MENTAL,	INC.
			Scient	

141 Danbury Road

BORING NO. MW-6

204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808

Wilton, Connecticut

PAGE 1 OF 1 FILE NO. 50642 CHKD. BY: JMB

Во	ring	Co.	GZA Dr	illing	ту	pe	CASING 4" HSA	SAMPLER Split Spoon		GROUN	DWATER	RE	ADINGS	
:0	гета	n	Al Aug	ustine		D./O.D.		1 3/8"/ 2"	Date	Time	Dept	h	Casing	Stab. Time
32	A Re	р.	ClareA	nn Walsh	На	mmer Wt.		140 lbs.	5/30/92	1715	11.1	,	out	4 hrs.
Da	te S	tart	5/30/	92_ End _5	/30/92 Ha	mmer Fal		30 in.						
35	.Ele	٧.		Datum	Ot	her								
Lo	cati	on												
P	CAL		Se	ample Inform	ation			CAMDI E		Stra	*****	R	Equ	uipment stalled
H	SNS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRIF	SAMPLE TION & CLASSIF	ICATION	Descri		MXS	Inc	Steel Casing
		8-1	24/8	0-2.0	4-12-27-50	ND	Top 4": TOPS	OIL.		TOPSO	IL	1	oba is	- Concret
							trace Rock F	OIL. ine to coarse ragments.	SAND,	0.25		11		
												П		Spoils
		_								FIL		П		Pierr
5	<u> </u>	S-2	24/16	4.0-6.0	4-5-6-4	ND*	Medium dense	, dark brown T race Brick Fra	OPSOIL,	· · ·		П		Riser
	_						CEILLY					ı		Bentoni
	_	8-3	24/19	6.0-8.0	4-4-8-16	ND	(FILL) gradi	, dark brown T race Brick Fra ng to grey-bro	gments'			lŀ		Seal
	_	8-4	27.710	0.000	40 45 40 04							П		
	-	8-4	24/10	8.0-10.0	10-15-18-21	ND	SAND, and RO	, grey, fine t CK fragments.	o coarse	8.0'			Н	
10	_	s-5	24/8	10.0-12.0	20-24-16-12	ND	Dense grev	fine to coope				2	H	Screen -
		-	0.70	1010 1010	20 24 10 12	ND.	SAND and ROC	fine to coars K FRAGMENTS.		FINE	TO		$=$ Ξ	
										SAN	Ď		$ \mathbb{H}$	
*													H	- Sand
15													H	
15		8-6	24/0	15.0-17.0	4-4-5-4	ND	Loose, grey,	fine SAND.		15.0'			H	
												8	$ \pm$	
										FIN	e l	0000		
1										JAN	·	3	10000 - 1000	<u> </u>
":0		s-7	24/8	19.0-21.0	5-6-10-8	ND	Medium dense, trace fine,	grey, fine S/ counded Gravel	AND,					_
		_								21.0'		4		
	_									E.O.	в.			
	_								1.		- 1	1		
	_	_									- 1			
25	_													-
									1					
·MM:	1.	Soil	samples	field scree	ned with a 11	.7 eV po	rtable MNu ph	otoionization for addition	detector for	volatíl	e organ	nic		

3. Soil sample screened with a 10.2 eV portable MNu.
4. 10 feet of 2-inch, schedule 40, threaded, flush-jointed, 10-slot PVC screen set at approximately 19 feet below grade. Well completed to ground surface with 2-inch, schedule 40, threaded, flush-jointed, solid PVC riser. Filter sand placed in annulus around well from 19 to 7 feet below grade. Bentonite seal placed from 7 to 6 feet below grade. Annulus around well backfilled with auger spoils from 6 to 0 feet below grade. Well capped with stick-up casing cemented in place.

tratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings and been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

BORING NO. MW-6

E	ngin	eers a	and Scie				141 Danbury Road						HW-7
27	04 s rumb 203)	268-0	Hill Ro Connecti 0808	oad cut 06611			Wilton, Connecticut		_		F	AGE 1 ILE NO. HKD. BYT	OF 1 50642 JMB
Во	ring	Co.	GZA D	rilling	ту	pe	CASING SAMPLER 4 174" HSA Split Spoon		GROUN	DWATER	RE	AD I NGS	
0	rema	n		gustine	1.	D./O.D.	1 3/8"/ 2"	Date	Time	Dept	h	Casing	Stab. Time
	A Re		4. 027.0	Ann Walsh	and the second second	mmer Wt.	140 lbs.	5/30/92	1715	9.4	,	out	6 hrs.
	te S		5/30/	92 End _5	No. of the last of	mmer Fat	30 in.						
	.Ele			Datum	Ot	her							
,	_	_	s	ample Infor	mation						10		
	CASWS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRIPTION & CLASSIFI	CATION	Stra Descri		REMKS	Ins	steel Casing
		s-1	24/8	0-2.0	4-8-9-10	0.9	Top 4": TOPSOIL,		TOPS	DIL	1		- Auger
							Top 4": TOPSOIL. Bottom 4": Red-brown, fine coarse SAND, trace fine Grav	vel.	0.25		1		Spoils
	_	_											Bentoni Seal
	_	s-2	24/12	1010	7.5.4						П		Riser
5	_	2.4	24/12	4.0-6.0	7-5-5-6	0.9*	Loose, red-brown, medium SAND, trace Silt.						
		8-3	24/18	6.0-8.0	12-15-15-19	0.3	Medium dense, red-brown, fir coarse SAND, trace fine Grav	ne to	FINE COAR SAN	SE	1	Ħ	
		s-4	24/8	8.0-10.0	14-24-17-24	0.1	Dense, brown-black, coarse SAND, some medium Sand, litt fine Gravel.	te			2	I	
0		8-5	24/18	10.0-12.0	9-7-6-8	ND			10.04			H	Screen _
ł		-	247 10	1010-1210	7-7-0-0	NU	Medium dense, grey, fine SAN	ь.	10.0'		8	B	
Ì											l j	В	
									FINE		1	Ħ	- Sand
5												E	
1	_	8-6	24/12	15.0-17.0	4-3-3-3	ND	Loose, grey, fine SAND.						
ł	_	_	-						47.04		3		
Ì							,		17.0' E.O.E	.			
1,													
ľ													-
ŀ	_												
1	-												
ŀ	-							1					_
ŀ													
ŀ													
İ													
	1.	Soil s comport Sample 10 fee below riser, 3 to 2	samples unds (VC Het. et of 2- grade. Filte feet b	field scree Ccs). "*" inch, sched Well compl er sand plac pelow grade.	ned with a 11 Indicates sam ule 40, thread eted to grounded in annulus Annulus are stick-up cas	.7 eV po ple sent ded, flu d surfac around und well ing ceme	rtable HNu photoionization de to laboratory for additiona sh-jointed, 10-slot PVC scree e with Z-inch, schedule 40, well from 15 to 3 feet below backfilled with auger spoils ted in place.	etector for l analysis. en set at a threaded, f grade. Be a from 2 to	pproximat lush-joir ntonite s	ely 15 ited, s eal pl	fer ioli ace	et d PVC d from e.	
ra	tifi	cation	lines	represent a		undaries	well from 15 to 3 feet below backfilled with auger spoils nted in place. between soil types, transit Fluctuations of groundwater						dings

BORING NO. MW-7

G:	ZA GE	OENVI	RONMENTA nd Scien	AL, INC.			141 Danbury Road	_			ORING NO.	
20 Ti	04 Sp rumb(203)	ring ill c 268-0	Hill Ros onnection 308	ad cut 06611		_	Wilton, Connecticut	_		F	HKD. BY:	50642
Boi	ring	Co.	GZA Dr	illing	ту	pe	CASING SAMPLER 4 1/4" HSA Split Spoon	GROUN	DWATER	RE	AD I NGS	
701	remar		AL Aug	ustine	1.	D./O.D.	1 3/8"/ 2" Date	Time	Depti	h	Casing	Stab. Time
IZ/	A Rep		ClareA	nn Walsh	На	mmer Wt.	140 lbs. 5/30/92	***	7.8		15.0'	0 hrs.
Da	te St	art	5/30/	92 End 5	/30/92 Ha	mmer Fat	30 in.					
18	.Elev			_ Datum	Ot	her						
.00	oatio	n								П		
D.	СВ		Se	ample Inform	nation			04		R	Equ	ipment
H	CASNG	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	SAMPLE DESCRIPTION & CLASSIFICATION	Stra Descri		REEKO		talled ount cover
		S-1	24/0	0-2.0	6-10-14-11	0.7	Medium dense, brown, fine to coarse SAND (auger spoils).	FINE	то	1		Auger
							coarse SAND (auger spoits).	.COA		П		Spoils
								2,0'		П		Bentonit Seal
										П		
		8-2	24/8	4.0-6.0	2-2-3-4	0.8	Loose, black-brown, fine SAND and SILT, trace Clay.	£11		П		Riser
- 5							SILT, trace Clay.	SAI	ID	П	Н	
		8-3	24/8	6.0-8.0	2-2-2-3	0.9*	Loose, black, fine SAND and SILT, little Clay, trace coarse Sand.			П	H	
										2	H	
		s-4	24/8	8.0-10.0	5-5-1-10	0.8	Loose, black, fine SAND and SILT, little Clay, trace coarse Sand.			П	\mathbf{H}	
1							SILT, little Clay, trace coarse Sand.			П	III H	Screen
10		8-5	24/10	10.0-12.0	8-11-15-3	0.8	Medium dense, black-brown, fine to coarse SAND, trace fine rounded	10.0'	8-	11	-H	7
							Gravel.			П	H	8
								FINE		П	H	M
1.								COAR		П	H	- Sand
										П	H	0
.5		s-6	24/10	15.0-17.0	8-15-12-10	0.7	Medium dense, brown, fine to coarse SAND, trace fine rounded Gravel,			П		
							trace Organic matter.			إرا		
								17.0		3		
								E.O.	в.	П		
202							· V			Н		
30							r _i			П		_
										П		
										П		
								1		Н		
										П		
25										П		-
										П		
										П		
										П		
-	1.	Soil	samples	field scre	ened with a	11.7eV p	ortable MNu photoionization detector fo	or volatí	e orga	nic	1	
E M	2.						ortable NNu photoionization detector for to laboratory for additional analysis					
٨	3.	10 fe	et of 2	-inch, sche- Well comp	dule 40, thre leted to grou	aded, flo nd surfa	ush-jointed, 10-slot PVC screen set at ce with 2-inch, schedule 40, threaded, well from 15 to 3 feet below grade. I l backfilled with auger spoils from 2 cemented in place.	flush-jo	inted,	50	id PVC	
,		riser 3 to	. Filt 2 feet	er sand pla below grade	ced in annulu . Annulus ar	s around ound wel	well from 15 to 3 feet below grade. I backfilled with auger spoils from 2	Bentonite to 1 feet	seal p	gra	ed from	
		Well	capped	with a flus	h-mounted wel	l cover	cemented in place.			1		
tr	atif	icatio	n lines	represent	approximate b	oundarie	s between soil types, transitions may	be gradua	l. Wat	ter	level re	adings
the	e be	en mac	e at the	mes and und	ler conditions rements were	stated.	s between soil types, transitions may Fluctuations of groundwater may occu	r due to	factors			
-114	P			medad						B	ORING NO.	MW-8

			AL INC.			141 Danbury Road	_		BORING NO	OF 1
204 Sp Frumb (203)	268-0	Mill Ro onnecti 808	ad cut 06611			Wilton, Connecticut	_		FILE NO.	50642 JMB
oring oreman ZA Rep ate Si	n p.	Al Aug ClareA	ustine unn Walsh 92 End 5	I.I	pe D./O.D. mmer Wt. mmer Fal	CASING 2 3/4" Split Spoon 1 3/8"/ 2" Date 140 lbs.	GROUNDWAT	ER RE	Casing	Stab. Tin
S.Elev	٧.		Datum		her					
CASN	No.	Pen./	ample Inform	Blows/6"	Field Testing	SAMPLE DESCRIPTION & CLASSIFICATION	Stratum Descriptio	REMK®	Equ Ins	uipment stalled
G S	8-1	Red. 24/8	Depth (Ft.) 0-2.0	6-18-20-17	(ppm) ND*	Top 3": TOPSOIL.	TOPSOIL	1		
						Bottom 5": Brown, medium to fine SAND, some Rock Fragments.	0.25' FINE TO MEDIUM SAND			
	s-2	24/6	4.0-6.0	2-5-6-6	ND*	Loose brown, fine SAND, trace fine Gravel.	4.0' FINE SAND			
	s-3	24/4	6.0-8.0 8.0-10.0	4-5-7-15	ND	Medium dense, brown, fine to coarse SAND, trace Silt, trace fine Gravel.	6.0' FINE TO COARSE	2		
	3-4	64/4	8.0-10.0	11-13-20-20	ND	Dense, brown, fine to coarse SAND, little fine Gravel, trace Rock Fragments.	10.01	3		
							Ĕ.O.8.			
_										
_										
1.	Soil compo Sampl E.O.B	samples ounds (V e wet. . = End	field scree /OCs). "*" of Boring.	ened with a 10 Indicates samp	.2 eV po le sent	ortable HNu photoionization detector to laboratory for additional analys	for volatile or is.	ganic	1	
ratif	icatio	n lines de at ti	represent	approximate be	oundaries stated.	s between soil types, transitions ma fluctuations of groundwater may oc	y be gradual. V cur due to facto	later ors o	level re ther than	adings
ac b	esem	ac circ	time measa	rementes were i	aude.			B	ORING NO.	A-1

			7700001000	TAL, INC. entists			141 Danbury Road				BORING NO	
204 Tru (20	mbi (3)	oring Ill 268-	Hill Re Connect 0808	oad icut 06611		_	Wilton, Connecticut		_		PAGE 1 FILE NO. CHKD. BY	OF 1 50642 JMB
ori		Co.		rilling		/pe .D./O.D.	CASING SAMPLER 4 174" Split Spoon			DWATER F		
ZA				Ann Walsh		mmer Wt.	<u>1 3/8"/ 2"</u> 140 lbs.	Date	Time	Depth	Casing	Stab. Ti
ate	st	art	The Market St.	/92 End _		mmer Fal			-			
3.E	lev			Datum		her	4" HSA					
oca	_	n										_
C	B		9	ample Infor	mation	Y	SAMPLE		Stra	R	Equ	uipment
S N G	BLOWS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRIPTION & CLASSIFIC	CATION	Descrip	I M	Ins	stalled
H	_	S-1	24/8	0-2.0	6-13-13-12	ND	Top 4": TOPSOIL. Bottom 4": Brown, medium SAN	ID and	TOPSO	DIL 1	1	
E							ROCK FRAGMENTS.	io and	0.3'			
E		8-2	24/6	4.0-6.0	2-6-4-8	ND*	Loose, brown, medium to fine SAND, little Silt, trace coa Sand.	rse	FINE MEDIU SAND	JM		
H	_	8-3	24/10	6.0-8.0	2-4-5-4	ND						
Г				0.0	2434	- NU	No recovery.					
		S-4	24/10	8.0-10.0	20-4-19-15	1.4*	Top 4": Black CLAY and SILT. Middle 1": WOOD FIBER. Bottom 5": ROCK FRAGMENTS.		8.0' ORGANIC	SILT 2		
		8-5	24/8	10.0-12.0	22-16-15-14		Dense, grey, medium to fine SAND and ROCK FRAGMENTS.		10.0'	3		
_	-						SAND and ROCK FRAGMENTS.		MEDIUM SA	TO ND		
_	+								12.0' E.O.B			
-	+								81010	. 11		
_	1									- 11		
										- 11		
	1											
_	+	_	_									
-	+	_										
_	+					_				- 11		
	+			-								
	I									- 11		
	1											
_	+	_										
_	+	-	-									
-	+	-	_	_								
_	t	\neg										
1.	80	oil s ompou	amples nds (VO	field screen	ned with a 10. Indicates samp	2 eV por ole sent	table HNu photoionization det to laboratory for additional	ector for analysis.	volatile	organic		
3:	E.	.0.8.	= End	of Boring.								
tíf be	fic	ation made	lines at time	represent a	pproximate bou r conditions s ements were ma	ndaries tated.	between soil types, transitio Fluctuations of groundwater π	ons may be	gradual. jue to fac	Water I	evel read	lings
	100		5.15	medoul (merica Here ma	we.					ING NO.	

A	GEOEN	IRON	MENTAL Scient	, INC.
93	neers	and	Scient	ists

141 Danbury Road

BORING NO. B-3

PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB

204 Spring Hill Road Trumbull, Connecticut 06611 03) 268-0808

Wilton, Connecticut

		00	674 De-	Illing	ту	De.	CASING 2%" HSA	SAMPLER Split Spoon		GROUN	DWATER	RE/	DINGS	,
	ing eman			illing Lman		D./O.D.	EA HAN	1 3/8"/ 2"	Date	Time	Depth	T	Casing	Stab. Time
				e, P. Crox		mmer Wt.		140 lbs.	6/13/92		8.0'	7	8.0'	0 hrs.
	Rep			22 End _6		mmer Fall		30 in.						
1 ,	e St Elev		6/13/1	_ Datum		her								
1	atio		See Pla											
_			No. of Contrast of	mple Infor	mation			CAMPI E		Stra	tim	REM	Equ	uipment stalled
	BLOWS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRI	SAMPLE PTION & CLASSII	FICATION	100000	iption	MK8		None
1		s-1	24/14	0-2.0	3-2-7-15	1/0.8	Loose, brow and fine to Silt.	n, fine to coar coarse GRAVEL	se SAND , little	0.3'	OIL	1		
	_													
١,		8-2	24/10	2.0-4.0	12-19-24-29	0.4/0.6	Dense, brow and fine to Silt.	n, fine to coa coarse GRAVEL	rse SAND , little	COA	ND			
-										GRA	VEL			
4	_	s-3	24/16	4.0-6.0	16-20-44-66	0.2/0.6	Very dense, SAND and fi little Silt	brown, fine to ne to coarse G	coarse RAVEL,					
j												Ш		
5		s-4	24/21	6.0-8.0	29-26-26-40	0.4/0.6		own, fine to co coarse GRAVEL		6.3'		1		
. 7							Bottom 18": SAND, Littl	Brown, fine to le Silt.	o medium	MED	E TO IUM ND			
8		s-5	24/15	8.0-10.0	20-19-16-13	0.2/0.6	Dense, brow and fine to Silt.	n, fine to coa coarse GRAVEL	rse SAND , little		E TO	2		,
?										SAND	RSE AND VEL			
Ö										10.0′ E.C		3		
11														
12														
3														
14														
1										- UU M-	dal OI-	104		

Soil samples field screened for volatile organic compounds with an 11.7 eV portable HNu Model PI-101 photoionization detector. 1/0.8 = meter response of sample/meter reponse of background conditions. ppm = parts per million.
Sample wet at approximately 8 feet below grade.

2.

Boring ended at approximately 10 feet below grade. E.O.B. = End of Boring.

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

·'A	GEOEN	/IRO	MENTAL,	INC.
19	neers	and	Scient:	sts

141 Danbury Road

BORING NO. B-4

PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB

204 Spring Hill Road umbull, Connecticut 06611 :03) 268-0808

Wilton, Connecticut

CASING SAMPLER GROUNDWATER READINGS GZA Drilling Type 2%" HSA Split Spoon Boring Co. Stab. Time Time Depth Casing Date I.D./O.D. 1 3/8"/ 2" f 'eman Ron Holman 140 lbs. L. McKee, P. Crowell Hammer Wt. GZA Rep. 30 in. :e Start 6/13/92 End 6/13/92 Hammer Fall ____ Datum____ Other " .Elev.

ati		See Pla	_ Datum_		circi				
		A CANADA TANDA	mple Infor	mation				R	Equipment Installed
C B A C S W G S	No.	Pen./ Rec.	Depth (ft.)	Blows/6"	Field Testing (ppm)		Stratum Description	REMKS	None
	s-1	24/16	0-2.0	3-16-18-21	0.6/0.6	Top 6": Brown to black TOPSOIL.	TOPSOIL	1	
						Top 6": Brown to black TOPSOIL. Bottom 10": Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt.	0.5'		
							FINE TO COARSE SAND AND GRAVEL		
_	s-2	6/6	4.0-4.5	64-10/0"	NS	Very dense, fine to coarse SAND and fine to coarse GRAVEL, little Silt.			
	8-3	0/0	5.0	10/0"	NS	No recovery.	5.0' E.O.B.	2	
								П	,
								П	
	-								
	-								
_	+	_							

Soil samples field screened for volatile organic compounds with an 11.7 eV portable HNu Model PI-101 photoionization detector. 1/0.8 = meter response of sample/meter reponse of background conditions. ppm = parts per million.

Boring ended at approximately 5 feet below grade due to auger and spoon refusal. E.O.B. = End of Boring. NS = No sample

2.

Atratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

2 T	04 S	pring ull,	Hill R	oad icut 06611	1		Wilton, Connecticut				PAGE 1 FILE NO. CHKD. BYT	0F 1 50642
(203)	268-	808				#1(ton, Connecticut				CHKD. BY:	ЈМВ
01	ring	Co.	GZA D	rilling		Гуре	CASING SAMPLER		GROUN	DWATER RE	ADINGS	
	remar		Ron H			.D./O.D.	2%" HSA Split Spoon 1 3/8"/ 2"	Date	Time	Donth	Cooles	Tax-1
Z	Rep	٥.	L. Mc	Kee, P. Cro		lammer Wt.	THE RESERVE OF THE PARTY OF THE	6/13/92	111110	Depth 8.0'	Casing 8.0'	Stab. Tir
1	te St	tart	6/13	/92 End _	6/13/92 H	lammer Fat		0,10,72		0.0	0.0	0 hrs.
i.	Elev	/·		Datum_		ther						
-	atio		See p	an (4 feet	east of B-4)							
	CB		S	ample Info	rmation					R	Equ	ipment
	BLOWS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRIPTION & CLASSI	FICATION	Stra Descri	M		vipment stalled None
		8-1	24/14	4.0-6.0	22-27-42-22	0.4/0.4	Very dense, brown, fine to SAND and fine to coarse GR little Silt.	coarse	SEI B-4			
							little Silt.	AVEL,				
		s-2	24/18	6.0-8.0	18-16-15-16	0.6/0.4	Dense, brown, fine to coar and fine GRAVEL, little Si	ge SAND lt.	FINE COARS SAND AND GRAVE	E		
		s-3	24/14	8.0-10.0	14-15-21-30		Dense, brown, fine to coars and fine to coarse GRAVEL, Silt, trace Organics.	e SAND little		2		
									10.0' E.O.B	. 3		
_												
										- 11		
_												
T NM							nic compounds with an 11.7 onse of sample/meter repons ade. E.O.B. = End of Boris		Nu Model und condi	PI-101 tions.		

BORING NO. B-4A

GZA GEOENVIRONMENTAL, INC.

ZA G	EOENVI	RONMENT.	AL, INC. ntists			141 Danbury Road				ORING NO	200
204 S Frumb (203)	pring bull c 268-0	Hill Ro onnecti 808	ad cut 06611			Wilton, Connecticut			- 1	PAGE 1 FILE NO.	OF 1 50642 JMB
oring		67A De	dilia.			CASING SAMPLER	GRO	UNDWATER	RE	ADINGS	
orema			illing Iman		ype .D./O.D.	2%" HSA Split Spoon 1 3/8"/ 2" Da	te Time	Dept	h	Casing	Stab. Tim
ZA Re	p.	L. Mak	ee, P. Cro	10.7515	ammer Wt.	140 lbs. 6/13		8.0		8.0'	0 hrs.
ate S	tart		92 End _		ammer Fal	30 in.					
3.Ele		T. C. C. C.	Datum		ther			_	_		
cati		See pl	ample Info	rmation					R	Equ	ipment
CASNG	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	SAMPLE DESCRIPTION & CLASSIFICATION		ratum ription	RHEXX		ipment talled None
	8-1	24/4	0-2.0	1-2-14-24	0.4/0.4	Top 2": Brown to black TOPSOIL.	то	PSOIL	1		
1						Top 2": Brown to black TOPSOIL. Bottom 2": Brown, medium to coars SAND and fine to coarse GRAVEL, trace Silt.	0.2		Ш		
-	-					N. 30 (1977)			П		
-	8-2	12/12	2.0-3.0	13-56	0.4/0.4	Very dense, brown, fine to coarse	,		Ш		
						Very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt.			П		
_							C	NE TO NARSE	П		
-	s-3	24/14	4.0-6.0	16-30-34-34	0.4/0.4	Very dense, brown, fine to coarse		AND AND AVEL	П		
	-				********	Very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt.	1 "		П		
									П		
_	-	27.440		70.00 /0.57	0.110.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			П		
-	s-4	24/19	6.0-8.0	32-28-60-53	0.4/0.4	Very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt.			П		
									П		
									2		
-	8-5	24/14	8.0-10.0	12-17-19-18	0.2/0.2	Dense, brown, fine to medium SAND little fine to coarse Gravel,		16 TO			
\vdash	+	-				little Silt.	l co	NE TO ARSE AND	П		
							10.0	о.в.			
-	-								П		
-	-								П		
									П		
									П		
_	-	_							П		
\vdash	-								П		
									Ш		
1.	sampl Borin	parts e wet a g ended	per millio t approxim at approx	n. ately 8 feet b imately 10 fee	pelow gradet below (nic compounds with an 11.7 eV por conse of sample/meter reponse of b de. prade. E.O.B. = End of Boring.					dines
ratio	fication	on lines de at ti	represent mes and un time meas	approximate der condition urements were	boundarie s stated. made.	s between soil types, transitions Fluctuations of groundwater may	may be grad occur due t	ual. Wat o factors	ter ot	level re	adings

BORING NO. B-5

G	ZA G	EOENVI	RONMENT	AL, INC.			141 Danbury Road		_			ORING NO	
7	04 s rumb 203)	pring uli 268-0	Hill Ro connecti 808	ad cut 06611	1	_	Wilton, Connecticut		_		-	PAGE 1 TLE NO.	OF 1 50642 JMB
Во	ring	Co.				ype	CASING SAMPLER 2%" HSA Split Spoon		GROUN	DWATER	RE	ADINGS	
	rema		Ron Ho			.D./O.D.	1 3/8"/ 2"	Date	Time	Dept	h	Casing	Stab. Time
77	A Re		THE STREET	ee, P. Cro	70.000	ammer Wt.		6/13/92		8.5		8.0'	0 hrs.
		tart	6/13/	92 End		ammer Fal	1 30 in.				_		
	.Ele	199			0	ther					_		
-	catí	_	See pl								-		
E	AL	-	T -	ample Info I	rmation	Field	SAMPLE		Stra	tum	RE	Equ	ripment stalled
DEPTH	CASNGS	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)			Descri	ption	XXS		None
		8-1	24/15	0-2.0	6-13-15-27	0.6/0.6	Top 4": Brown to black TOPS	OIL.	TOPS	DIL	1		
١,							Top 4": Brown to black TOPS Bottom 11": Brown, fine to SAND and fine to coarse GRA little Silt.	VEL,	0.3'		Ш		
	_	_									П		
2	_	-									П		
	-	-									П		
3	\vdash	-									П		
	-	-									Н		
4	_	s-2	24/15	4.0-6.0	22-27-61-61	0.4/0.8	Very dense brown fine to		FINE	TO	П		
	\vdash	-	647.15	410 010	25 21 01 01	0.470.0	Very dense, brown, fine to a SAND and fine to coarse GRAN little Silt.	VEL,	SAN	D	П		
5									GRAV	EL			-
,													
6		s-3	24/20	6.0-8.0	50-34-44-46	0.6/0.8	Very dense, brown, fine to d	coarse					
7							Very dense, brown, fine to a SAND and fine to coarse GRAV little Silt.	ÆL,					
,													12
8								6					
		8-4	24/16	8.0-10.0	26-50-41-19	0.6/0.8	Very dense, brown, fine to o SAND and fine to coarse GRAV	coarse /EL,			S		
9	_	_					little Silt.						
	_												
10	-								10.01	_	3		-
	_								10.0' E.O.	3.	1		
11	_										1		
											1		
12													
13											1		-
13													
14													
_													
REMARKS	1. 2. 3.	Soil photo ppm = Sample Borin	samples ionizat parts e wet a g ended	field scre ion detect per million approximat at approxi	mened for vola or. 1/0.8 = m n. ately 8.5 feet imately 10 fee	tile orga eter resp below gr t below g	nic compounds with an 11.7 e conse of sample/meter reponse ade. rade. E.O.B. = End of Borin	V portable of backgro	HNu Mode ound cond	l PI-10 itions.			
Str	atif	icatio en mad	n lines e at ti	represent mes and un	approximate b	oundaries stated.	between soil types, transit fluctuations of groundwater	ions may be	gradual due to f	. Wate	er	level rea	dings

BORING NO. B-6

GZA GEOENVIRONMENTAL, INC. Engineers and Scientists BORING NO._B-7 141 Danbury Road PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB 204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808 Wilton, Connecticut CASING SAMPLER GROUNDWATER READINGS Boring Co. GZA Drilling Type Z¼" HSA Split Spoon Foreman Ron Holman I.D./O.D. 1 3/8"/ 2" Date Time Casing Depth Stab. Time GZA Rep. L. McKee, P. Crowell Hammer Wt. 140 lbs. 6/13/92 ... 8.54 8.0 0 hrs. Date Start 6/13/92 End 6/13/92 Hammer Fall _____30 in. GS.Elev. ___ Datum__ Other Location See plan В Sample Information REMKS Equipment ASSE S DESCRIPTION & CLASSIFICATION Stratum Installed Field H No. Pen./ Depth (Ft.) Blows/6" Testing Description Rec. (ppm) None Top 10": Brown to black TOPSOIL, little fine to coarse Gravel. Bottom 6": Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt. 8-1 24/16 0-2.0 6-10-18-27 0.8/0.8 TOPSOIL 0.8 8-2 24/18 0.8/0.8 Dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt. 4.0-6.0 20-26-23-25 FINE TO COARSE GRAVEL 5-3 24/15 6.0-8.0 25-31-38-39 0.8/1.0 Very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt. 5-4 24/15 8.0-10.0 21-15-13-24 Medium dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt. 0.8/1.0 10 10.04 E.O.B. 12 1 13 14 Soil samples field screened for volatile organic compounds with an 11.7 eV portable HNu Model PI-101 photoionization detector. 1/0.8 = meter response of sample/meter reponse of background conditions. ppm = parts per million.

Sample wet at approximately 8.5 feet below grade.

Boring ended at approximately 10 feet below grade. E.O.B. = End of Boring. 3: CRKS

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

GZA.	GEOEN'	IRON	MENTAL	, INC.
Engi	neers	and	Scient	ists

141 Danbury Road

BORING NO. B-8

BORING NO. B-8

204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808

Wilton, Connecticut

PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB

rin	g Co.	GZA D	rilling		Туре	2%" HSA	SAMPLER Split Spoon	GROUNDWATER READINGS					
rem	an	Ron H	olman		I.D./O.D.		1 3/8"/ 2"	Date	Time	Dept	h	Casing	Stab. T
A R	ep.	L. Mc	Kee, P. Cr	owell	Hammer Wt.		140 lbs.	6/13/92	4.447.400			0 hrs	
e	Start	6/13/	/92 End	6/13/92	dammer Fat		30 in.					0.0	O mrs
.El	ev.		Datum_		Other								
cat	ion	See pl	an								\dashv		
ç	В	8	ample Info	rmation					_		T _a	For	irmant
CASNG	W No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing	DESCRIP	SAMPLE TION & CLASSIF	ICATION	Stra Descri		REMKS	Ins	ipment
-	8-1	24/12	-	4-8-26-24	(ppm)	W 10					ŝ	!	lone
-	-	24/16	0-2.0	4-0-20-24	0.8/0.8	ORGANICS.	n TOPSOIL and		TOPS	DIL	1		
_	-	-				fine to coar	ight grey, tan se SAND, some l, little Silt	brown,	0.8		П		
-	_	-				coarse Grave	l, little Silt.				П		
_	-								1		П		
_	-	_											
_	-												
_	_												
									FINE	SE			
_	8-2	24/10	4.0-6.0	26-48-49-37	0.8/0.8	Very dense, b	rown, grey, or	ange,	SAN	,			
						fine to coars coarse GRAVEL	e SAND and fin trace Silt.	e to	GRAV				
П											П		
_	8-3	24/17	6.0-8.0	37-22-50-34	0.8/0.8	Ton 9" - Brown	fine to com	co PAUD			1		
_					*10,010	and fine to c	, fine to coar coarse GRAVEL,	trace		-	1		
_						Bottom 8": Or	ange to brown, fine to coarse e Silt.	fine	6.8				
					-	aravel, littl	e Silt.		FINE				
-	8-4	24/18	8.0-10.0	14-9-9-15	0.040.0								
-	15 4	24/10	0.0-10.0	14-9-9-15	0.8/0.8	oarse SAND a	brown, fine to nd fine to coa e Silt.	rse	8.0'		2		
-	_	_				RAVEL, LITTL	e Silt.		FINE	E O			
_	-								SAND A	ND	ı		
_	-								- GRATE		,		
_									10.0' E.O.B		1		
_						×			E.O.B				
										1			
1.	2011										L		
	photo	onizati	on detecto	ened for vola or. 1/0.8 = m	tile organ eter respo	ic compounds nse of sample	with an 11.7 e /meter reponse	V portable	HNu Model	PI-10	1		
:	Sample	parts p	er million				= End of Borin	J. Davingi V	avirai				

tratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings gave been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

GZA GEOENVIRONMENTAL, INC. Engineers and Scientists BORING NO. 8-9 141 Danbury Road PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB 204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808 Wilton, Connecticut CASING SAMPLER GROUNDWATER READINGS Boring Co. GZA Drilling Type 2%" HSA Split Spoon Foreman Ron Holman I.D./O.D. Depth 1 3/8"/ 2" Date Time Casing Stab. Time GZA Rep. L. McKee, P. Crowell Hammer Wt. ____140 lbs. 6/13/92 ... 9.01 8.0 0 hrs. Date Start __6/13/92__ End _6/13/92 Hammer Fall ______30 in. GS.Elev. __ Datum__ Other Location See plan CASSG Sample Information Equipment Installed DESCRIPTION & CLASSIFICATION Stratum Field No. Pen./ (Ft.) Blows/6" Testing Description H Rec. (ppm) None Top 4": Brown to black TOPSOIL. Bottom 12": Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt. 5-1 24/16 0-2.0 3-6-8-12 0.6/0.6 TOPSOIL 0.37 8-2 24/16 Dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt. 2.0-4.0 16-20-17-17 0.6/0.6 FINE TO COARSE SAND Dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt. 8-3 24/18 4.0-6.0 23-22-29-30 0.6/0.6 AND GRAVEL Very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace Silt. 5-4 24/16 6.0-8.0 44-37-54-50 0.6/0.6 Top 6": Grey, fine SAND, some fine to coarse Gravel, little Sitt. Bottom 12": Brown, fine to coarse SAND, trace Silt. 5=5 24/18 8.0-10.0 21-13-12-12 0.2/0.6 8.0' FINE SAND 0.4/0.6 FINE TO COARSE SAND 10.0' E.O.B. 12 13 14 Soil samples field screened for volatile organic compounds with an 11.7 eV portable HNu Model PI-101 photoionization detector. 1/0.8 = meter response of sample/meter reponse of background conditions. ppm = parts per million.
Sample wet at approximately 9 feet below grade.
Boring ended at approximately 10 feet below grade. E.O.B. = End of Boring. 3: ARKS Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

BORING NO. B-9

GZA GEOENVIRONMENTAL, INC. Engineers and Scientists BORING NO. B-10 141 Danbury Road PAGE 1 OF FILE NO. 50642 CHKD. BY: JMB 204 Spring Hill Road Trumbull, Connecticut 06611 (203) 268-0808 Wilton, Connecticut CASING SAMPLER GROUNDWATER READINGS _GZA Drilling Boring Co. Type 2%" NSA Split Spoon Foreman Ron Holman I.D./O.D. 1 3/8"/ 2" Date Time Depth Casing Stab. Time L. McKee, P. Crowell GZA Rep. Hammer Wt. 140 lbs. 6/13/92 ---6.5 4.01 0 hrs. Date Start __6/13/92 End _6/13/92 Hammer Fall 30 in. GS.Elev. ___ Datum____ Other Location See plan CASWS Sample Information Equipment Installed DESCRIPTION & CLASSIFICATION Stratum Field No. Pen./ Depth (Ft.) Blows/6" Testing Description Rec. (ppm) None 8-1 24/7 0-2.0 4-7-3-3 Top 4": Brown to black TOPSOIL. Bottom 3": Brown, fine to coarse SAND and fine to coarse GRAVEL, little Silt. 0.6/0.6 TOPSOIL 0.37 8-1A 24/3 2.0-4.0 0.6/0.6 7-8-7-7 Medium dense, brown, fine SAND, some fine to coarse Gravel, little Silt. 3 SAND (ORGANICS FROM 4-6') 5-2 24/2 4.0-6.0 Loose, brown to black, fine SAND, little fine Gravel, little organic Silt. 1-3-4-7 0.8/0.6 5-3 24/10 6.0-8.0 14-17-14-27 0.6/0.6 Dense, brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt. 6.01 FINE TO COARSE SAND 8 8.0 E.O.B. Soil samples field screened for volatile organic compounds with an 11.7 eV portable HNu Model PI-101 photoionization detector. 1/0.8 = meter response of sample/meter reponse of background conditions. ppm = parts per million.
Sample wet at approximately 6.5 feet below grade.
Boring ended at approximately 8 feet below grade. E.O.B. = End of Boring. R 3:

tratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings ave been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

				TAL, INC. entists			141 Dant	oury Road		_		BORING NO	
7	204 S (rumb (203)	pring ull, 268-	Hill Re Connect 0808	ond icut 0661	1		Wilton, Co	nnecticut				PAGE 1 FILE NO. CHKD. BY	50642 50842
Во	oring	co.		rilling		Туре	CASING 2%" HSA	SAMPLER Split Spoon		GROUN	DWATER R	EADINGS	
Fo	remai	n		olman		1.0./0.0.		1 3/8"/ 2"	Date	Time	Depth	Casing	Stab. T
32	A Re	p.	L. Mc	Kee, P. Cr	owell	Hammer Wt.		140 lbs.	6/13/92	***	10.0'	8.0'	0 hrs
a	te S	tart	6/13	/92 End .	6/13/92	dammer Fat	t	30 in.					
35	.Ele	٧.		Datum_		Other	-						
_	catio		See p	an									
Ī	C B		8	ample Info	rmation			200000			tum R	Equ	uipment
	CASNG	No.	Pen./ Rec.	Depth (Ft.)	Blows/6"	Field Testing (ppm)	DESCRI	SAMPLE PTION & CLASSIF	ICATION	Stra Descri	I M		uipment stalled None
		S-1	24/12	0.3-2.3	16-13-7-5	0.6/0.6	Medium dense	, brown, fine 8	SAND,	ASPH	_		
							Some fine Gr (Black Organ	e, brown, fine s ravel, trace Sil nic Silt in tip	of	0.3'			
1							spoon).	Anna September 1985 California	15/6/	12.02			
							1			4			
2													
3										FINE	TO		
										SAN	0		
4		8-2	24/2	4.0-6.0	17-14-21-19	0.4/0.6	Dense, brown	, coarse GRAVEL		GRAV (ORGA	EL		
		-						, course annue		SIL AT 2	: II		
5										AI C	' []		
5		8-3	24/14	6.0-8.0	22-31-30-27	0.6/0.6	Vary dance	brown fine to					
,						0.070.0	SAND and fine trace Silt.	brown, fine to e to coarse GRA	VEL,		- 11		
,													
ŀ		8-4	24/16	8.0-10.0	42-45-30-20	0.4/0.6	Top 8": Grey, GRAVEL, some	fine to coarse	e ce		2		
'							SILT.	range to brown, ND, some fine Gr					
1										10.0' E.O.B	3		
ŀ	\dashv		_							6.0.0	. 11		
ļ													
-	-												
ŀ													
Ė													
F													
1											- 11		

Sample wet at approximately 10 feet below grade.
Boring ended at approximately 10 feet below grade. E.O.B. = End of Boring.

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to factors other than those present at the time measurements were made.

TABLE 1
GROUNDWATER ELEVATION DATA: 11/2/93
141 DANBURY ROAD
WILTON, CONNECTICUT

LOCATION	REFERENCE ELEVATION	DEPTH TO WATER (FT)	WATER TABLE ELEVATION
MW-1	99.14	12.60	86.54
MW-2	100.57	14.33	86.24
MW-3	98.56	12.18	86.38
MW-4	96.24	10.51	85.73
MW-5	94.53	9.24	85.29
MW-6	96.43	11.35	85.08
MW-7	94.73	9.75	84.98
MW-8	88.89	4.00	84.89

NOTES:

 Reference elevation: are top of PVC monitor wells based on relative difference to an arbitrary benchmark established on center of a manhole cover along the eastern property line which was assumed to be 100 feet above mean sea level.

APPENDIX C

Project No. **F0173-002**

Date: **05/07/21**Prepared By: **TAS**

141 Danbury Road Wilton, CT Existing CN & Tc Worksheet

Name: EX-WS-01
Location: Southern Site

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	1.932	98	189.314
Landscaped and Lawns	0.872	69	60.183
			249.497

Total Area: _____2.804 ____ CN: ____ 89

Time of Concentration:

	Sheet-Flow Travel Time										
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)						
A-B	0.24	3.54	100	0.015	15.2						

Shallow Concentrated Flow Travel Time										
Segment ID	Cover	Flow Length (ft)	Slope (ft/ft)	V (ft/s)	Time (min)					
B-C	Paved	580	0.020	2.87	3.4					

Total Tc (min) = ____18.6

Name: EX-WS-02
Location: Northern Site

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.059	98	5.739
Landscaped and Lawns	1.040	69	71.728
			77.467

Total Area: 1.098 CN: 71

Time of Concentration:

	Sheet-Flow Travel Time									
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)					
A-B	0.24	3.54	130	0.035	13.4					

Shallow Concentrated Flow Travel Time										
Segment ID Cover Flow Length (ft) Slope (ft/ft) V (ft/s) Time (min)										
B-C	Unpaved	410	0.020	2.28	3.0					

Total Tc (min) = _____16.4

References: NRCS Technical Release 55 ConnDOT Drainage Manual, Chapter 6 Project No. **F0173-002** Date: **05/07/21**

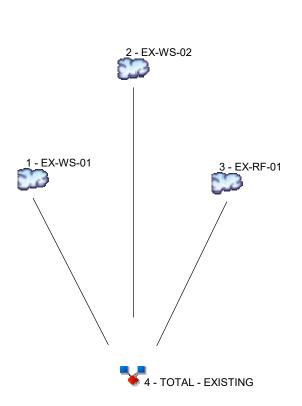
Prepared By: TAS

141 Danbury Road Wilton, CT Existing CN & Tc Worksheet

Name: EX-RF-01
Location: Existing Building

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.775	98	75.932
Landscaped and Lawns	0.000	69	0.000
			75.932

Total Area: 0.775 CN: 98


Time of Concentration:

Sheet-Flow Travel Time										
Segment ID	Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)									
A-B	0.015	3.54	60	0.015	1.1					

Total Tc (min) = 1.1

Minimum Tc = 5.0

Watershed Model Schematic, Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	EX-WS-01
2	SCS Runoff	EX-WS-02
3	SCS Runoff	EX-RF-01
4	Combine	TOTAL - EXISTING

Project: F0173-02 Hydrographs - Existing.gpw

Monday, 05 / 24 / 2021

Hydrograph Return Period Recap Hydraffow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

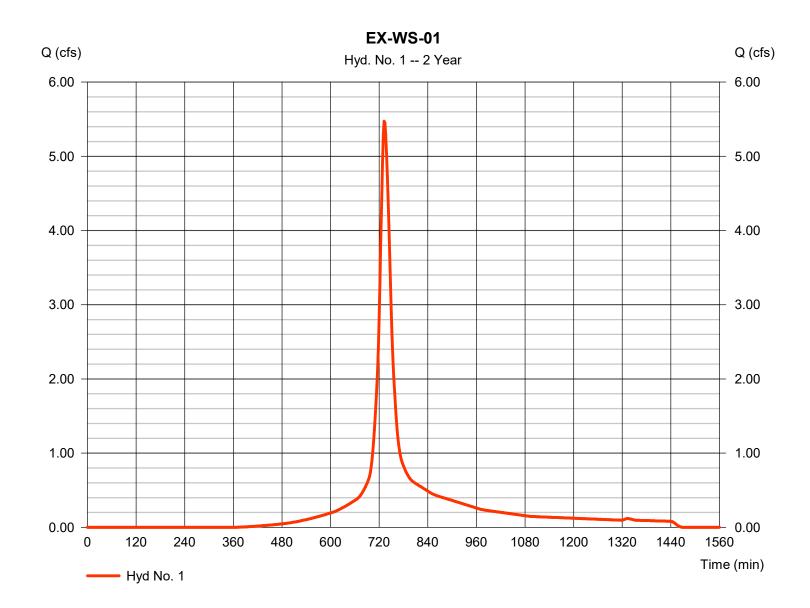
	Hydrograph	Inflow				Hydrograph					
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			5.474			9.316	11.72	13.50	15.39	EX-WS-01
2	SCS Runoff			0.975			2.287	3.202	3.910	4.680	EX-WS-02
3	SCS Runoff			2.573			3.949	4.812	5.454	6.139	EX-RF-01
4	Combine	1, 2, 3		7.662			13.50	17.25	20.05	23.05	TOTAL - EXISTING

Proj. file: F0173-02 Hydrographs - Existing.gpw

Monday, 05 / 24 / 2021

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.474	2	732	24,369				EX-WS-01
2	SCS Runoff	0.975	2	732	4,233				EX-WS-02
3	SCS Runoff	2.573	2	724	8,720				EX-RF-01
4	Combine	7.662	2	730	37,453	1, 2, 3			TOTAL - EXISTING
 F01	F0173-02 Hydrographs - Existing.gpw					Period: 2 Ye	ear	Monday 05	5 / 24 / 2021

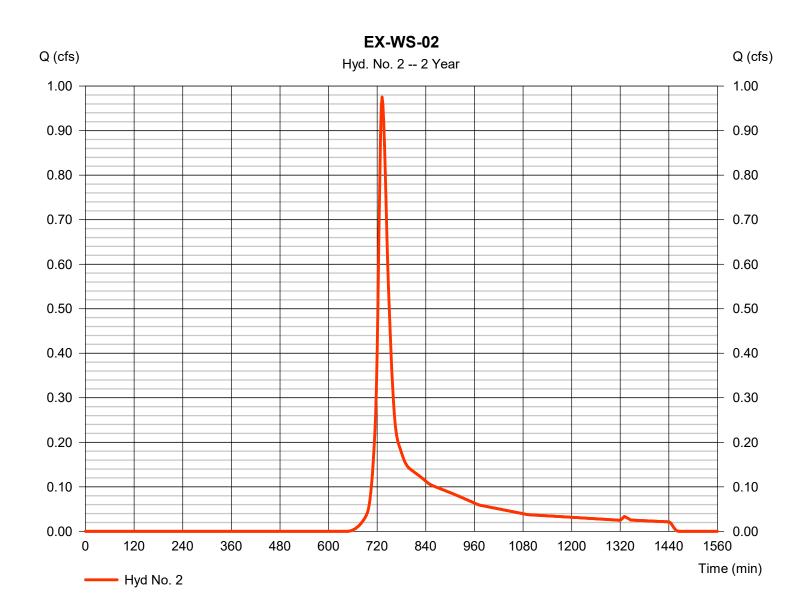

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 1

EX-WS-01

Hydrograph type = SCS Runoff Peak discharge = 5.474 cfsStorm frequency = 2 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 24,369 cuftDrainage area Curve number = 2.804 ac= 89 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 18.60 min = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

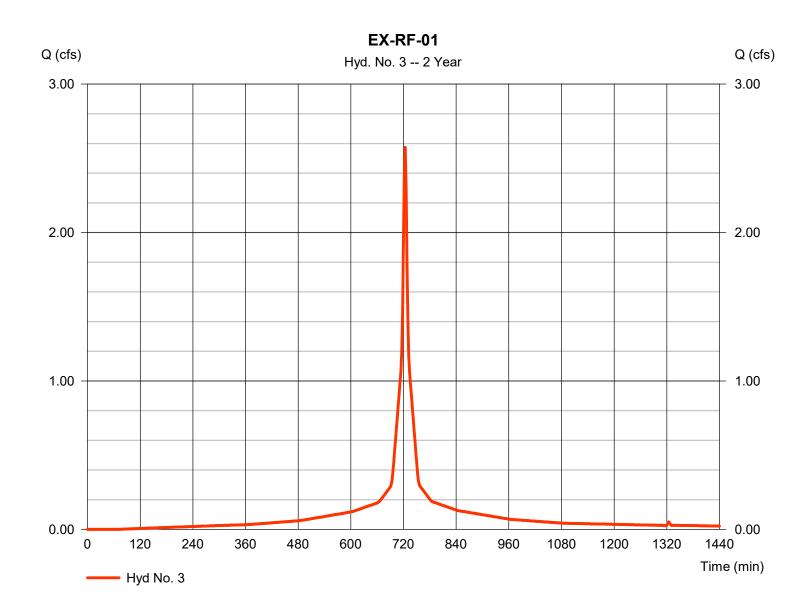

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 2

EX-WS-02

Hydrograph type = SCS Runoff Peak discharge = 0.975 cfsStorm frequency = 2 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 4,233 cuftDrainage area Curve number = 71 = 1.098 acHydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 16.40 min = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

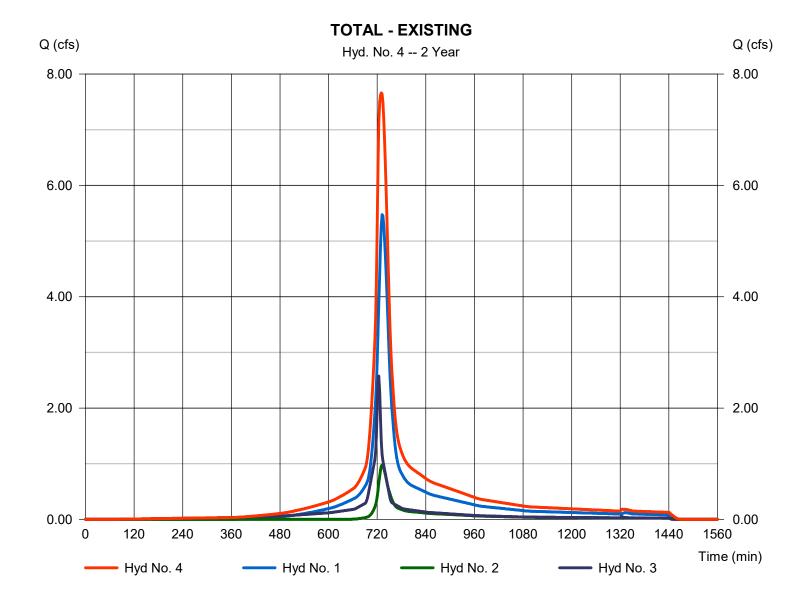

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 3

EX-RF-01

Hydrograph type = SCS Runoff Peak discharge = 2.573 cfsStorm frequency = 2 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 8,720 cuftDrainage area = 0.775 acCurve number = 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

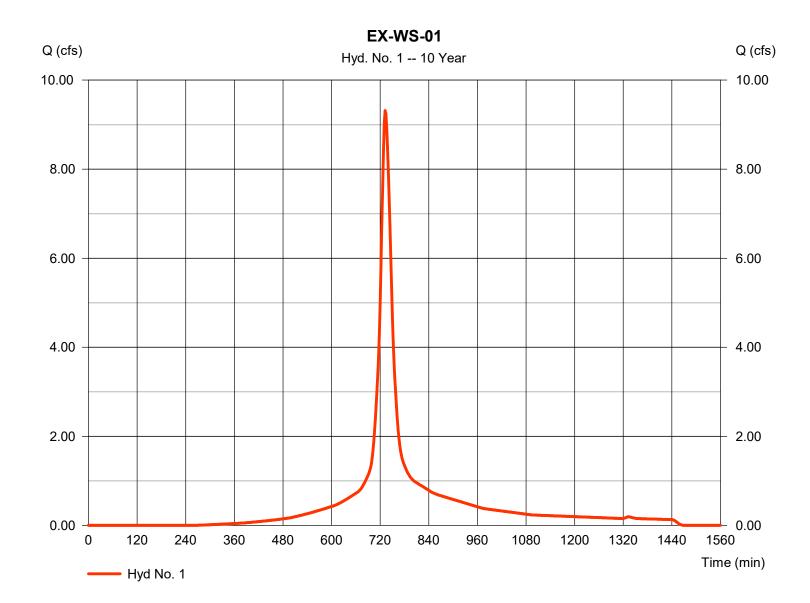
Hyd. No. 4

TOTAL - EXISTING

Hydrograph type = Combine Peak discharge = 7.662 cfsStorm frequency Time to peak = 2 yrs= 730 min Time interval = 2 min Hyd. volume = 37,453 cuftInflow hyds. = 1, 2, 3Contrib. drain. area = 4.677 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	9.316	2	732	42,301				EX-WS-01
2	SCS Runoff	2.287	2	732	9,417				EX-WS-02
3	SCS Runoff	3.949	2	724	13,616				EX-RF-01
	SCS Runoff Combine	3.949	2 2	724 730	13,616 65,561	1, 2, 3			EX-RF-01 TOTAL - EXISTING
F01	F0173-02 Hydrographs - Existing.gpw					Return Period: 10 Year			/ 24 / 2021

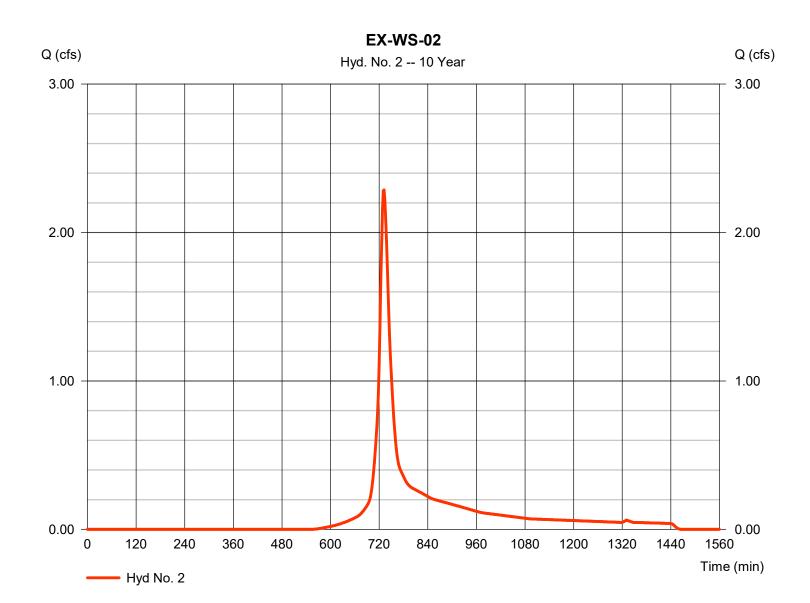

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 1

EX-WS-01

Hydrograph type = SCS Runoff Peak discharge = 9.316 cfsStorm frequency = 10 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 42,301 cuftDrainage area Curve number = 2.804 ac= 89 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 18.60 min = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

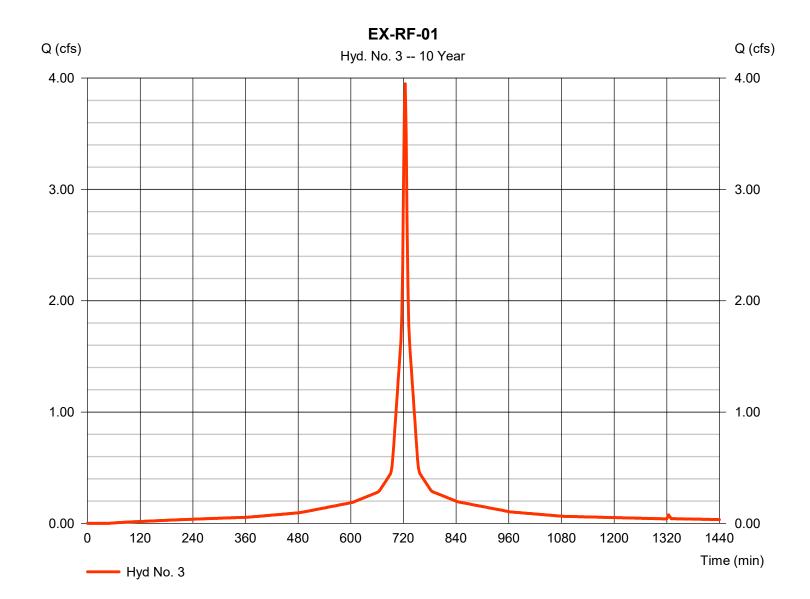

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 2

EX-WS-02

Hydrograph type = SCS Runoff Peak discharge = 2.287 cfsStorm frequency = 10 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 9.417 cuft Drainage area Curve number = 71 = 1.098 ac= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 16.40 min = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

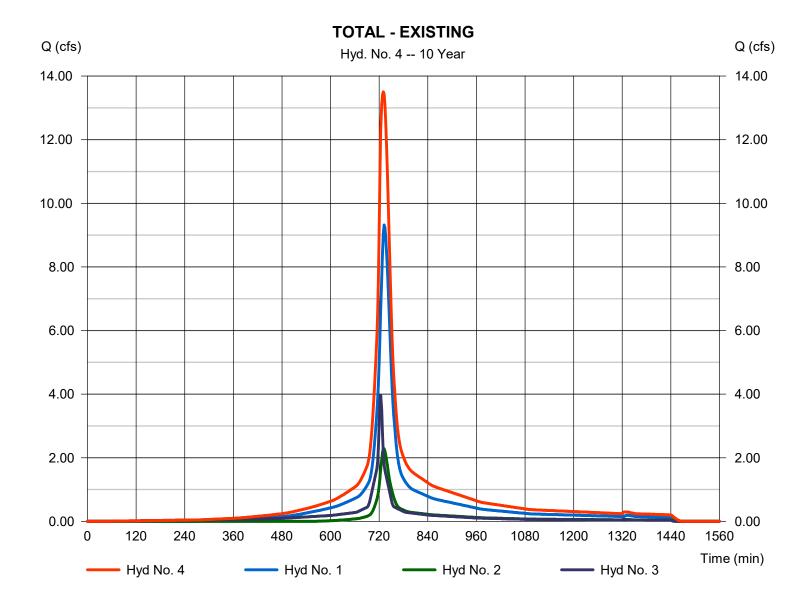

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 3

EX-RF-01

Hydrograph type = SCS Runoff Peak discharge = 3.949 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 13,616 cuft Drainage area Curve number = 0.775 ac= 98 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

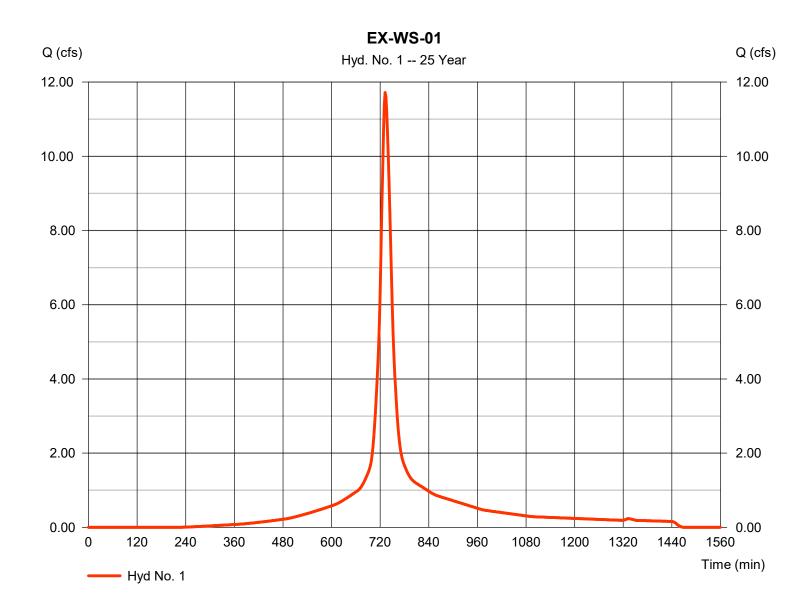
Hyd. No. 4

TOTAL - EXISTING

Hydrograph type = Combine Peak discharge = 13.50 cfsStorm frequency Time to peak = 10 yrs= 730 min Time interval = 2 min Hyd. volume = 65,561 cuft Inflow hyds. = 1, 2, 3Contrib. drain. area = 4.677 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	11.72	2	732	53,834				EX-WS-01
2	SCS Runoff	3.202	2	730	13,075				EX-WS-02
3	SCS Runoff	4.812	2	724	16,698				EX-RF-01
3 4	SCS Runoff Combine	4.812	2 2	724 730	16,698 83,894	1, 2, 3			EX-RF-01 TOTAL - EXISTING
EO	173-02 Hydrog	yraphe F	Evieting	NOW.	Paturn F	Period: 25 \	(ear	Monday Of	5 / 24 / 2021

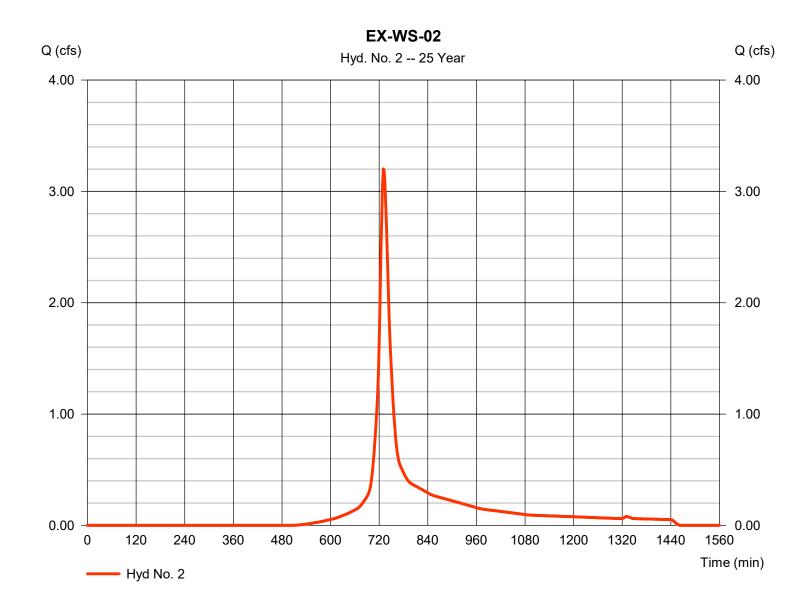

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 1

EX-WS-01

Hydrograph type = SCS Runoff Peak discharge = 11.72 cfsStorm frequency = 25 yrs Time to peak = 732 min Time interval = 2 min Hyd. volume = 53,834 cuft Drainage area Curve number = 2.804 ac= 89 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 18.60 min = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

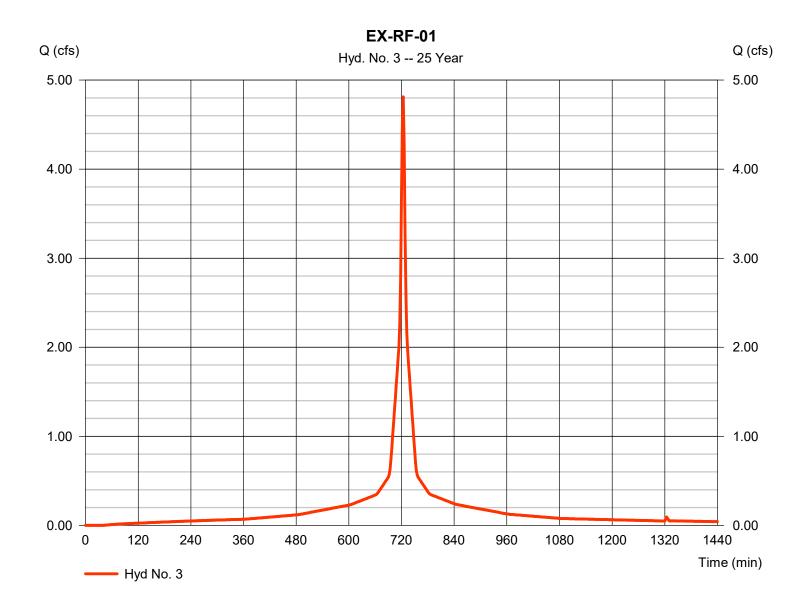

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 2

EX-WS-02

Hydrograph type = SCS Runoff Peak discharge = 3.202 cfsStorm frequency = 25 yrs Time to peak = 730 min Time interval = 2 min Hyd. volume = 13,075 cuftDrainage area Curve number = 1.098 ac= 71 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 16.40 min = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

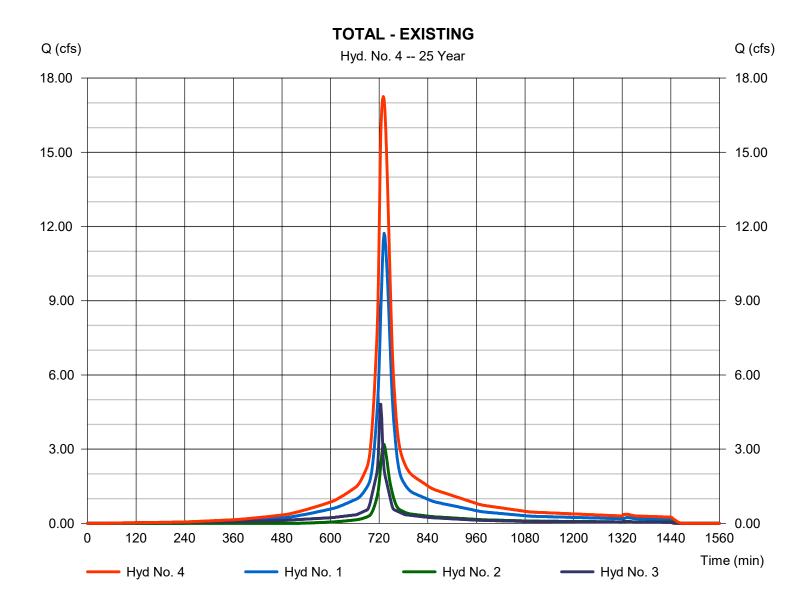

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 3

EX-RF-01

Hydrograph type = SCS Runoff Peak discharge = 4.812 cfsStorm frequency = 25 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 16,698 cuft Drainage area Curve number = 0.775 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

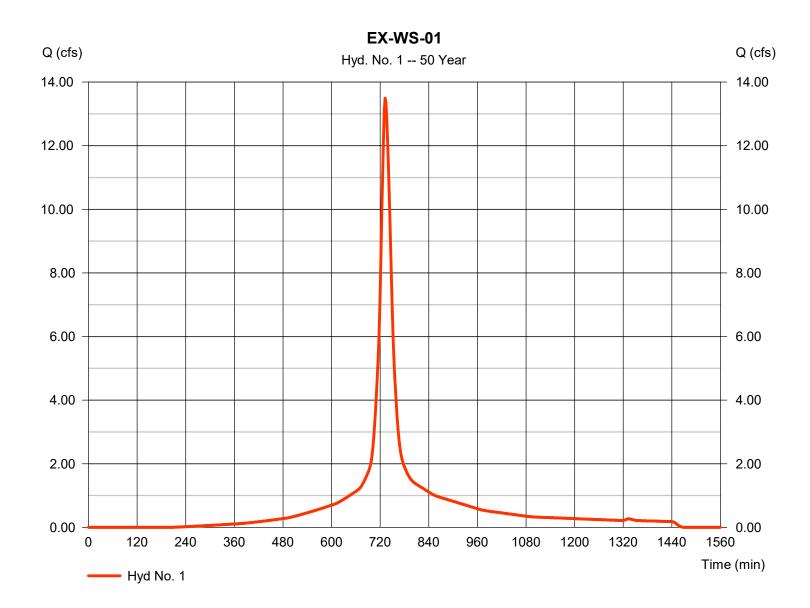
Hyd. No. 4

TOTAL - EXISTING

= 17.25 cfsHydrograph type = Combine Peak discharge Storm frequency Time to peak = 25 yrs= 730 min Time interval = 2 min Hyd. volume = 83,894 cuft Inflow hyds. = 1, 2, 3Contrib. drain. area = 4.677 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	13.50	2	732	62,477				EX-WS-01
2	SCS Runoff	3.910	2	730	15,920				EX-WS-02
3	SCS Runoff	5.454	2	724	18,991				EX-RF-01
	SCS Runoff Combine	5.454 20.05	2 2	724 730	18,991 97,722	1, 2, 3			EX-RF-01 TOTAL - EXISTING
F01	73-02 Hydro	graphs - E	Existing.g	gpw	Return F	Period: 50 Y	'ear	Monday, 05	5 / 24 / 2021

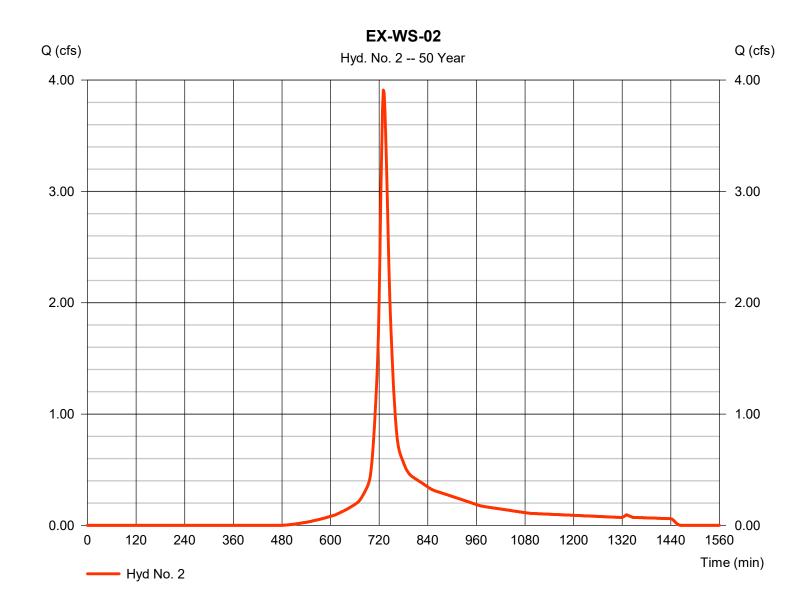

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 1

EX-WS-01

Hydrograph type = SCS Runoff Peak discharge = 13.50 cfsStorm frequency = 50 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 62,477 cuft Drainage area Curve number = 2.804 ac= 89 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 18.60 min = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

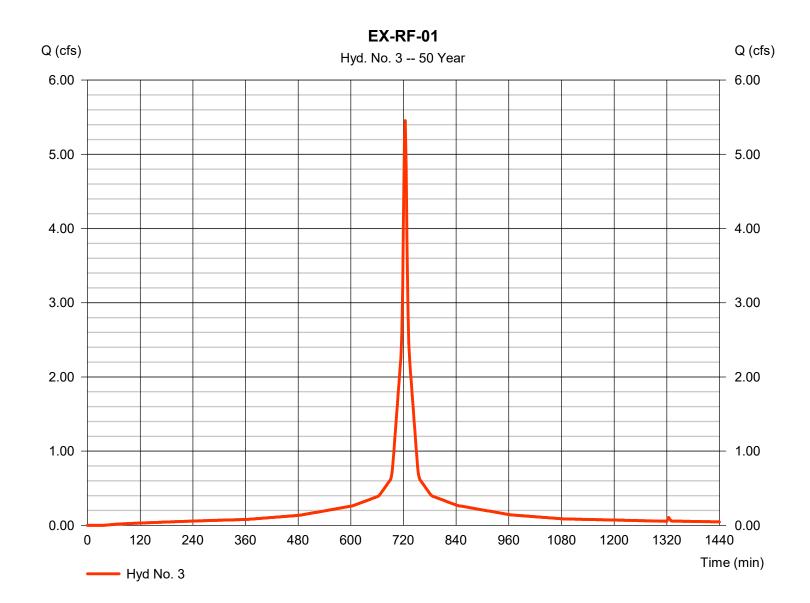

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 2

EX-WS-02

Hydrograph type = SCS Runoff Peak discharge = 3.910 cfsStorm frequency = 50 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 15,920 cuftDrainage area Curve number = 1.098 ac= 71 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 16.40 min = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

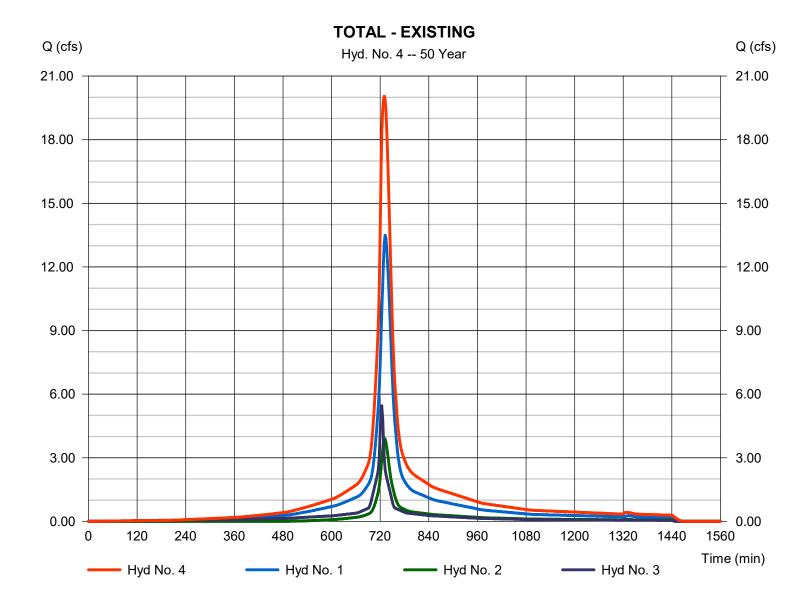

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 3

EX-RF-01

Hydrograph type = SCS Runoff Peak discharge = 5.454 cfsStorm frequency = 50 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 18,991 cuft Drainage area Curve number = 0.775 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 4

TOTAL - EXISTING

Hydrograph type = Combine Peak discharge = 20.05 cfsStorm frequency Time to peak = 50 yrs= 730 min Time interval = 2 min Hyd. volume = 97,722 cuft Inflow hyds. = 1, 2, 3Contrib. drain. area = 4.677 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	15.39	2	732	71,759				EX-WS-01
2	SCS Runoff	4.680	2	730	19,050				EX-WS-02
3	SCS Runoff	6.139	2	724	21,442				EX-RF-01
	SCS Runoff Combine	6.139 23.05	2 2	724 730	21,442 112,636	1, 2, 3			EX-RF-01 TOTAL - EXISTING
F01	73-02 Hydro	graphs - E	Existing.g	gpw	Return F	eriod: 100	Year	Monday, 05	/ 24 / 2021

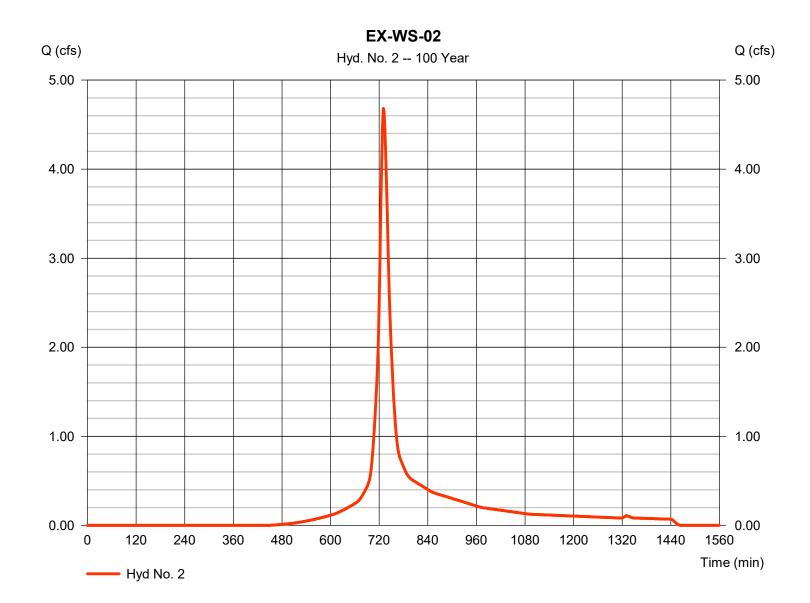
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 1

EX-WS-01

Hydrograph type = SCS Runoff Peak discharge = 15.39 cfsStorm frequency = 100 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 71,759 cuft Drainage area Curve number = 2.804 ac= 89 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 18.60 min = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

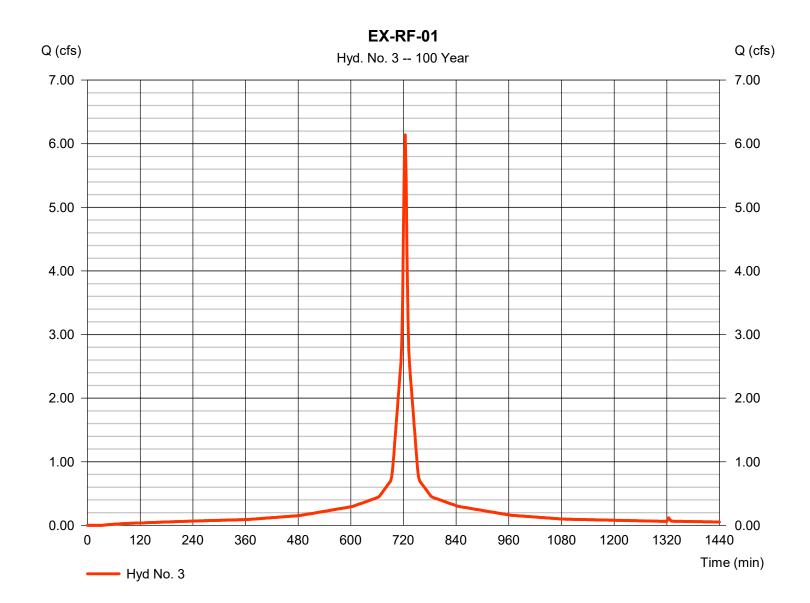

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 2

EX-WS-02

Hydrograph type = SCS Runoff Peak discharge = 4.680 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 19,050 cuftCurve number Drainage area = 1.098 ac= 71 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 16.40 min = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

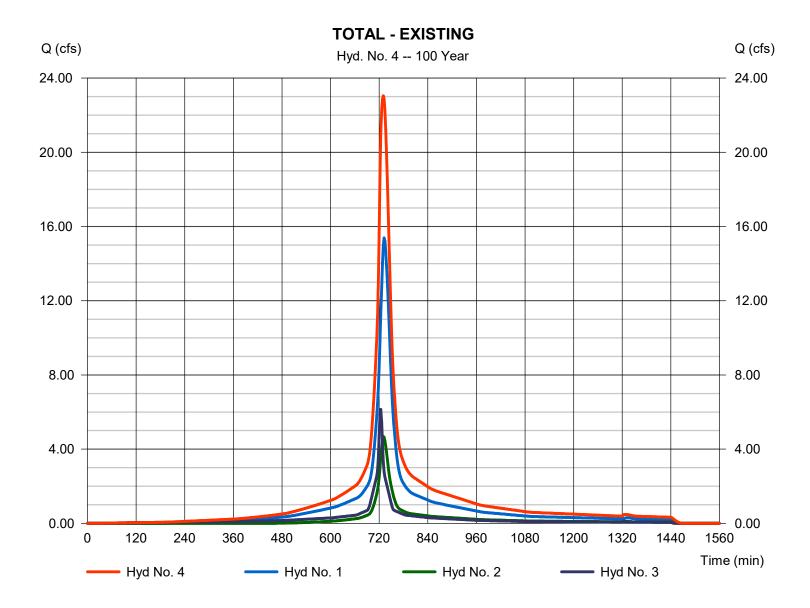

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 3

EX-RF-01

Hydrograph type = SCS Runoff Peak discharge = 6.139 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 21,442 cuft Drainage area Curve number = 0.775 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Monday, 05 / 24 / 2021

Hyd. No. 4

TOTAL - EXISTING

Hydrograph type = Combine Peak discharge = 23.05 cfsStorm frequency Time to peak = 100 yrs= 730 min Time interval = 2 min Hyd. volume = 112,636 cuft Inflow hyds. = 1, 2, 3Contrib. drain. area = 4.677 ac

APPENDIX D

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-01

Location: Proposed Yard Drain - Front Lawn

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.025	98	2.470
Landscaped and Lawns	0.082	69	5.682
	_		8.152

Total Area: 0.108 CN: 76

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	130	0.030	14.2

Total Tc (min) = 14.2

Name: CB-01A

Location: Proposed Yard Drain - Front Lawn

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.008	98	0.778
Landscaped and Lawns	0.186	69	12.827
			13.606

Total Area: 0.194 CN: 70

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	50	0.020	7.8	

Total Tc (min) = ____ 7.8

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-02

Location: Proposed Catch Basin - Driveway

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.043	98	4.252
Landscaped and Lawns	0.010	69	0.719
			4.971

Total Area: 0.054 CN: 92

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	98	0.050	1.0

Total Tc (min) = 1.0

Minimum Tc = 5.0

Name: CB-03

Location: Proposed Catch Basin - Parking Area East

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.057	98	5.620
Landscaped and Lawns	0.016	69	1.137
			6.757

Total Area: 0.074 CN: 92

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	60	0.033	0.8

Total Tc (min) = 4.5

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-04

Location: Proposed Catch Basin - Parking Area East

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.044	98	4.320
Landscaped and Lawns	0.009	69	0.604
			4.923

Total Area: 0.053 CN: 93

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	55	0.045	0.7

Total Tc (min) = 4.4
Minimum Tc = 5.0

Name: CB-05

Location: Proposed Catch Basin - Driveway

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.076	98	7.451
Landscaped and Lawns	0.039	69	2.706
			10.157

Total Area: 0.115 CN: 88

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	65	0.040	0.8

Total Tc (min) = 4.5

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-06

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.047	98	4.628
Landscaped and Lawns	0.015	69	1.006
			5.634

Total Area: _____ 0.062 CN: ____ 91

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	22	0.020	4.0	
B-C	0.015	3.54	58	0.025	0.9	

Total Tc (min) = 4.9 Minimum Tc = 5.0

Name: CB-07

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.081	98	7.915
Landscaped and Lawns	0.018	69	1.243
			9.158

Total Area: 0.099 CN: 93

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	15	0.020	3.0	
B-C	0.015	3.54	115	0.035	1.3	

Total Tc (min) = 4.3

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-08

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.094	98	9.249
Landscaped and Lawns	0.017	69	1.180
			10.429

Total Area: 0.111 CN: 94

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	30	0.040	3.9	
B-C	0.015	3.54	140	0.035	1.5	

Total Tc (min) = 5.5

Name: CB-09

Location: Proposed Catch Basin - Parking Area North

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.117	98	11.445
Landscaped and Lawns	0.020	69	1.375
			12.820

Total Area: 0.137 CN: 94

Time of Concentration:

Sheet-Flow Travel Time							
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)		
A-B	0.24	3.54	20	0.020	3.7		
B-C	0.015	3.54	120	1.000	0.4		

Total Tc (min) = 4.1
Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: CB-10

Location: Proposed Catch Basin - Parking Area North

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.104	98	10.153
Landscaped and Lawns	0.029	69	2.020
			12.173

Total Area: _____ 0.133 ____ CN: __ 92

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	30	0.040	3.9	
B-C	0.015	3.54	135	1.000	0.4	

Total Tc (min) = 4.3 Minimum Tc = 5.0

Name: CB-11

Location: Proposed Yard Drain - Southeast Corner Site

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.010	98	0.990
Landscaped and Lawns	0.217	69	14.945
			15.935

Total Area: 0.227 CN: 70

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	120	0.050	10.9	

Total Tc (min) = 10.9

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: PP-01

Location: Proposed Porous Pavement - Southwest Parking Area

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.266	98	26.077
Landscaped and Lawns	0.005	69	0.317
			26.394

Total Area: 0.271 CN: 98

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	100	0.020	1.5

Total Tc (min) = 1.5

Minimum Tc = 5.0

Name: PP-02

Location: Proposed Porous Pavement - Northwest Parking Area

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.393	98	38.505
Landscaped and Lawns	0.026	69	1.777
			40.282

Total Area: 0.419 CN: 96

Time of Concentration:

Sheet-Flow Travel Time						
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)	
A-B	0.24	3.54	40	0.040	4.9	
B-C	0.015	3.54	60	0.016	1.1	

Total Tc (min) = 6.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: RF-01

Location: Proposed Building - North

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.668	98	65.466
Landscaped and Lawns	0.000	69	0.000
			65.466

Total Area: 0.668 CN: 98

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	50	0.015	1.0

Total Tc (min) = 1.0
Minimum Tc = 5.0

Name: RF-02

Location: Proposed Building - South

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.653	98	63.954
Landscaped and Lawns	0.000	69	0.000
			63.954

Total Area: 0.653 CN: 98

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	50	0.015	1.0

Total Tc (min) = 1.0

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: RF-03

Location: Proposed Building - Northwest

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.120	98	11.807
Landscaped and Lawns	0.000	69	0.000
			11.807

Total Area: 0.120 CN: 98

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min					Time (min)
A-B	0.015	3.54	50	0.015	1.0

Total Tc (min) = 1.0

Minimum Tc = 5.0

Name: RF-04

Location: Proposed Building - Southwest

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.115	98	11.274
Landscaped and Lawns	0.000	69	0.000
			11.274

Total Area: 0.115 CN: 98

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	50	0.015	1.0

Total Tc (min) = 1.0
Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed CN & Tc Worksheet

Name: PR-WS-01 Location: Site - West

Cover Type	Area (ac)	CN	A x CN
Pavement / Impervious	0.065	98	6.412
Landscaped and Lawns	0.975	69	67.267
			73.679

Total Area: 1.040 CN: 71

Time of Concentration: 71

Sheet-Flow Travel Time								
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)			
A-B	0.24	3.54	130	0.008	24.1			

Shallow Concentrated Flow Travel Time								
Segment ID	Cover	Flow Length (ft)	Slope (ft/ft)	V (ft/s)	Time (min)			
B-C	Unpaved	240	0.013	1.80	2.2			
C-D	Paved	165	0.013	2.27	1.2			

Total Tc (min) = 27.6

References: NRCS Technical Release 55 ConnDOT Drainage Manual, Chapter 6

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

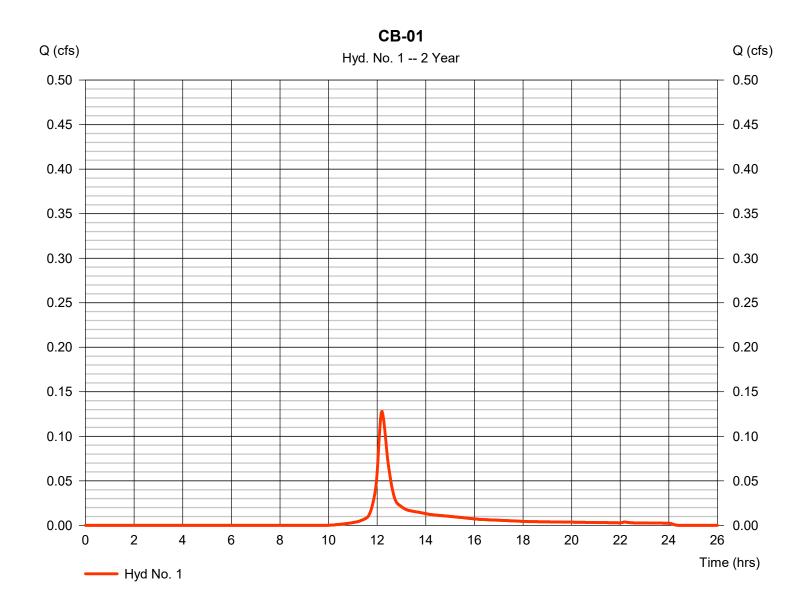
Hyd. Hydrograph No. type (origin)	Inflow	Peak Outflow (cfs)							Hydrograph		
		hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.128			0.269	0.364	0.436	0.514	CB-01
2	SCS Runoff			0.195			0.475	0.671	0.822	0.987	CB-01A
3	SCS Runoff			0.159			0.259	0.321	0.366	0.415	CB-02
4	SCS Runoff			0.218			0.354	0.439	0.502	0.569	CB-03
5	SCS Runoff			0.160			0.257	0.318	0.363	0.410	CB-04
6	SCS Runoff			0.299			0.513	0.648	0.747	0.852	CB-05
7	SCS Runoff			0.177			0.292	0.364	0.417	0.473	CB-06
8	SCS Runoff			0.299			0.481	0.594	0.678	0.767	CB-07
9	SCS Runoff			0.344			0.546	0.672	0.766	0.865	CB-08
10	SCS Runoff			0.424			0.674	0.830	0.945	1.068	CB-09
11	SCS Runoff			0.392			0.637	0.790	0.902	1.023	CB-10
12	SCS Runoff			0.212			0.510	0.720	0.883	1.061	CB-11
13	SCS Runoff			0.900			1.381	1.683	1.907	2.147	PP-01
14	SCS Runoff			1.352			2.106	2.577	2.926	3.298	PP-02
15	SCS Runoff			2.218			3.404	4.148	4.701	5.291	RF-01
16	SCS Runoff			2.168			3.327	4.055	4.595	5.172	RF-02
17	SCS Runoff			0.398			0.611	0.745	0.844	0.951	RF-03
18	SCS Runoff			0.382			0.586	0.714	0.809	0.911	RF-04
19	SCS Runoff			0.734			1.726	2.421	2.955	3.537	PR-WS-01
20	Combine	1, 2, 3,		0.722			1.409	1.865	2.210	2.583	COMBINE-1
21	Combine	6, 7, 8, 9,		3.147			5.059	6.276	7.186	8.161	COMBINE-2
22	Combine	12, 16, 20, 21		3.869			6.468	8.142	9.396	10.74	TO SOUTH INFIL SYS
23	Combine	4, 5, 10,		3.412			5.327	6.525	7.413	8.361	TO NORTH INFIL SYS
24	Reservoir	11, 15, 13		0.000			0.000	0.036	0.106	0.191	SOUTH POR PVMT
25	Reservoir	14		0.000			0.000	0.031	0.105	0.200	NORTH POR PVMT
26	Reservoir	22		0.241			2.347	3.888	5.328	7.056	SOUTH INFIL SYS
27	Reservoir	23		0.583			2.771	4.442	5.575	6.513	NORTH INFIL SYS
28	Combine	17, 18,		0.780			1.197	1.459	1.654	1.861	COMBINE-3
29	Combine	24, 25, 26,		0.917			5.271	8.975	11.51	14.90	SYSTEM OUTLET
30	Combine	27, 28 19, 29		1.636			6.762	10.69	13.64	17.35	TOTAL SITE

Proj. file: F0173-02 Hydrographs - Proposed.gpw

Friday, 07 / 9 / 2021

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.128	2	732	533				CB-01
2	SCS Runoff	0.195	2	728	727				CB-01A
3	SCS Runoff	0.159	2	724	492				CB-02
4	SCS Runoff	0.218	2	724	674				CB-03
5	SCS Runoff	0.160	2	724	500				CB-04
6	SCS Runoff	0.299	2	724	902				CB-05
7	SCS Runoff	0.177	2	724	544				CB-06
8	SCS Runoff	0.299	2	724	934				CB-07
9	SCS Runoff	0.344	2	724	1,086				CB-08
10	SCS Runoff	0.424	2	724	1,340				CB-09
11	SCS Runoff	0.392	2	724	1,211				CB-10
12	SCS Runoff	0.212	2	730	878				CB-11
13	SCS Runoff	0.900	2	724	3,049				PP-01
14	SCS Runoff	1.352	2	724	4,399				PP-02
15	SCS Runoff	2.218	2	724	7,516				RF-01
16	SCS Runoff	2.168	2	724	7,347				RF-02
17	SCS Runoff	0.398	2	724	1,350				RF-03
18	SCS Runoff	0.382	2	724	1,294				RF-04
19	SCS Runoff	0.734	2	742	4,104				PR-WS-01
20	Combine	0.722	2	724	2,654	1, 2, 3,			COMBINE-1
21	Combine	3.147	2	724	10,790	6, 7, 8, 9,			COMBINE-2
22	Combine	3.869	2	724	13,444	12, 16, 20, 21			TO SOUTH INFIL SYS
23	Combine	3.412	2	724	11,241	4, 5, 10,			TO NORTH INFIL SYS
24	Reservoir	0.000	2	760	0	11, 15, 13	141.82	897	SOUTH POR PVMT
25	Reservoir	0.000	2	732	0	14	141.31	1,336	NORTH POR PVMT
26	Reservoir	0.241	2	760	1,021	22	143.05	5,230	SOUTH INFIL SYS
27	Reservoir	0.583	2	746	1,717	23	143.36	4,356	NORTH INFIL SYS
28	Combine	0.780	2	724	2,644	17, 18,			COMBINE-3
29	Combine	0.917	2	748	5,382	24, 25, 26,			SYSTEM OUTLET
30	Combine	1.636	2	746	9,487	27, 28 19, 29			TOTAL SITE
	 173-02 Hydro	graphs -	Proposed	d.gpw	Return	Period: 2 Ye	ear	Friday, 07	/ 9 / 2021

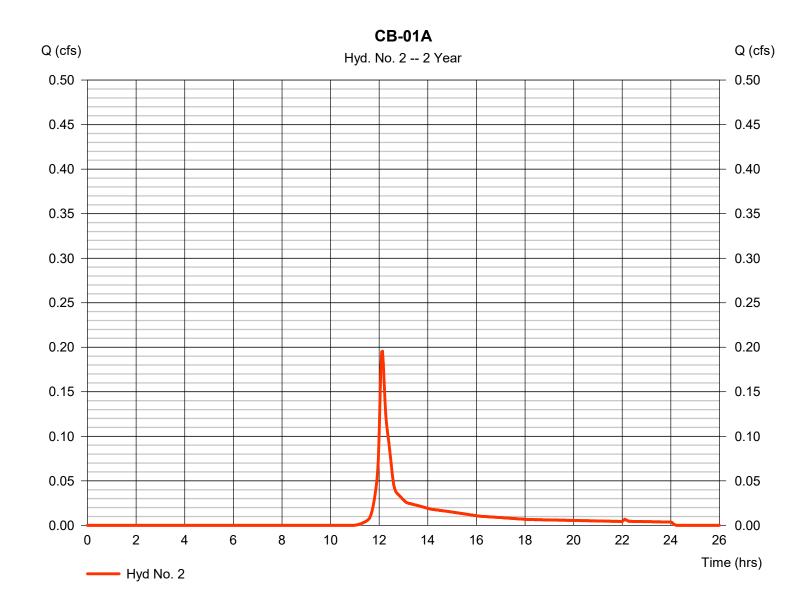

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 1

CB-01

Hydrograph type = SCS Runoff Peak discharge = 0.128 cfsStorm frequency = 2 yrsTime to peak $= 12.20 \, hrs$ Time interval = 2 min Hyd. volume = 533 cuft Drainage area Curve number = 0.108 ac= 76 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 14.20 min = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

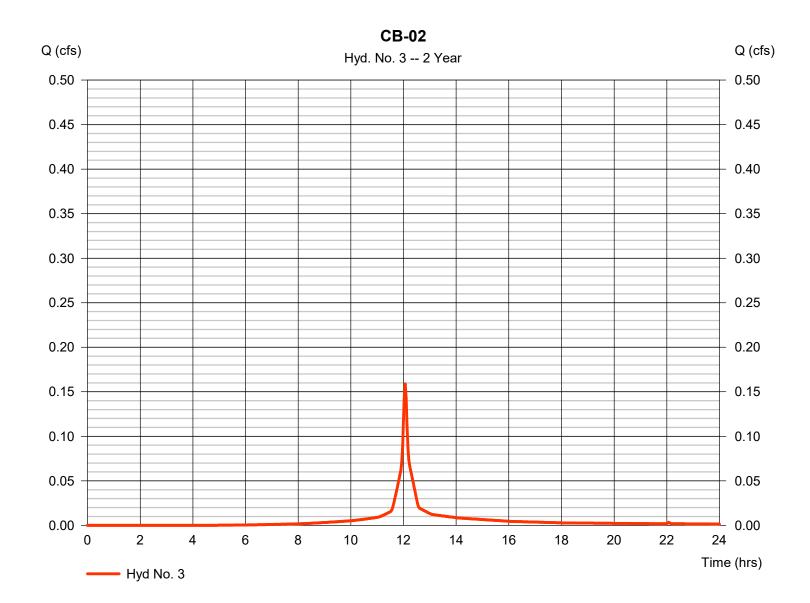

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 2

CB-01A

Hydrograph type = SCS Runoff Peak discharge = 0.195 cfsStorm frequency = 2 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 727 cuft Drainage area Curve number = 0.194 ac= 70 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 7.80 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

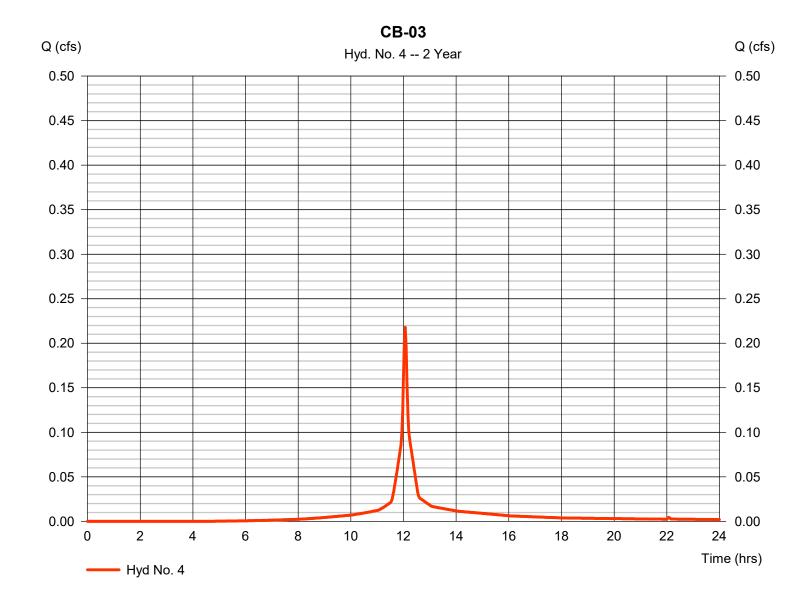

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 3

CB-02

Hydrograph type = SCS Runoff Peak discharge = 0.159 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 492 cuft Drainage area Curve number = 0.054 ac= 92 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

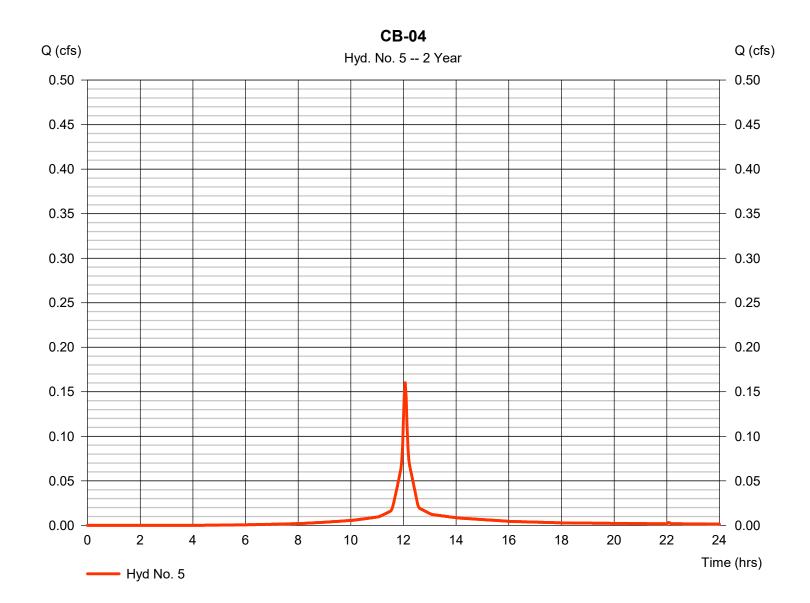

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 4

CB-03

Hydrograph type = SCS Runoff Peak discharge = 0.218 cfsStorm frequency Time to peak = 2 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 674 cuft Drainage area = 0.074 acCurve number = 92 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

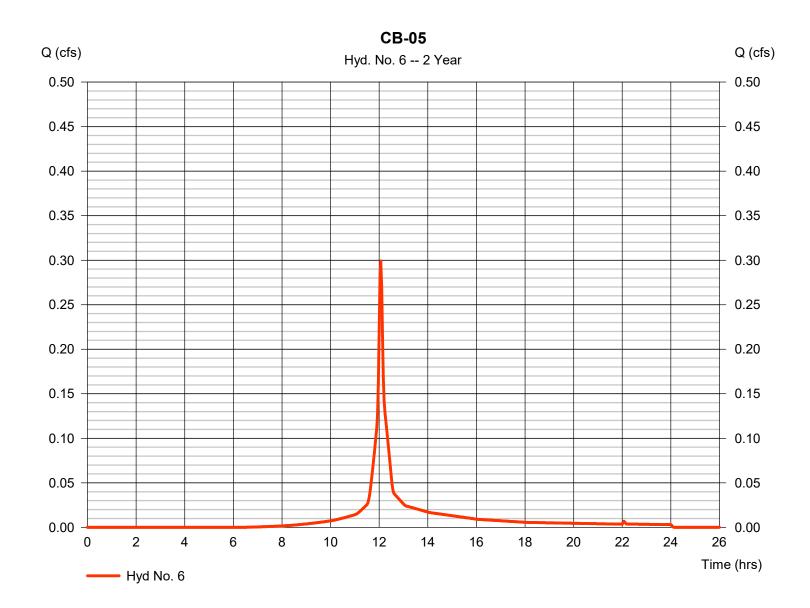

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 5

CB-04

Hydrograph type = SCS Runoff Peak discharge = 0.160 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 500 cuft Drainage area Curve number = 0.053 ac= 93 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

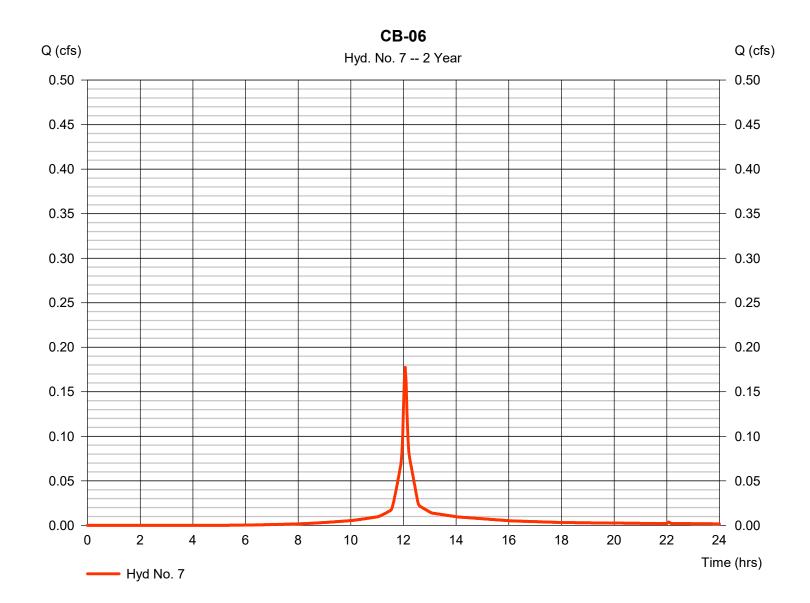

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 6

CB-05

Hydrograph type = SCS Runoff Peak discharge = 0.299 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 902 cuft Drainage area = 0.115 acCurve number = 88 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

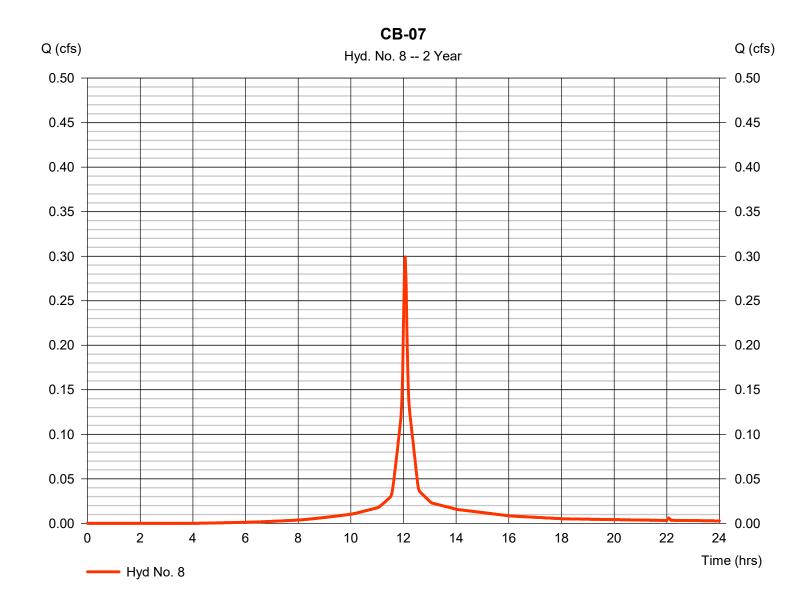

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 7

CB-06

Hydrograph type = SCS Runoff Peak discharge = 0.177 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 544 cuft Drainage area = 0.062 acCurve number = 91 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

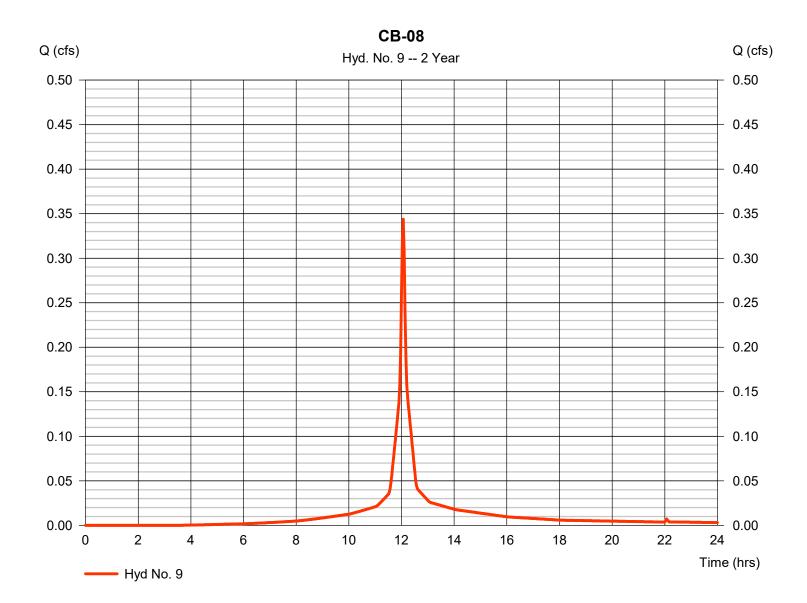

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 8

CB-07

Hydrograph type = SCS Runoff Peak discharge = 0.299 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 934 cuft Drainage area Curve number = 0.099 ac= 93 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

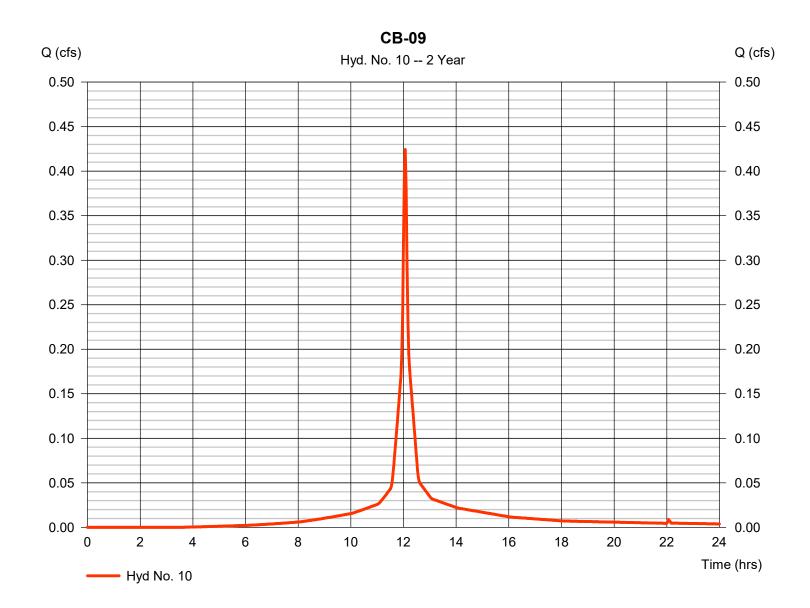

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 9

CB-08

Hydrograph type = SCS Runoff Peak discharge = 0.344 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,086 cuft Drainage area Curve number = 0.111 ac= 94 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.50 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

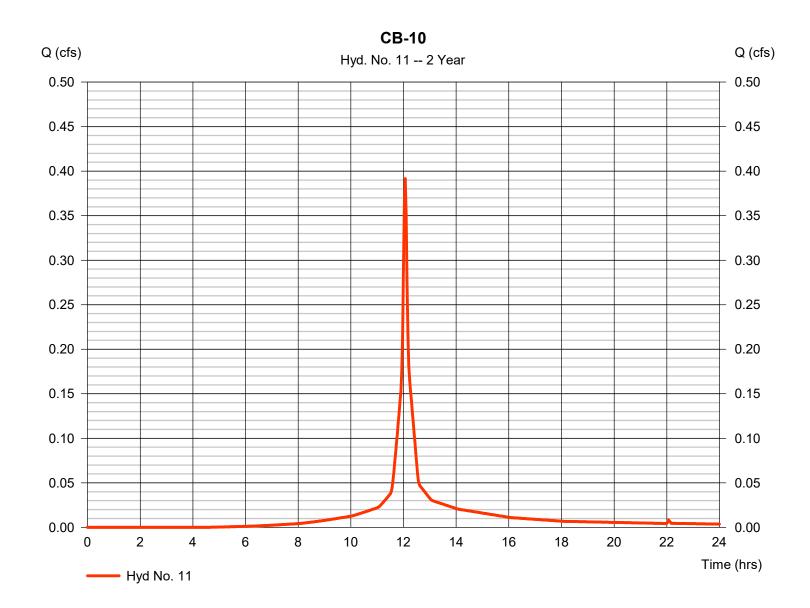

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 10

CB-09

Hydrograph type = SCS Runoff Peak discharge = 0.424 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,340 cuftDrainage area Curve number = 0.137 ac= 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

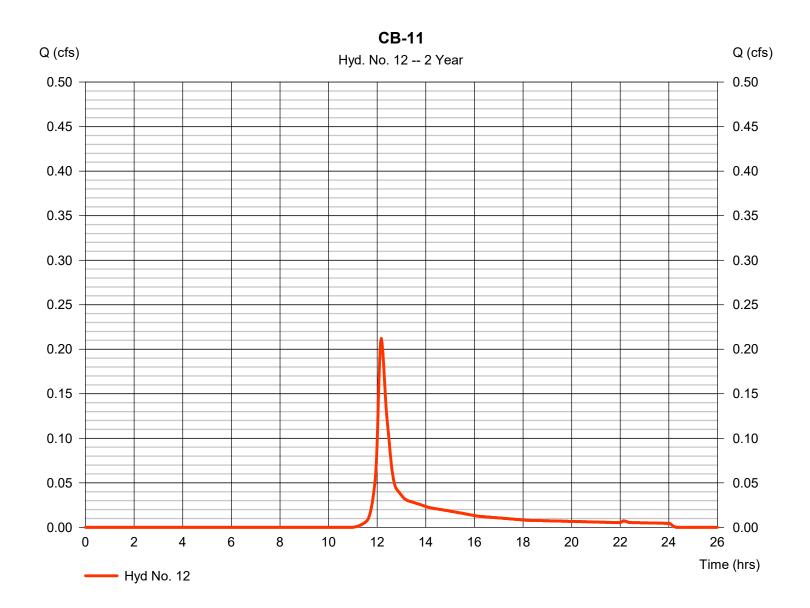

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 11

CB-10

Hydrograph type = SCS Runoff Peak discharge = 0.392 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,211 cuft Drainage area Curve number = 0.133 ac= 92 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

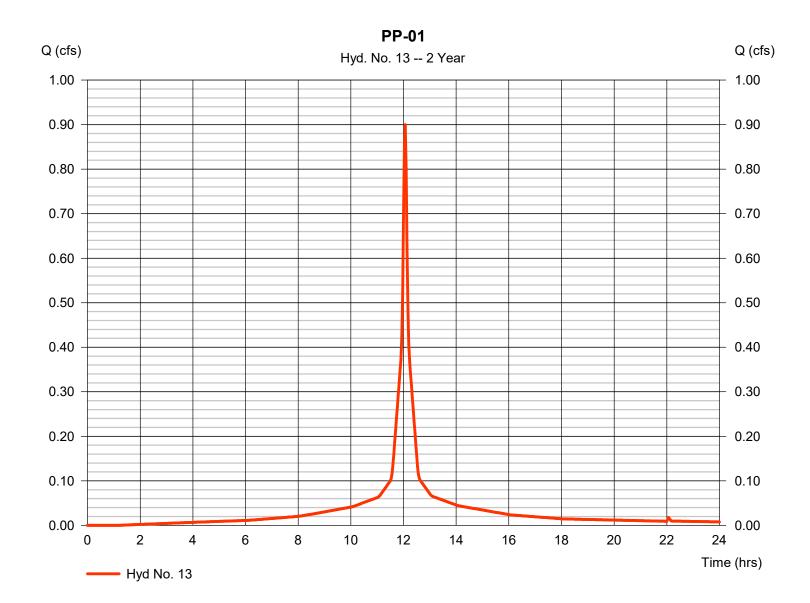

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 12

CB-11

Hydrograph type = SCS Runoff Peak discharge = 0.212 cfsStorm frequency = 2 yrsTime to peak $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 878 cuft Drainage area = 70 = 0.227 acCurve number Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 10.90 min = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

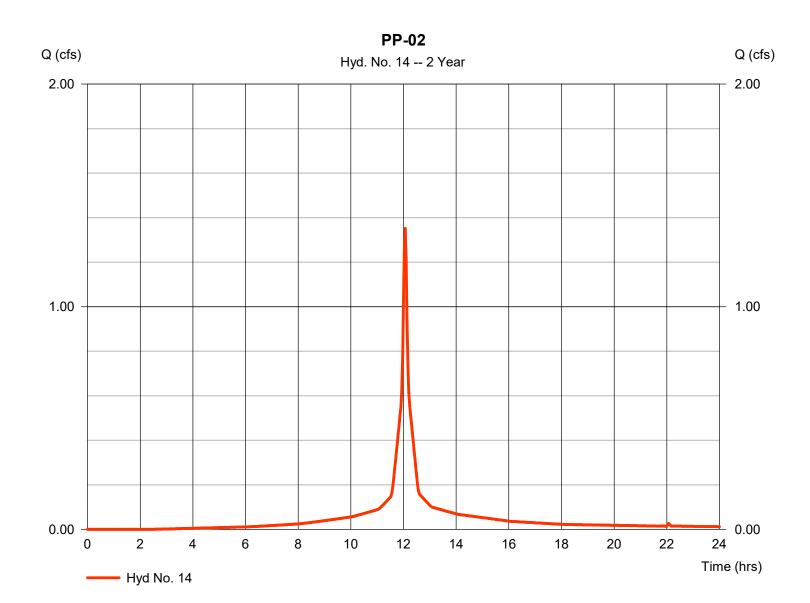

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 13

PP-01

Hydrograph type = SCS Runoff Peak discharge = 0.900 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,049 cuftDrainage area = 0.271 acCurve number = 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

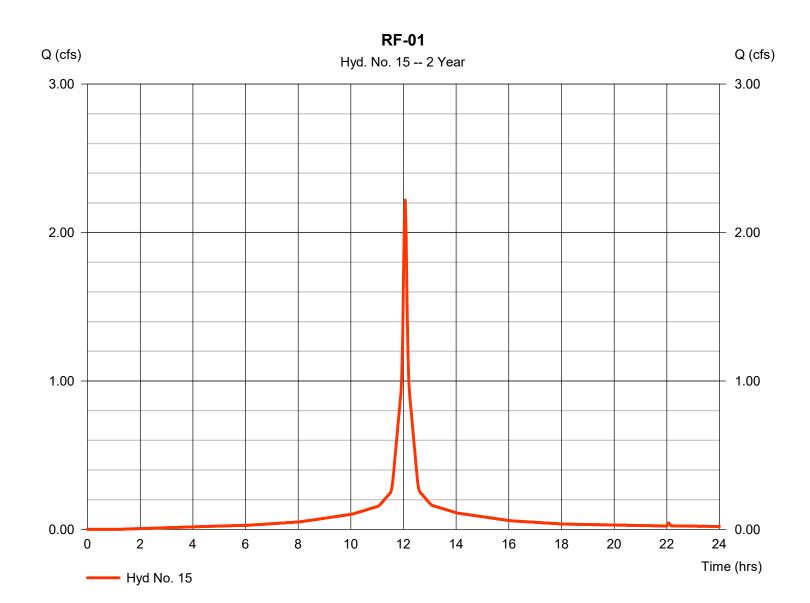

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 14

PP-02

Hydrograph type = SCS Runoff Peak discharge = 1.352 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 4,399 cuftDrainage area = 0.419 acCurve number = 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

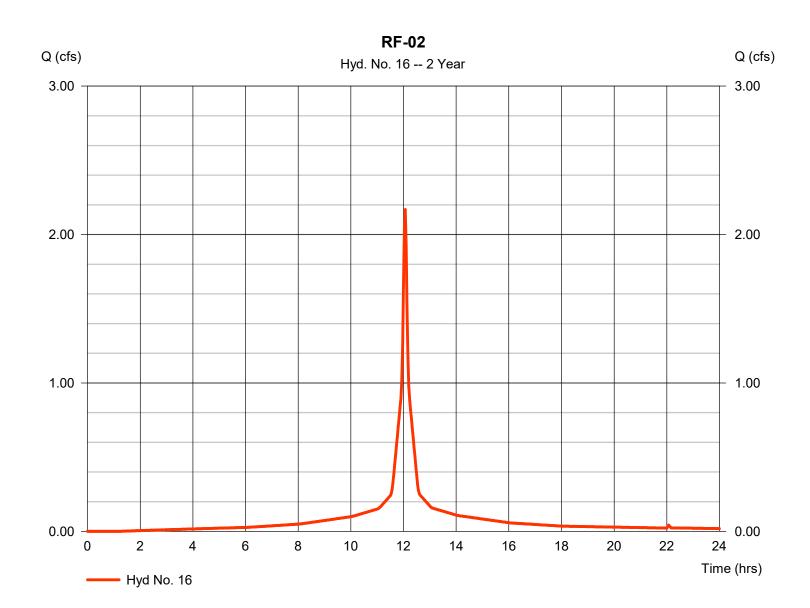

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 15

RF-01

Hydrograph type = SCS Runoff Peak discharge = 2.218 cfsStorm frequency = 2 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 7,516 cuft Drainage area = 0.668 acCurve number = 98 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

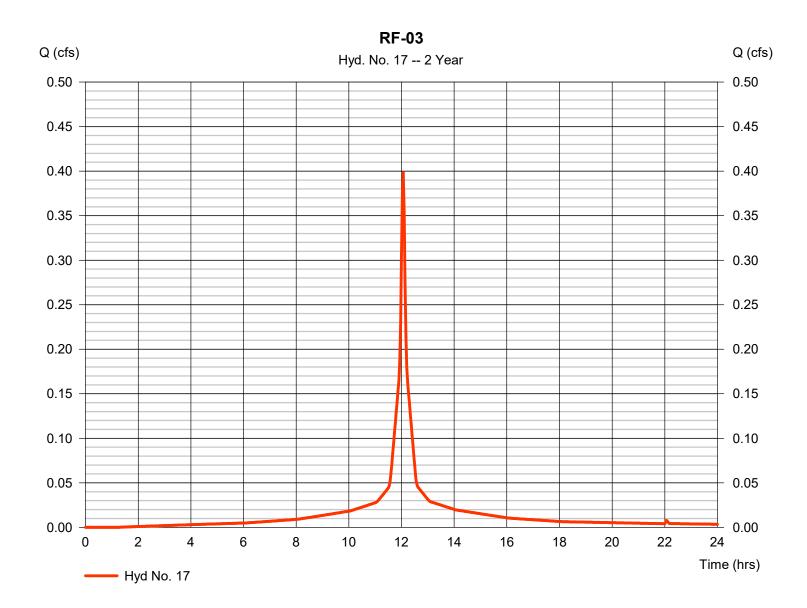

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 16

RF-02

Hydrograph type = SCS Runoff Peak discharge = 2.168 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 7,347 cuftDrainage area Curve number = 0.653 ac= 98 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

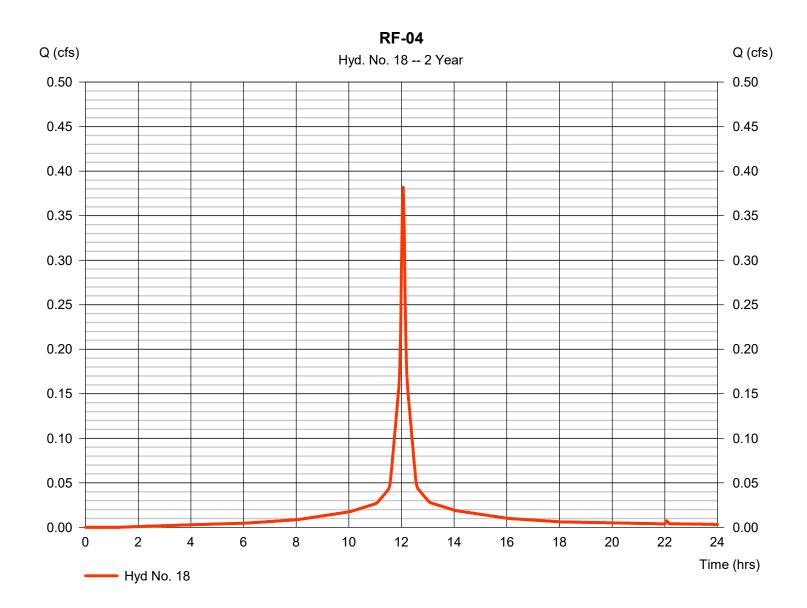

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 17

RF-03

Hydrograph type = SCS Runoff Peak discharge = 0.398 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,350 cuftDrainage area = 0.120 acCurve number = 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

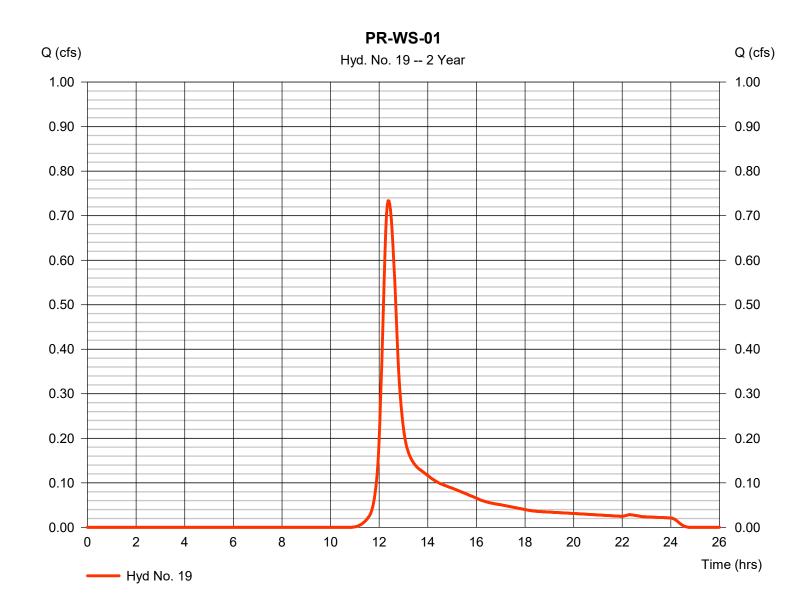

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 18

RF-04

Hydrograph type = SCS Runoff Peak discharge = 0.382 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ = 1,294 cuft Time interval = 2 min Hyd. volume Drainage area = 0.115 acCurve number = 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

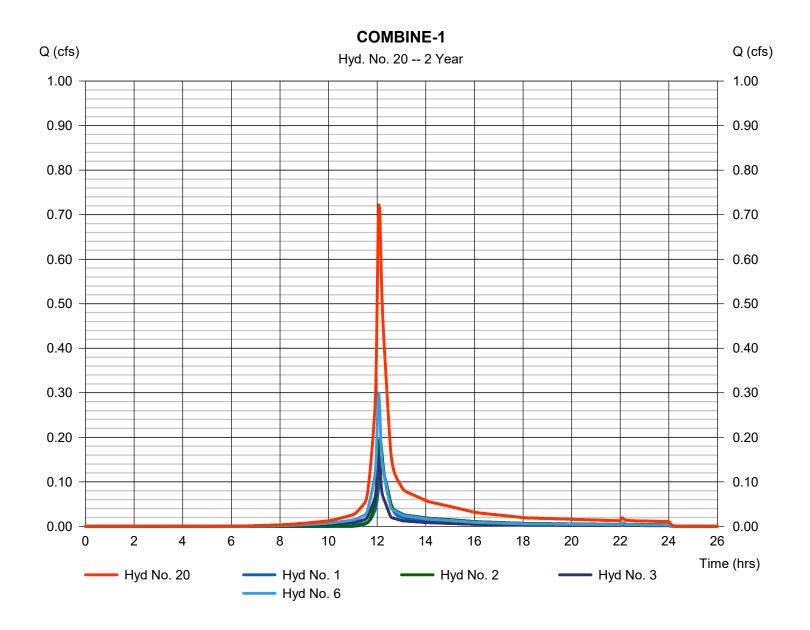

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 19

PR-WS-01

Hydrograph type = SCS Runoff Peak discharge = 0.734 cfsStorm frequency = 2 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 4,104 cuftDrainage area Curve number = 71 = 1.038 acHydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 27.60 min = User Total precip. = 3.54 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

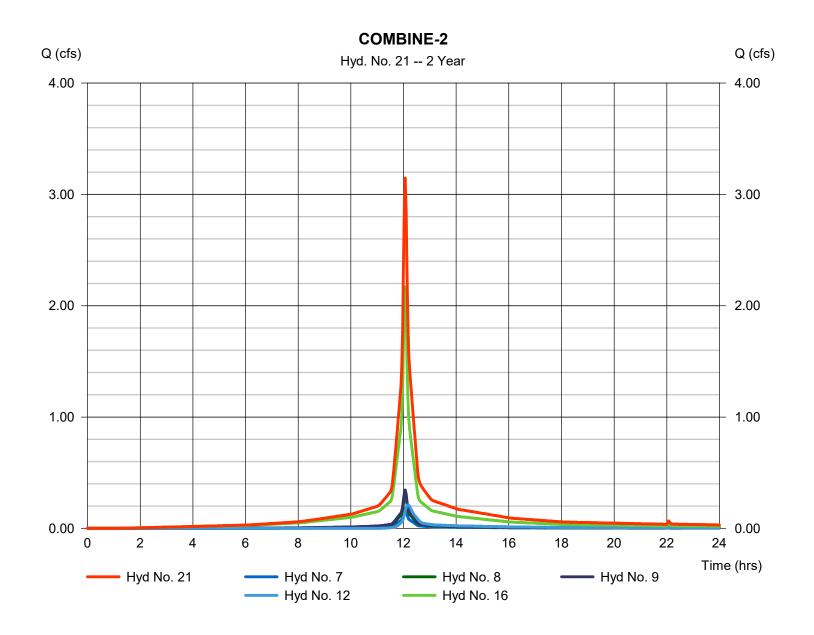

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 20

COMBINE-1

Hydrograph type = Combine Peak discharge = 0.722 cfsStorm frequency Time to peak = 2 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,654 cuft Inflow hyds. = 1, 2, 3, 6Contrib. drain. area = 0.471 ac

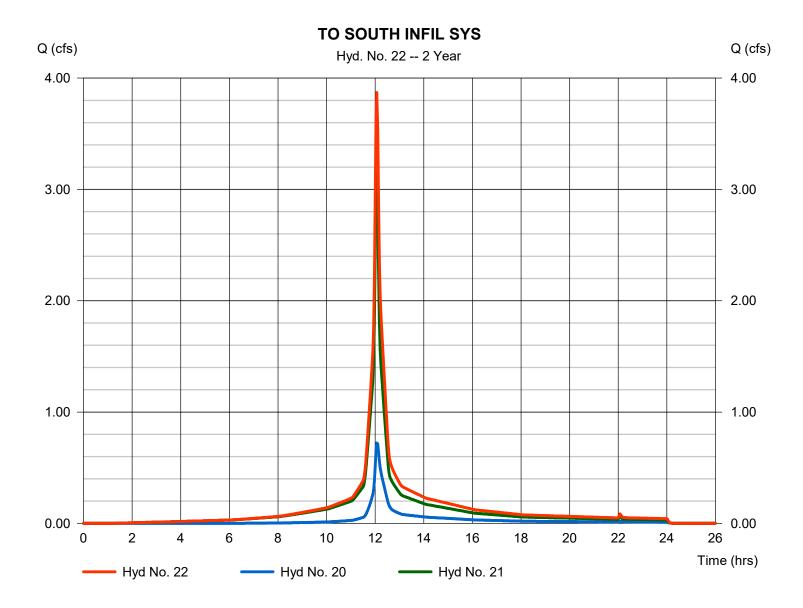

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 21

COMBINE-2

Hydrograph type = Combine Peak discharge = 3.147 cfsStorm frequency Time to peak = 2 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 10,790 cuftInflow hyds. = 7, 8, 9, 12, 16 Contrib. drain. area = 1.152 ac

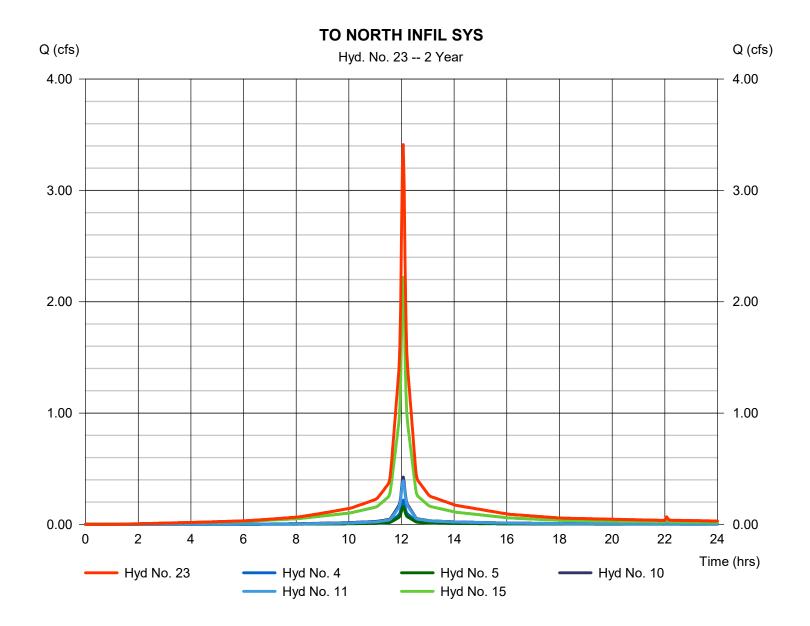

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 22

TO SOUTH INFIL SYS

Hydrograph type = Combine Peak discharge = 3.869 cfsTime to peak Storm frequency = 2 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 13,444 cuft Inflow hyds. = 20, 21 Contrib. drain. area = 0.000 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

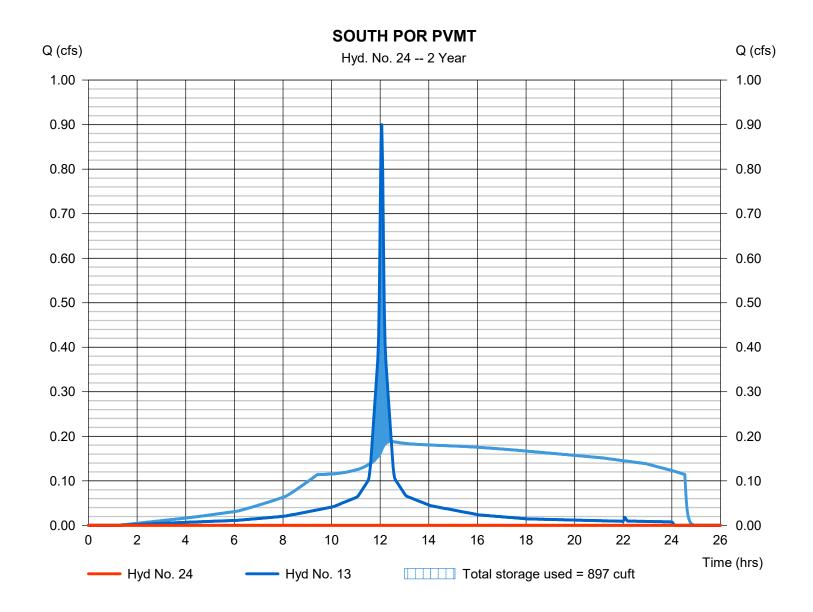
Friday, 07 / 9 / 2021

Hyd. No. 23

TO NORTH INFIL SYS

Hydrograph type = Combine Peak discharge = 3.412 cfsStorm frequency Time to peak = 2 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 11,241 cuft Inflow hyds. = 4, 5, 10, 11, 15 Contrib. drain. area = 1.065 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3


Friday, 07 / 9 / 2021

Hyd. No. 24

SOUTH POR PVMT

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 2 yrsTime to peak $= 12.67 \, hrs$ Time interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. Max. Elevation = 13 - PP-01 = 141.82 ft= SOUTH POROUS PVMT Reservoir name Max. Storage = 897 cuft

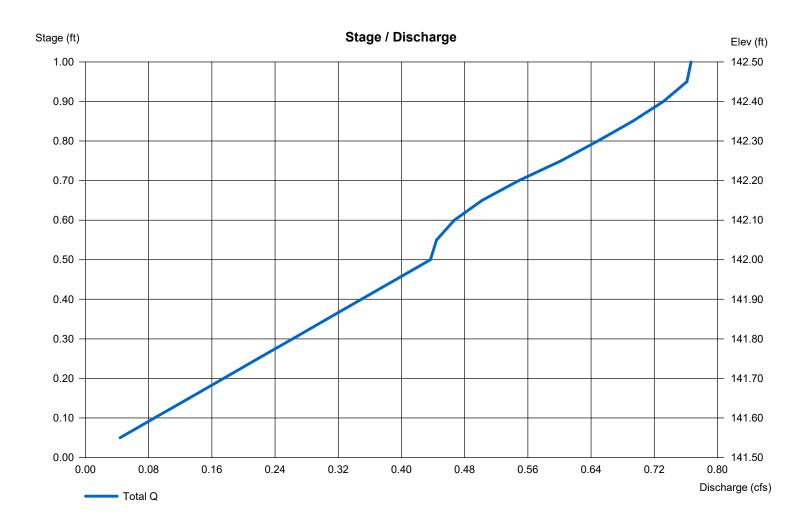
Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Pond No. 3 - SOUTH POROUS PVMT

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 141.50 ft. Voids = 30.00%

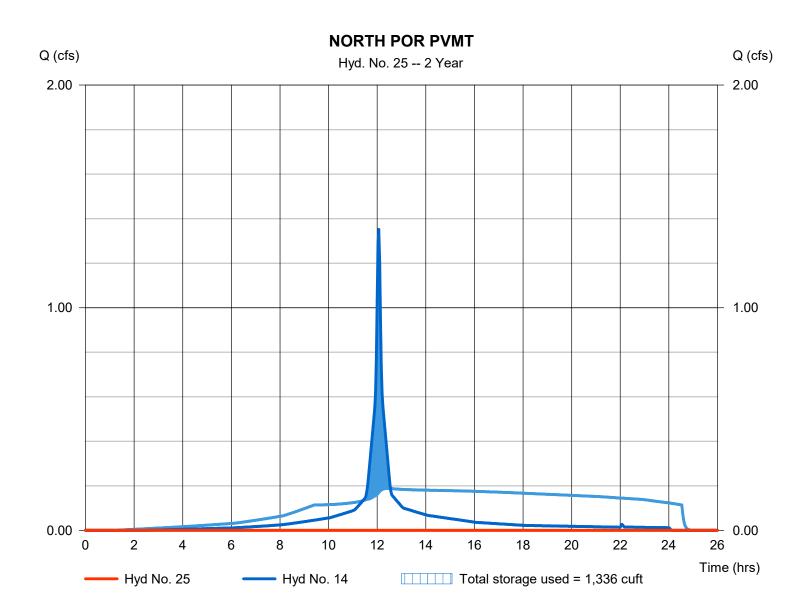
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	141.50	9,430	0	0
0.50	142.00	9,430	1,414	1,414
1.00	142.50	9,430	1,414	2,829

Culvert / Ori	fice Structur	Weir Structures								
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 6.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00	
Span (in)	= 6.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 142.00	0.00	0.00	0.00	Weir Type	=				
Length (ft)	= 10.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 1.00	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 2.000 (b)	/ Contour)			
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00				

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3


Friday, 07 / 9 / 2021

Hyd. No. 25

NORTH POR PVMT

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 2 yrsTime to peak $= 12.20 \, hrs$ Time interval = 2 min Hyd. volume = 0 cuft Max. Elevation Inflow hyd. No. = 14 - PP-02 $= 141.31 \, \text{ft}$ = NORTH POROUS PVMT Reservoir name Max. Storage = 1,336 cuft

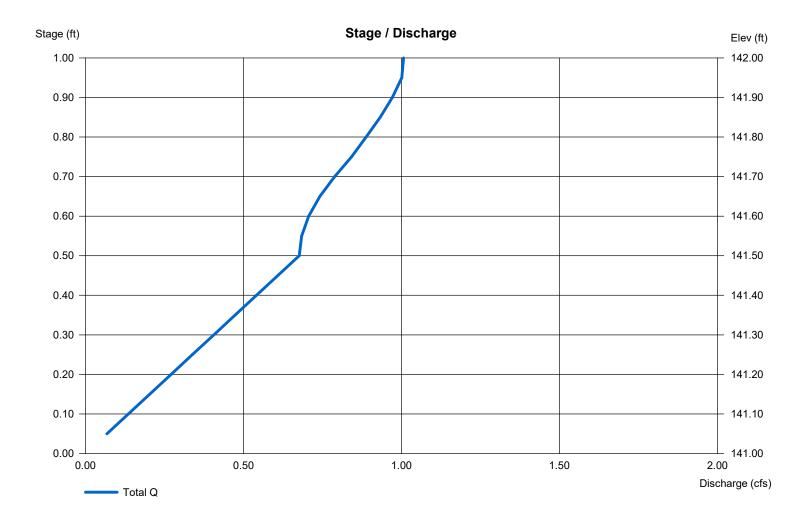
Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Pond No. 4 - NORTH POROUS PVMT

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 141.00 ft. Voids = 30.00%

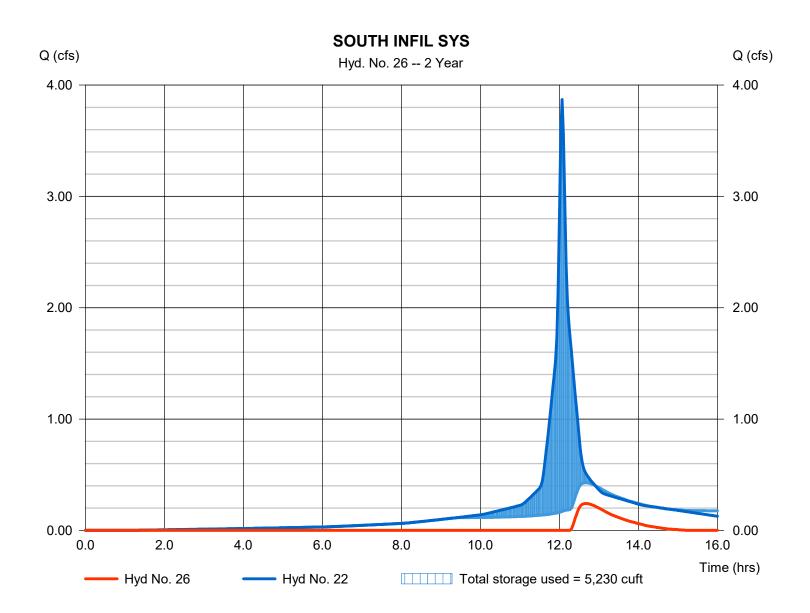
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	141.00	14,607	0	0
0.50	141.50	14,607	2,191	2,191
1.00	142.00	14,607	2,191	4,382

Culvert / Ori	fice Structur		Weir Structures						
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 141.50	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 10.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a	_				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 2.000 (by	(Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00	•		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3


Friday, 07 / 9 / 2021

Hyd. No. 26

SOUTH INFIL SYS

Hydrograph type = Reservoir Peak discharge = 0.241 cfsStorm frequency = 2 yrsTime to peak $= 12.67 \, hrs$ Time interval = 2 min Hyd. volume = 1,021 cuftMax. Elevation Inflow hyd. No. = 22 - TO SOUTH INFIL SYS $= 143.05 \, \text{ft}$ = SOUTH INFIL SYS Reservoir name Max. Storage = 5,230 cuft

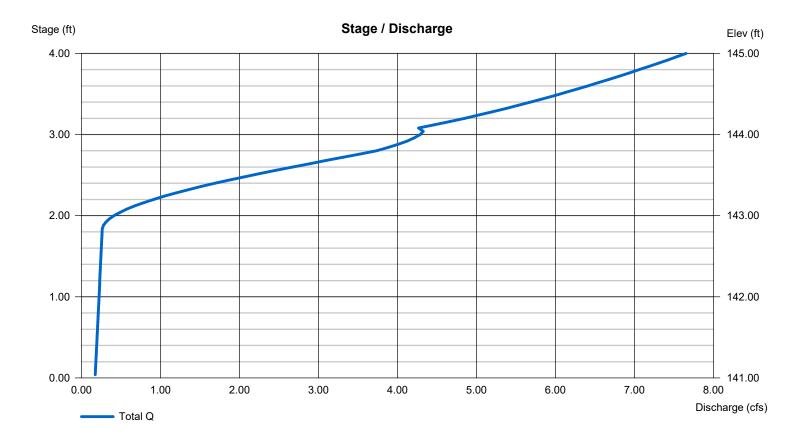
Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Pond No. 1 - SOUTH INFIL SYS

Pond Data


UG Chambers -Invert elev. = 142.00 ft, Rise x Span = 2.00 x 7.00 ft, Barrel Len = 170.00 ft, No. Barrels = 3, Slope = 0.00%, Headers = Yes **Encasement** -Invert elev. = 141.00 ft, Width = 7.00 ft, Height = 4.00 ft, Voids = 30.00%

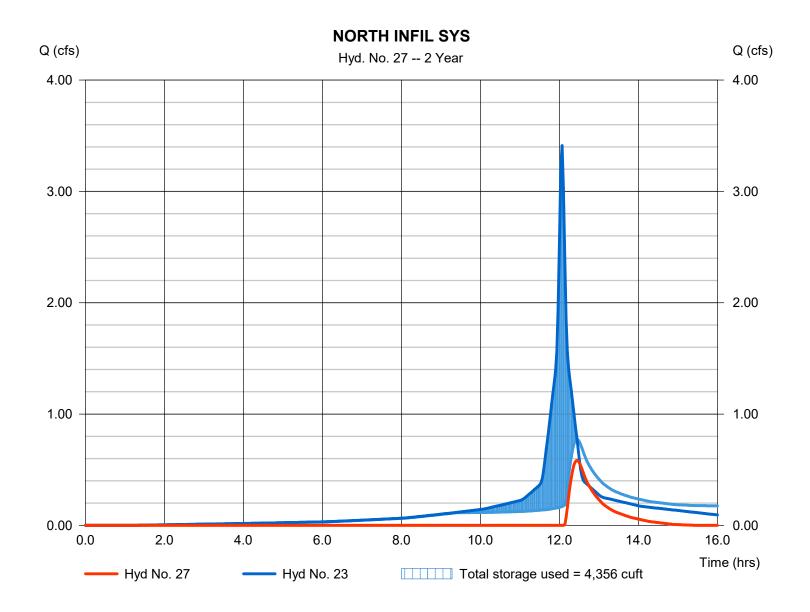
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	141.00	n/a	0	0
0.40	141.40	n/a	464	464
0.80	141.80	n/a	464	928
1.20	142.20	n/a	1,005	1,932
1.60	142.60	n/a	1,546	3,478
2.00	143.00	n/a	1,546	5,024
2.40	143.40	n/a	1,546	6,570
2.80	143.80	n/a	1,546	8,116
3.20	144.20	n/a	1,005	9,121
3.60	144.60	n/a	464	9,584
4.00	145.00	n/a	464	10,048

Culvert / Orifice Structures Weir Structures [B] [PrfRsr] [A] [A] [C] [B] [C] [D] = 15.00 0.00 0.00 0.00 Inactive 0.00 Inactive 0.00 Rise (in) Crest Len (ft) Span (in) = 15.000.00 0.00 0.00 Crest El. (ft) = 0.000.00 0.00 0.00 No. Barrels = 1 1 0 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 142.83 0.00 0.00 0.00 Weir Type = Rect = 38.00 0.00 0.00 0.00 Multi-Stage = Yes No No No Length (ft) 0.00 0.00 n/a = 1.00 Slope (%) = .013 N-Value .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 2.000 (by Wet area) No No Multi-Stage = n/aNo TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3


Friday, 07 / 9 / 2021

Hyd. No. 27

NORTH INFIL SYS

Hydrograph type Peak discharge = 0.583 cfs= Reservoir Storm frequency = 2 yrsTime to peak $= 12.43 \, hrs$ Time interval = 2 min Hyd. volume = 1,717 cuftMax. Elevation Inflow hyd. No. = 23 - TO NORTH INFIL SYS = 143.36 ft= NORTH INFIL SYS Reservoir name Max. Storage = 4,356 cuft

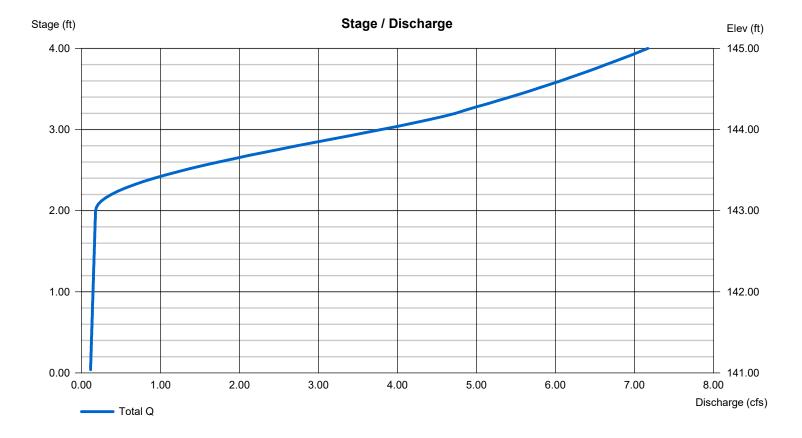
Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Pond No. 2 - NORTH INFIL SYS

Pond Data

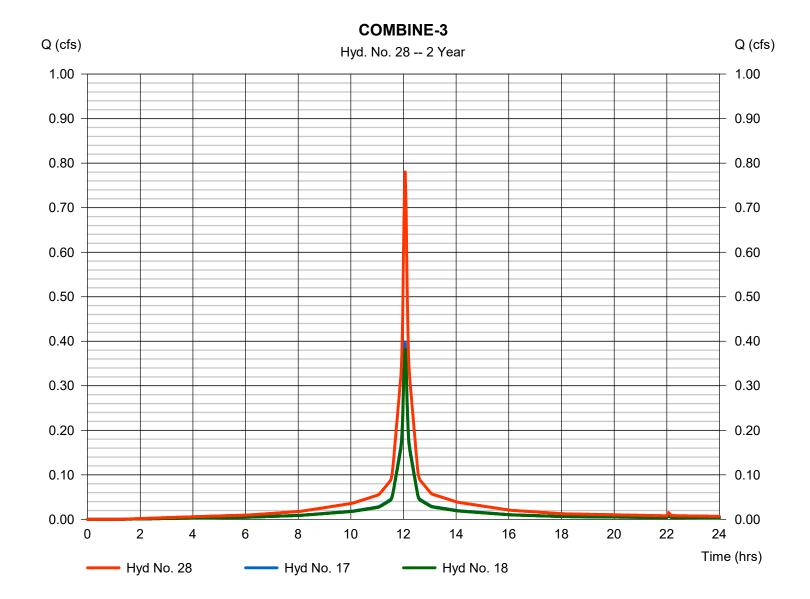

UG Chambers -Invert elev. = 142.00 ft, Rise x Span = 2.00 x 7.00 ft, Barrel Len = 80.00 ft, No. Barrels = 4, Slope = 0.00%, Headers = Yes **Encasement** -Invert elev. = 141.00 ft, Width = 7.00 ft, Height = 4.00 ft, Voids = 30.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	141.00	n/a	0	0
0.40	141.40	n/a	316	316
0.80	141.80	n/a	316	632
1.20	142.20	n/a	684	1,316
1.60	142.60	n/a	1,053	2,369
2.00	143.00	n/a	1,053	3,422
2.40	143.40	n/a	1,053	4,475
2.80	143.80	n/a	1,053	5,528
3.20	144.20	n/a	684	6,213
3.60	144.60	n/a	316	6,528
4.00	145.00	n/a	316	6,844

Culvert / Orifice Structures Weir Structures [B] [PrfRsr] [A] [A] [C] [B] [C] [D] = 15.00 0.00 0.00 0.00 Inactive 0.00 Inactive 0.00 Rise (in) Crest Len (ft) Span (in) = 15.000.00 0.00 0.00 Crest El. (ft) = 0.000.00 0.00 0.00 No. Barrels = 1 1 0 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 143.000.00 0.00 0.00 Weir Type = Rect = 50.00 0.00 0.00 0.00 = Yes No No No Length (ft) Multi-Stage 0.00 0.00 n/a = 1.50Slope (%) = .013 N-Value .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 2.000 (by Wet area) No Multi-Stage = n/aYes No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

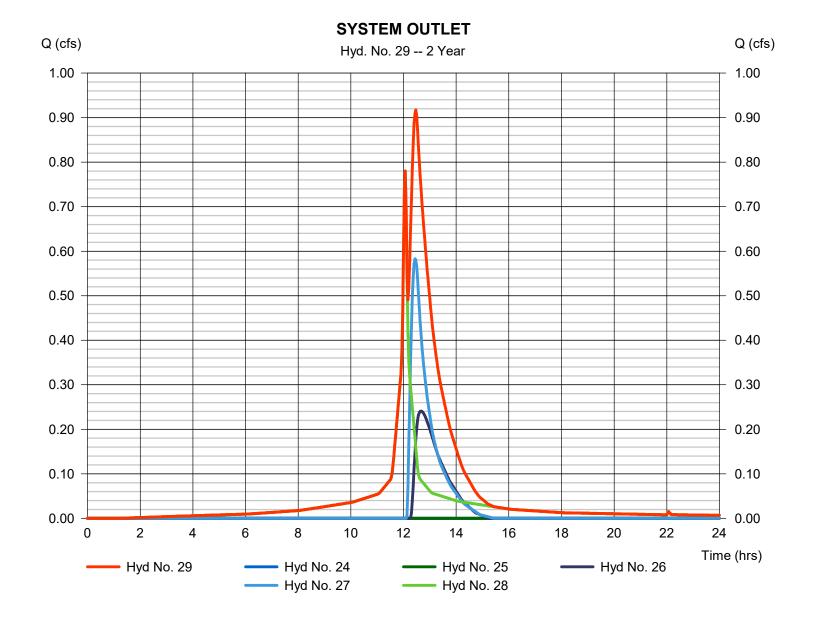

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 28

COMBINE-3

Hydrograph type = Combine Peak discharge = 0.780 cfsStorm frequency Time to peak = 2 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,644 cuft Inflow hyds. = 17, 18 Contrib. drain. area = 0.235 ac

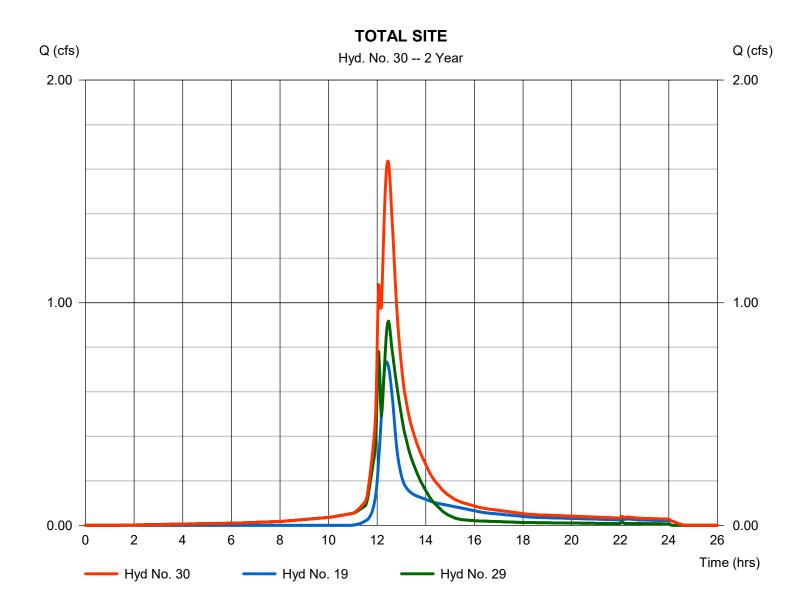

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 29

SYSTEM OUTLET

Hydrograph type = Combine Peak discharge = 0.917 cfsStorm frequency Time to peak = 2 yrs $= 12.47 \, hrs$ Time interval = 2 min Hyd. volume = 5,382 cuft Inflow hyds. Contrib. drain. area = 24, 25, 26, 27, 28 = 0.000 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 30

TOTAL SITE

Hydrograph type = Combine Peak discharge = 1.636 cfsTime to peak Storm frequency = 2 yrs $= 12.43 \, hrs$ Time interval = 2 min Hyd. volume = 9,487 cuftInflow hyds. = 19, 29 Contrib. drain. area = 1.038 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

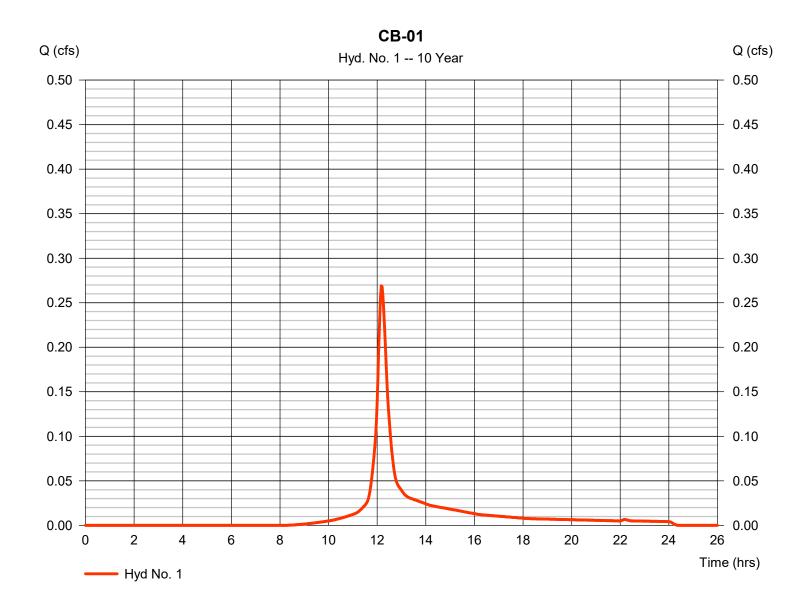
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.269	2	730	1,097				CB-01
2	SCS Runoff	0.475	2	726	1,646				CB-01A
3	SCS Runoff	0.259	2	724	823				CB-02
4	SCS Runoff	0.354	2	724	1,128				CB-03
5	SCS Runoff	0.257	2	724	828				CB-04
6	SCS Runoff	0.513	2	724	1,585				CB-05
7	SCS Runoff	0.292	2	724	922				CB-06
8	SCS Runoff	0.481	2	724	1,547				CB-07
9	SCS Runoff	0.546	2	724	1,777				CB-08
10	SCS Runoff	0.674	2	724	2,193				CB-09
11	SCS Runoff	0.637	2	724	2,028				CB-10
12	SCS Runoff	0.510	2	730	1,986				CB-11
13	SCS Runoff	1.381	2	724	4,761				PP-01
14	SCS Runoff	2.106	2	724	7,030				PP-02
15	SCS Runoff	3.404	2	724	11,736				RF-01
16	SCS Runoff	3.327	2	724	11,473				RF-02
17	SCS Runoff	0.611	2	724	2,108				RF-03
18	SCS Runoff	0.586	2	724	2,020				RF-04
19	SCS Runoff	1.726	2	740	9,131				PR-WS-01
20	Combine	1.409	2	724	5,151	1, 2, 3,			COMBINE-1
21	Combine	5.059	2	724	17,705	6, 7, 8, 9,			COMBINE-2
22	Combine	6.468	2	724	22,856	12, 16, 20, 21			TO SOUTH INFIL SYS
23	Combine	5.327	2	724	17,913	4, 5, 10,			TO NORTH INFIL SYS
24	Reservoir	0.000	2	806	0	11, 15, 13	141.99	1,380	SOUTH POR PVMT
25	Reservoir	0.000	2	720	0	14	141.48	2,094	NORTH POR PVMT
26	Reservoir	2.347	2	738	7,350	22	143.60	7,323	SOUTH INFIL SYS
27	Reservoir	2.771	2	730	6,391	23	143.85	5,607	NORTH INFIL SYS
28	Combine	1.197	2	724	4,129	17, 18,			COMBINE-3
29	Combine	5.271	2	732	17,870	24, 25, 26,			SYSTEM OUTLET
30	Combine	6.762	2	736	27,001	27, 28 19, 29			TOTAL SITE
F01	F0173-02 Hydrographs - Proposed.gpw			Return F	Period: 10 Y	'ear	Friday, 07 /	9 / 2021	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

= 24 hrs

Friday, 07 / 9 / 2021

= 484

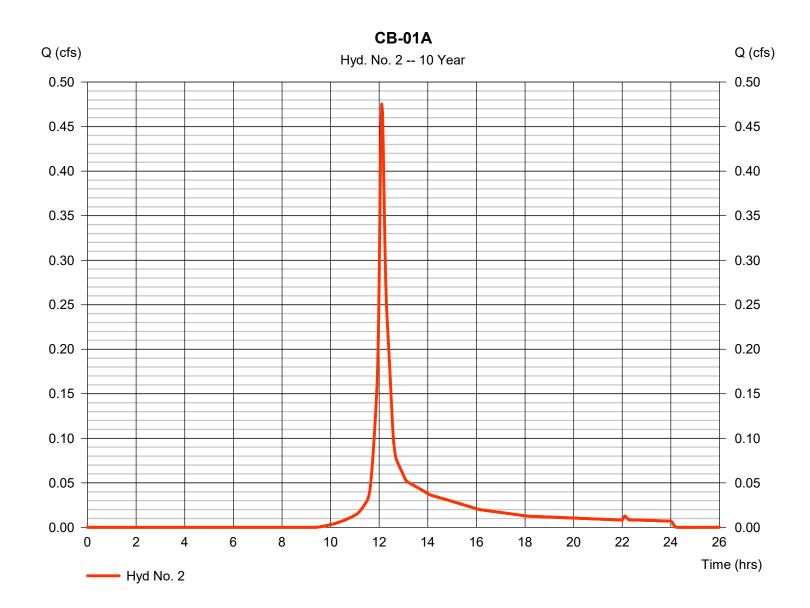

Hyd. No. 1

Storm duration

CB-01

Hydrograph type = SCS Runoff Peak discharge = 0.269 cfsStorm frequency = 10 yrsTime to peak $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 1,097 cuftDrainage area Curve number = 0.108 ac= 76 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 14.20 min = User Total precip. = 5.40 inDistribution = Type III

Shape factor

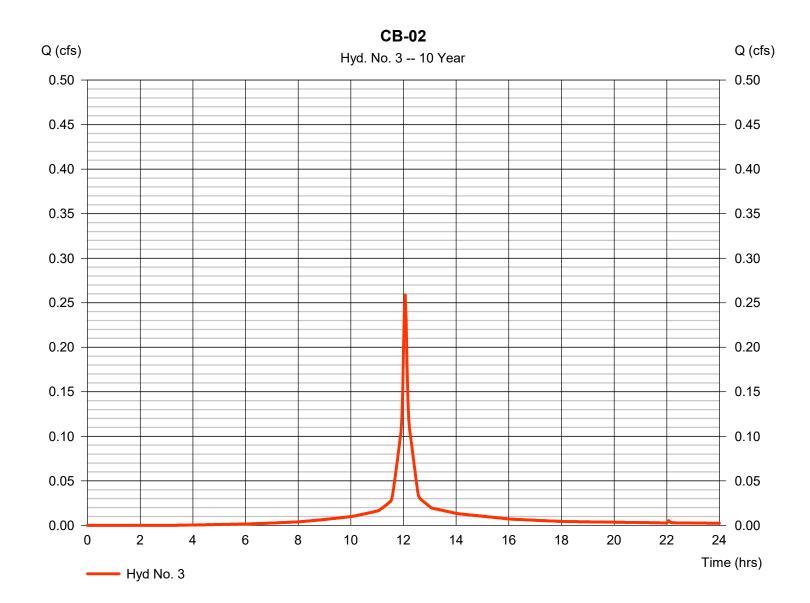

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 2

CB-01A

Hydrograph type = SCS Runoff Peak discharge = 0.475 cfsStorm frequency = 10 yrsTime to peak = 12.10 hrsTime interval = 2 min Hyd. volume = 1,646 cuft Drainage area Curve number = 0.194 ac= 70 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 7.80 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

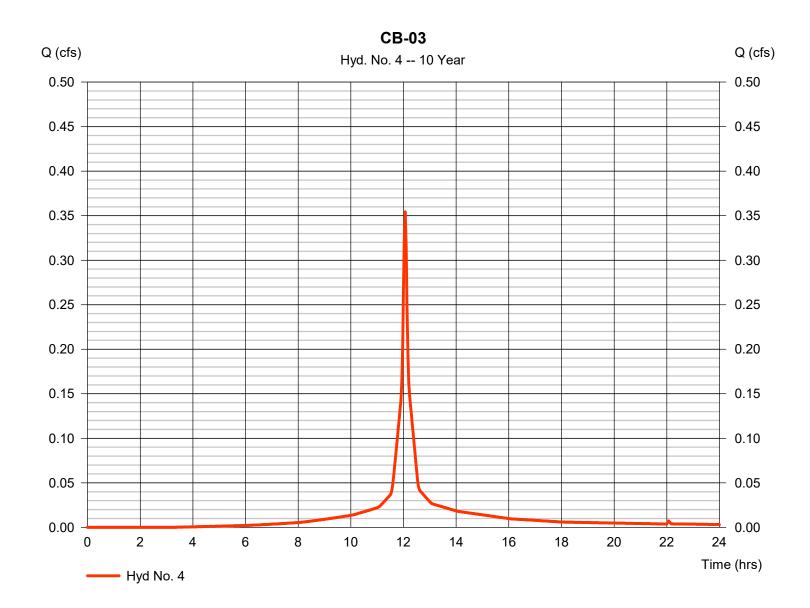

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 3

CB-02

Hydrograph type = SCS Runoff Peak discharge = 0.259 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 823 cuft Drainage area Curve number = 0.054 ac= 92 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

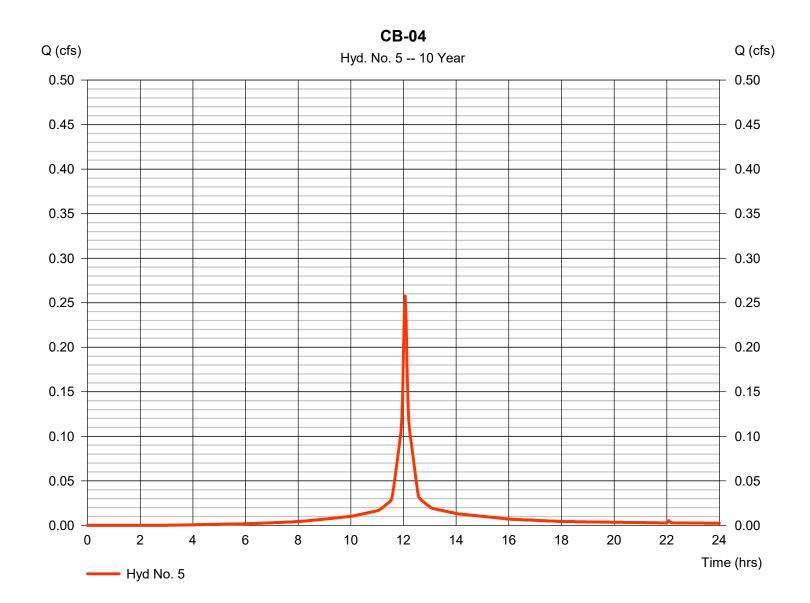

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 4

CB-03

Hydrograph type = SCS Runoff Peak discharge = 0.354 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,128 cuft Drainage area Curve number = 0.074 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

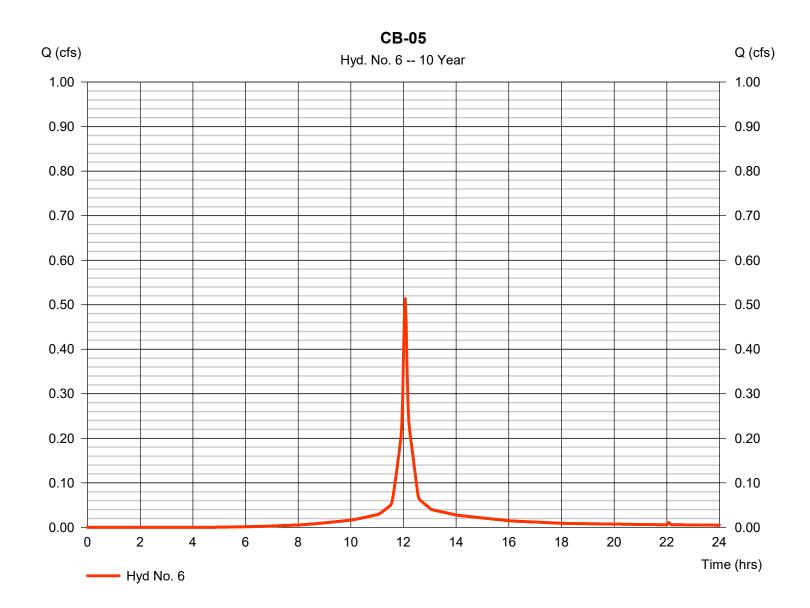

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 5

CB-04

Hydrograph type = SCS Runoff Peak discharge = 0.257 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 828 cuft Drainage area Curve number = 0.053 ac= 93 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

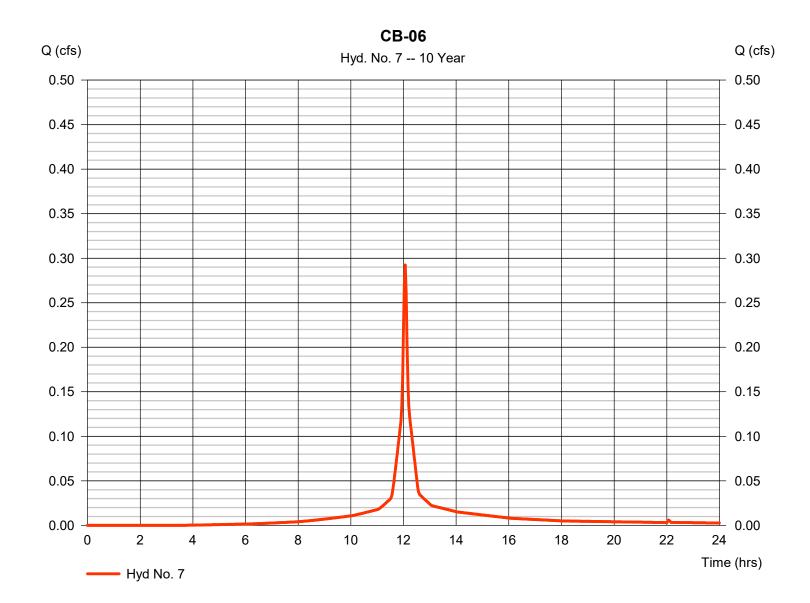

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 6

CB-05

Hydrograph type = SCS Runoff Peak discharge = 0.513 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 1,585 cuft Drainage area Curve number = 0.115 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

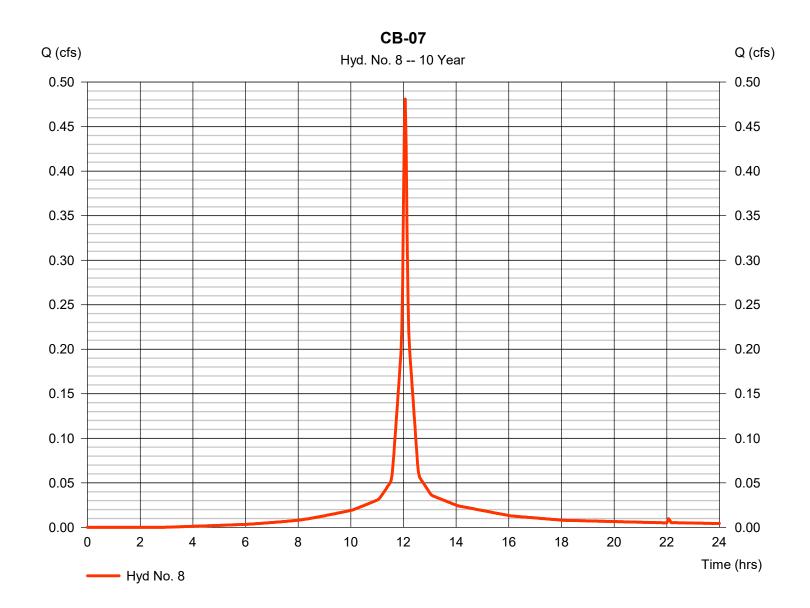

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 7

CB-06

Hydrograph type = SCS Runoff Peak discharge = 0.292 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 922 cuft Drainage area Curve number = 0.062 ac= 91 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

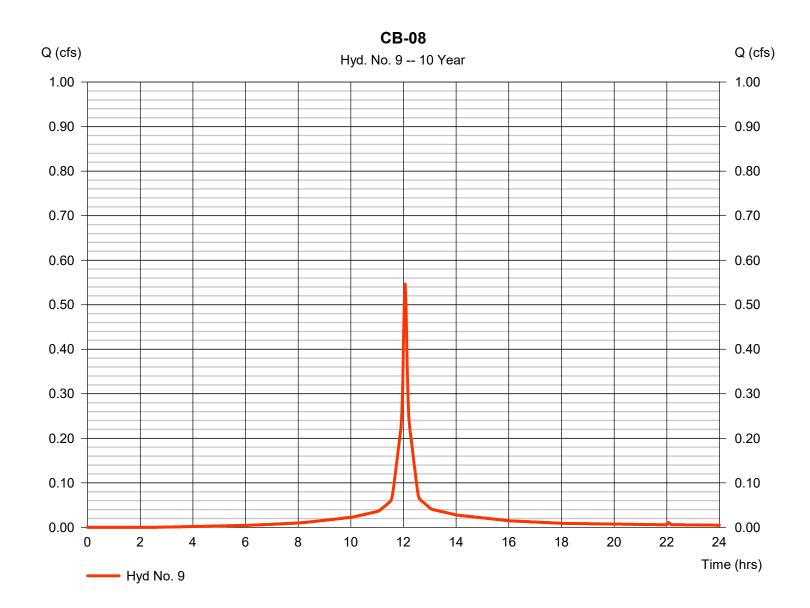

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 8

CB-07

Hydrograph type = SCS Runoff Peak discharge = 0.481 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,547 cuftDrainage area Curve number = 0.099 ac= 93 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

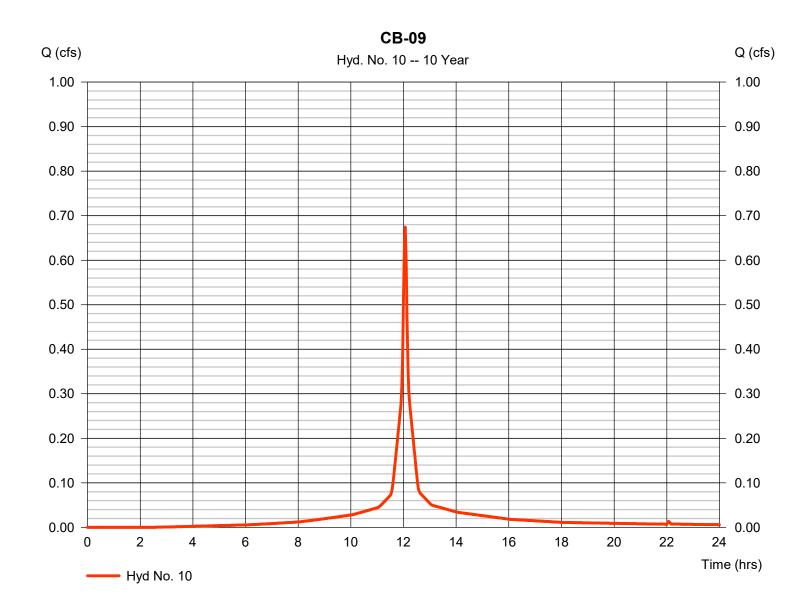

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 9

CB-08

Hydrograph type = SCS Runoff Peak discharge = 0.546 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 1,777 cuftDrainage area = 0.111 acCurve number = 94 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.50 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

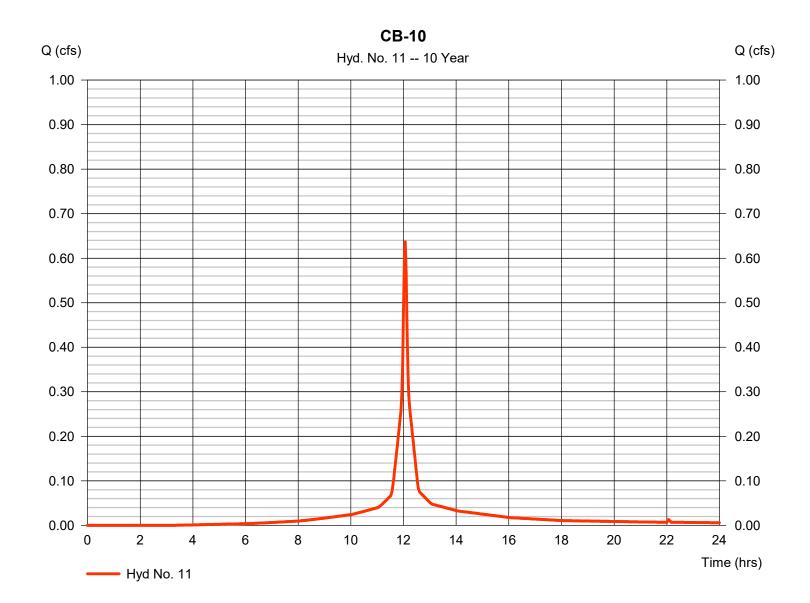

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 10

CB-09

Hydrograph type = SCS Runoff Peak discharge = 0.674 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,193 cuftDrainage area Curve number = 0.137 ac= 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

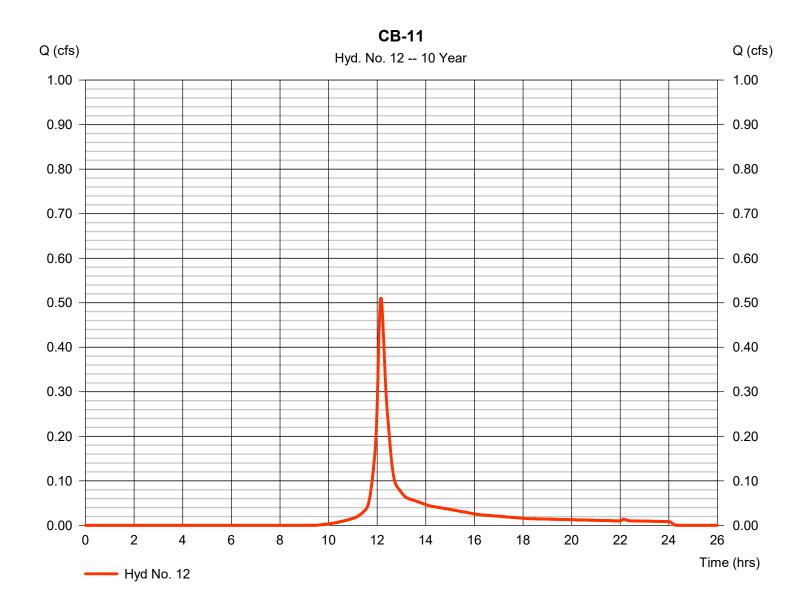

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 11

CB-10

Hydrograph type = SCS Runoff Peak discharge = 0.637 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,028 cuft Drainage area Curve number = 0.133 ac= 92 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

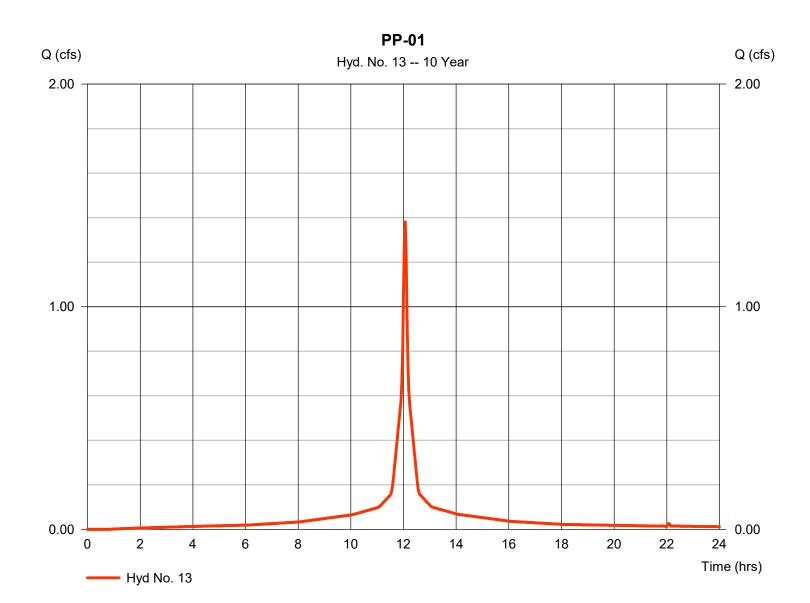

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 12

CB-11

Hydrograph type = SCS Runoff Peak discharge = 0.510 cfsStorm frequency = 10 yrsTime to peak = 12.17 hrsTime interval = 2 min Hyd. volume = 1,986 cuft Drainage area = 0.227 acCurve number = 70 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 10.90 min = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

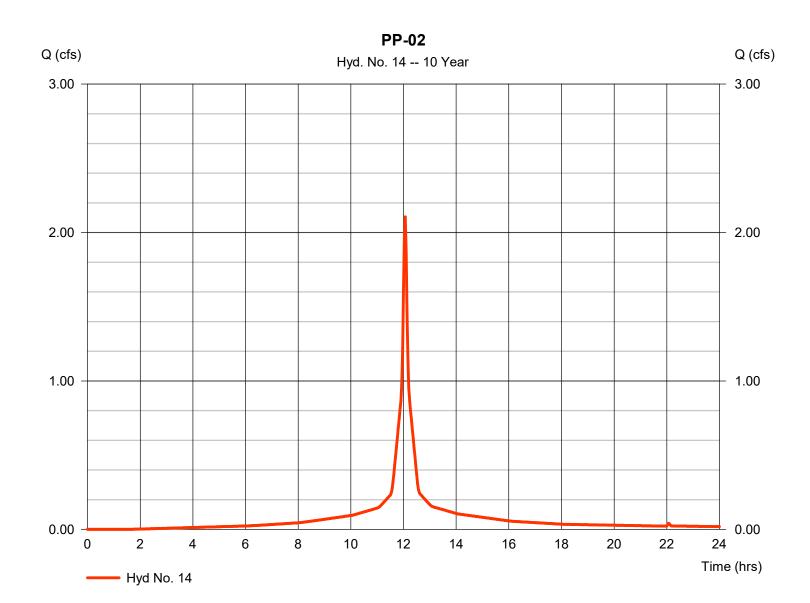

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 13

PP-01

Hydrograph type = SCS Runoff Peak discharge = 1.381 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 4,761 cuftDrainage area = 0.271 acCurve number = 98 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

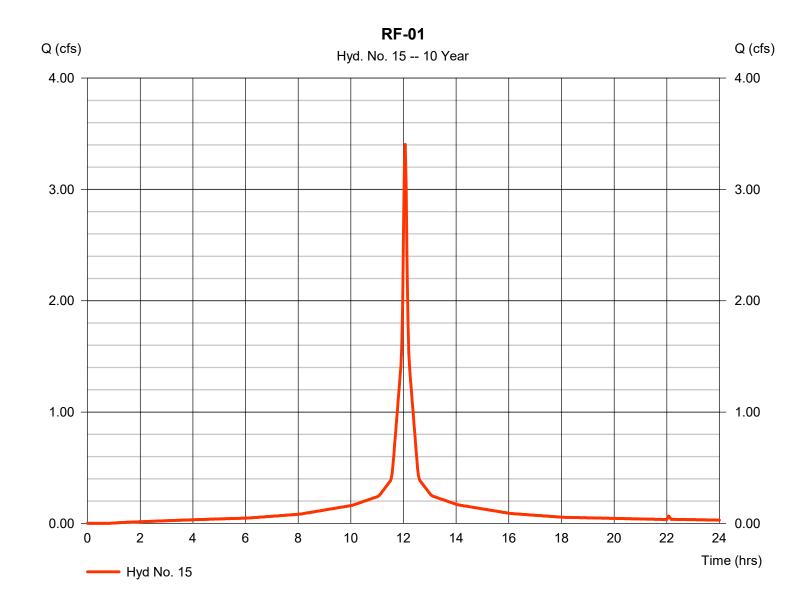

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 14

PP-02

Hydrograph type = SCS Runoff Peak discharge = 2.106 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 7,030 cuftDrainage area Curve number = 0.419 ac= 96 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

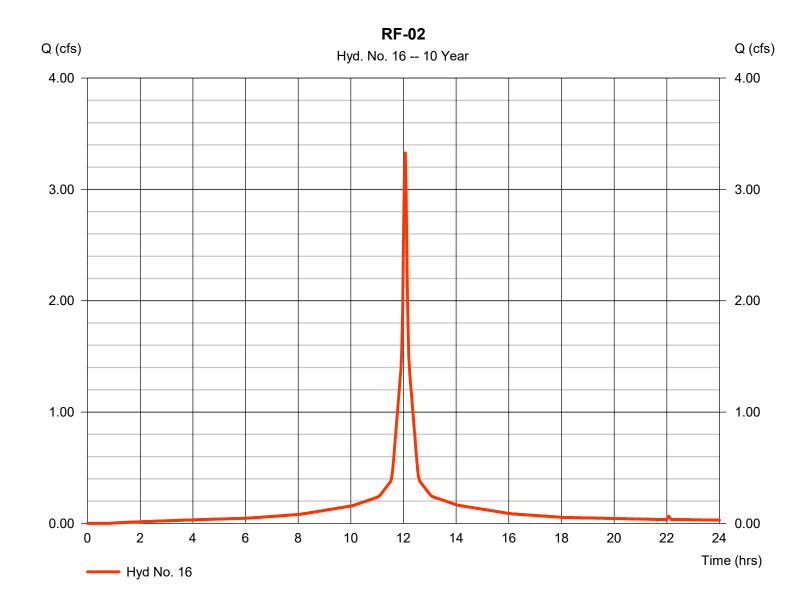

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 15

RF-01

Hydrograph type = SCS Runoff Peak discharge = 3.404 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 11,736 cuft Drainage area Curve number = 0.668 ac= 98 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

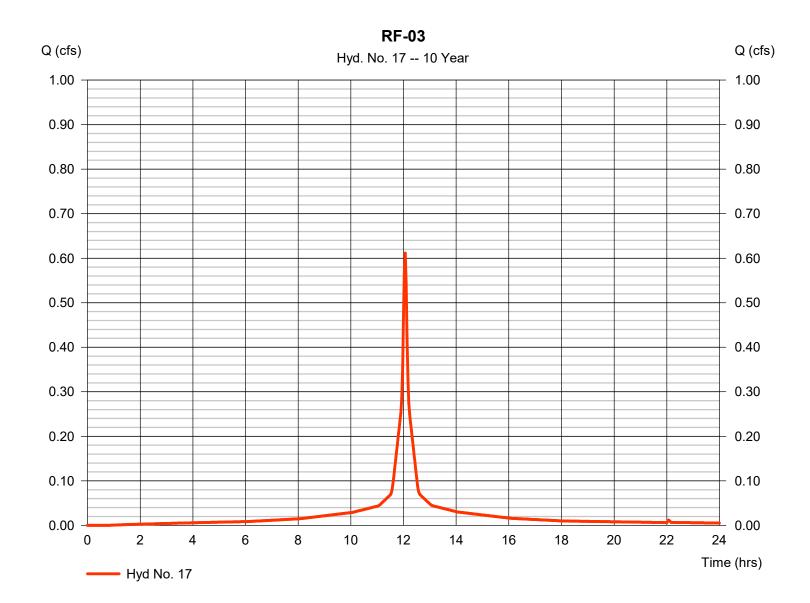

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 16

RF-02

Hydrograph type = SCS Runoff Peak discharge = 3.327 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 11,473 cuft Drainage area Curve number = 0.653 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

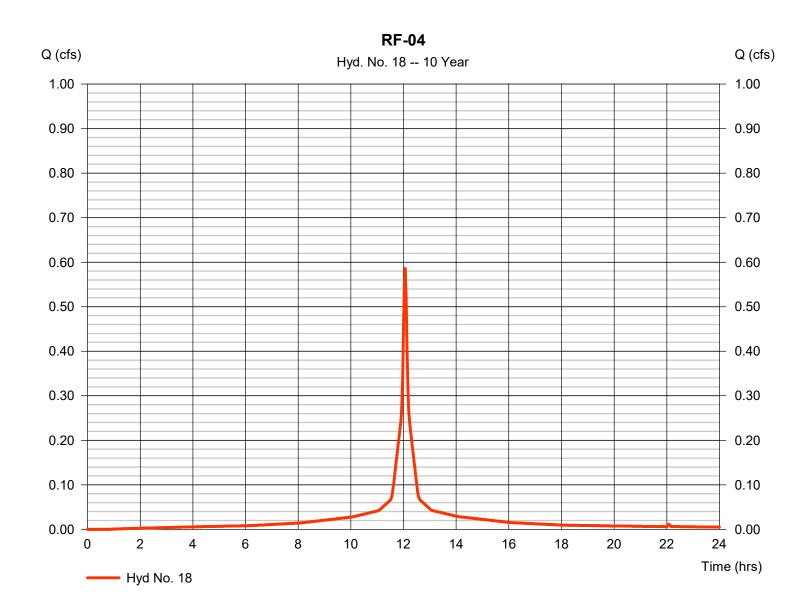

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 17

RF-03

Hydrograph type = SCS Runoff Peak discharge = 0.611 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,108 cuftDrainage area Curve number = 0.120 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

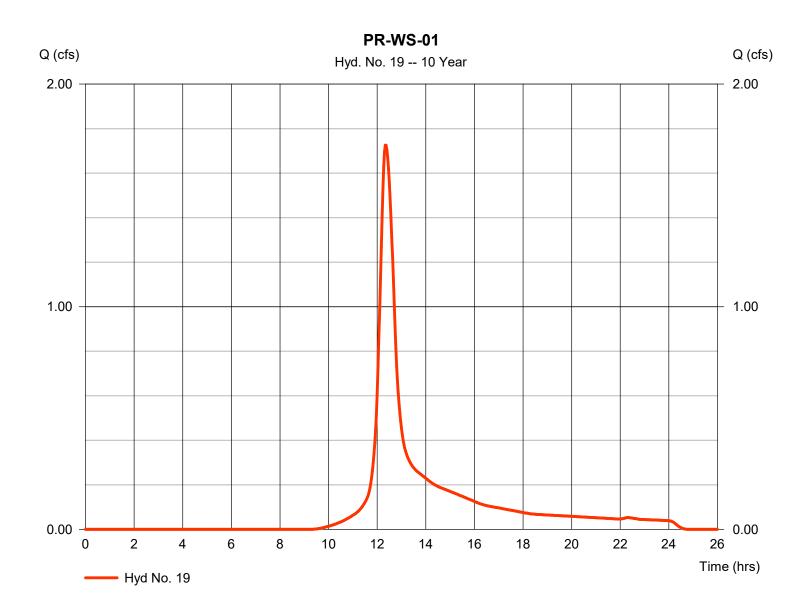

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 18

RF-04

Hydrograph type = SCS Runoff Peak discharge = 0.586 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,020 cuftDrainage area Curve number = 0.115 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

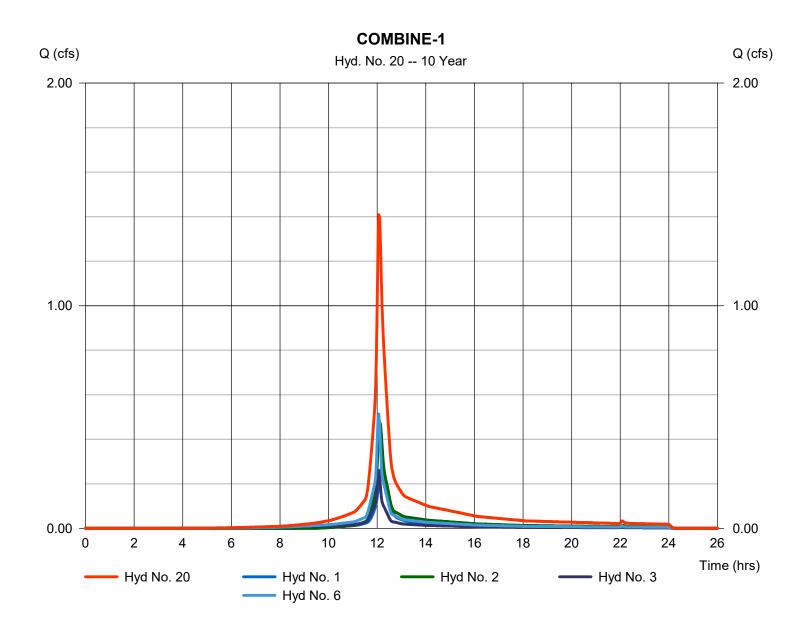

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 19

PR-WS-01

= SCS Runoff Hydrograph type Peak discharge = 1.726 cfsStorm frequency = 10 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 9,131 cuftDrainage area Curve number = 71 = 1.038 acHydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) = 27.60 min = User Total precip. = 5.40 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

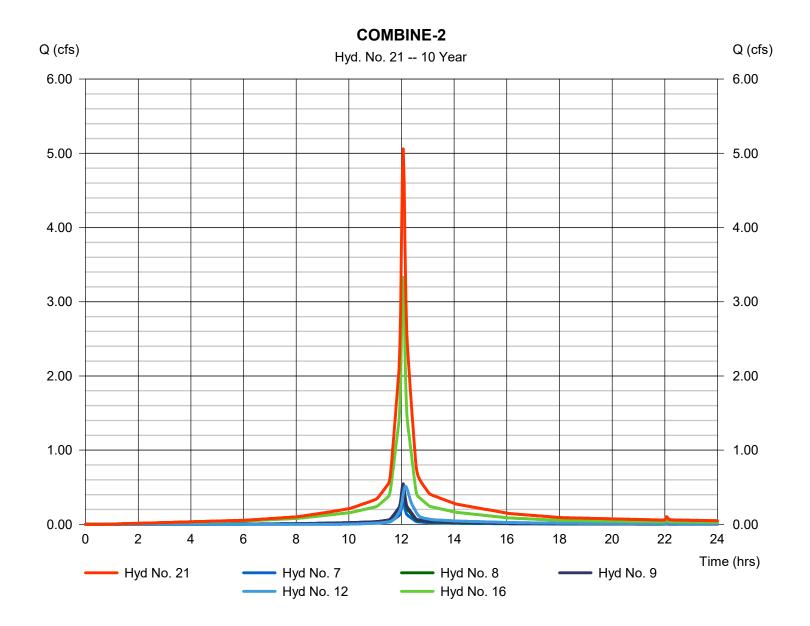

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 20

COMBINE-1

Hydrograph type = Combine Peak discharge = 1.409 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 5,151 cuftInflow hyds. = 1, 2, 3, 6Contrib. drain. area = 0.471 ac

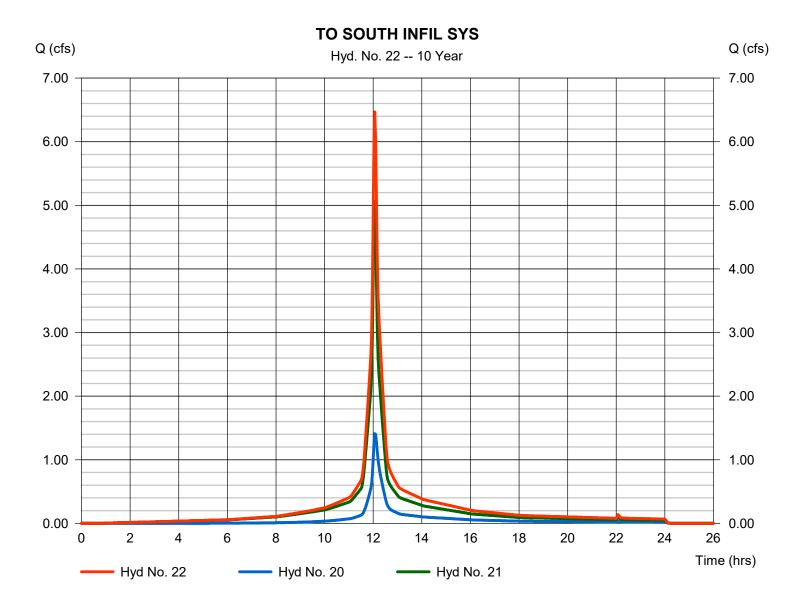

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 21

COMBINE-2

Hydrograph type = Combine Peak discharge = 5.059 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 17,705 cuftInflow hyds. Contrib. drain. area = 1.152 ac= 7, 8, 9, 12, 16


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

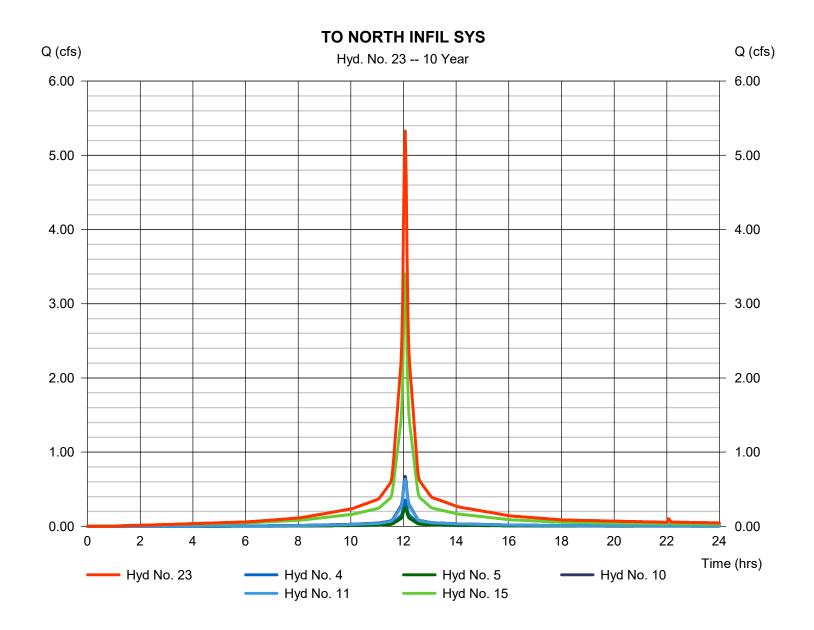
Friday, 07 / 9 / 2021

Hyd. No. 22

TO SOUTH INFIL SYS

Hydrograph type = Combine Peak discharge = 6.468 cfsStorm frequency Time to peak = 10 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 22,856 cuft Inflow hyds. Contrib. drain. area = 20, 21= 0.000 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

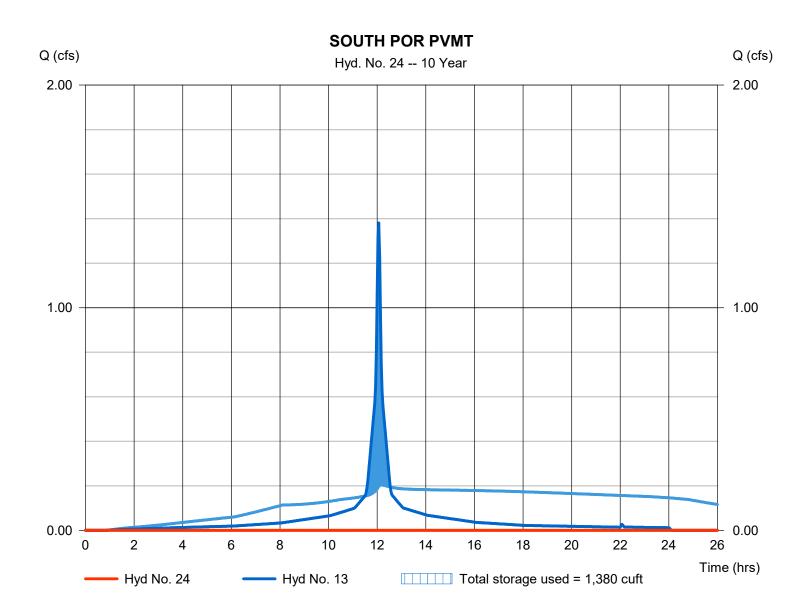

Friday, 07 / 9 / 2021

Hyd. No. 23

TO NORTH INFIL SYS

Hydrograph type= CombinePeak discharge= 5.327 cfsStorm frequency= 10 yrsTime to peak= 12.07 hrsTime interval= 2 minHyd. volume= 17,913 cuft

Inflow hyds. = 4, 5, 10, 11, 15 Contrib. drain. area = 1.065 ac

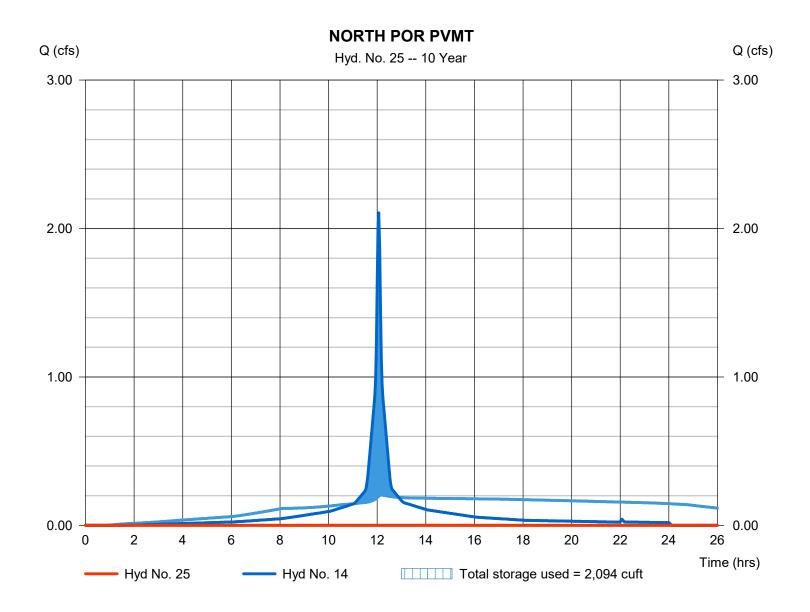

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 24

SOUTH POR PVMT

Hydrograph type = Reservoir Peak discharge = 0.000 cfsStorm frequency = 10 yrsTime to peak $= 13.43 \, hrs$ Time interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. = 13 - PP-01 Max. Elevation = 141.99 ft= SOUTH POROUS PVMT Reservoir name Max. Storage = 1,380 cuft

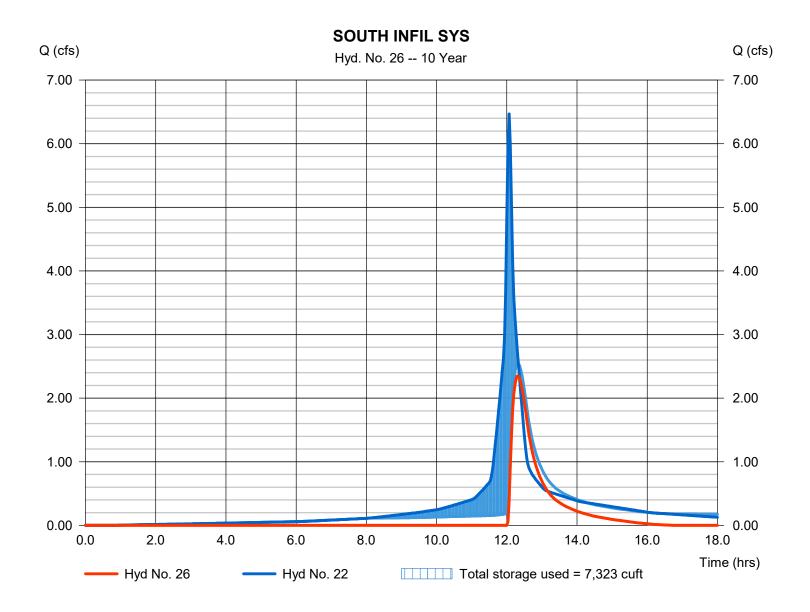

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 25

NORTH POR PVMT

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. Max. Elevation = 14 - PP-02 = 141.48 ftReservoir name = NORTH POROUS PVMT Max. Storage = 2,094 cuft

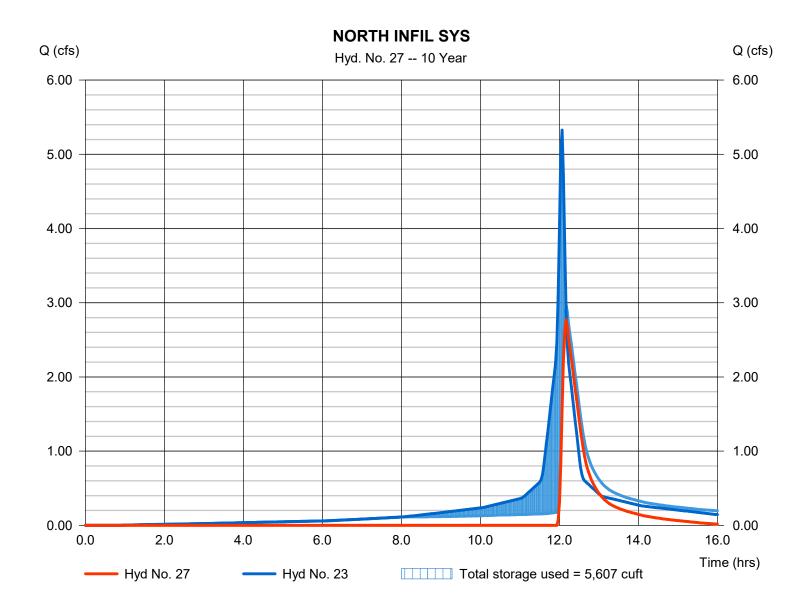

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 26

SOUTH INFIL SYS

Hydrograph type Peak discharge = 2.347 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 12.30 \, hrs$ Time interval = 2 min Hyd. volume = 7,350 cuftMax. Elevation Inflow hyd. No. = 22 - TO SOUTH INFIL SYS $= 143.60 \, \text{ft}$ = SOUTH INFIL SYS Reservoir name Max. Storage = 7,323 cuft

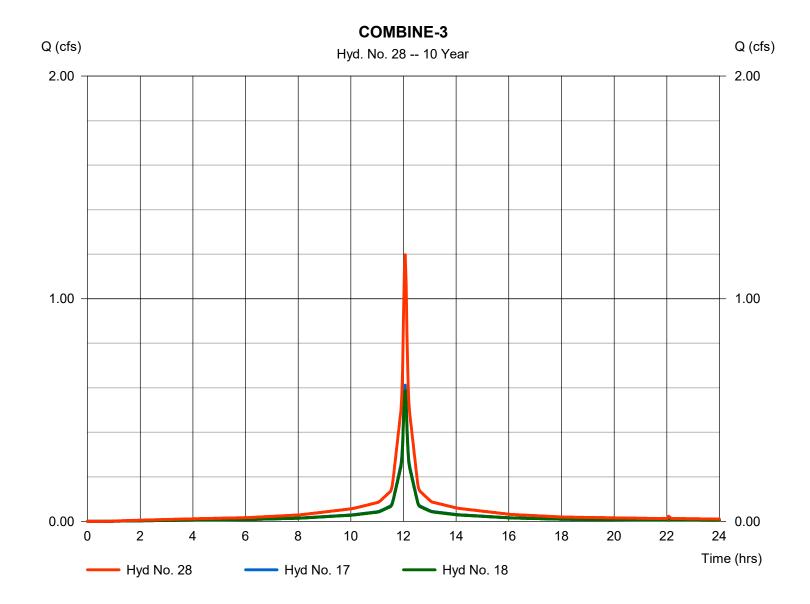

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 27

NORTH INFIL SYS

Hydrograph type Peak discharge = 2.771 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 6.391 cuft= 23 - TO NORTH INFIL SYS Max. Elevation Inflow hyd. No. $= 143.85 \, \text{ft}$ = NORTH INFIL SYS Reservoir name Max. Storage = 5,607 cuft

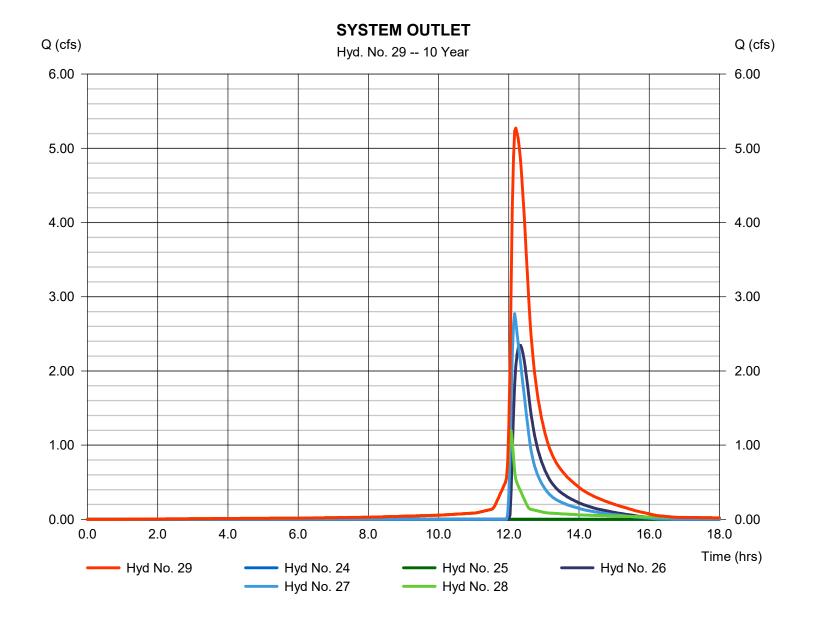

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 28

COMBINE-3

Hydrograph type = Combine Peak discharge = 1.197 cfsTime to peak Storm frequency = 10 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 4,129 cuft Inflow hyds. = 17, 18 Contrib. drain. area = 0.235 ac

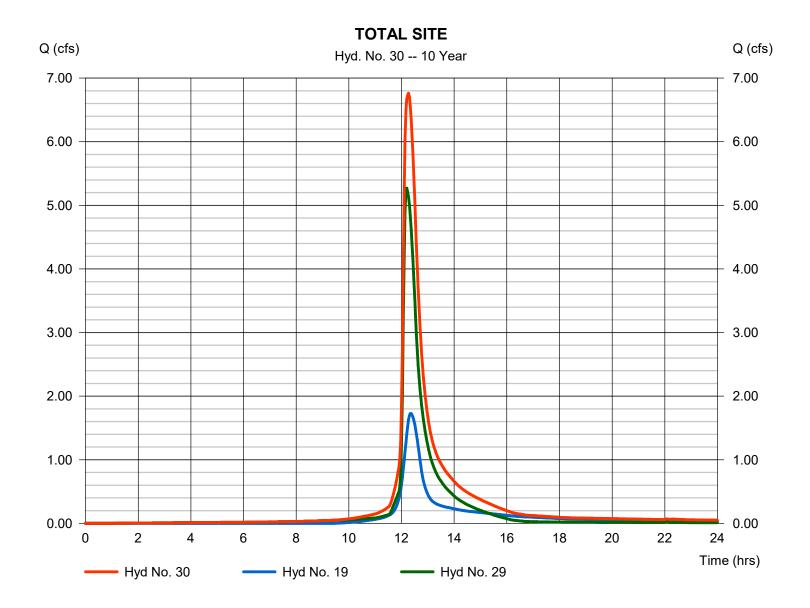

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 29

SYSTEM OUTLET

Hydrograph type = Combine Peak discharge = 5.271 cfsStorm frequency Time to peak = 10 yrs $= 12.20 \, hrs$ Time interval = 2 min Hyd. volume = 17,870 cuftInflow hyds. Contrib. drain. area = 24, 25, 26, 27, 28 = 0.000 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

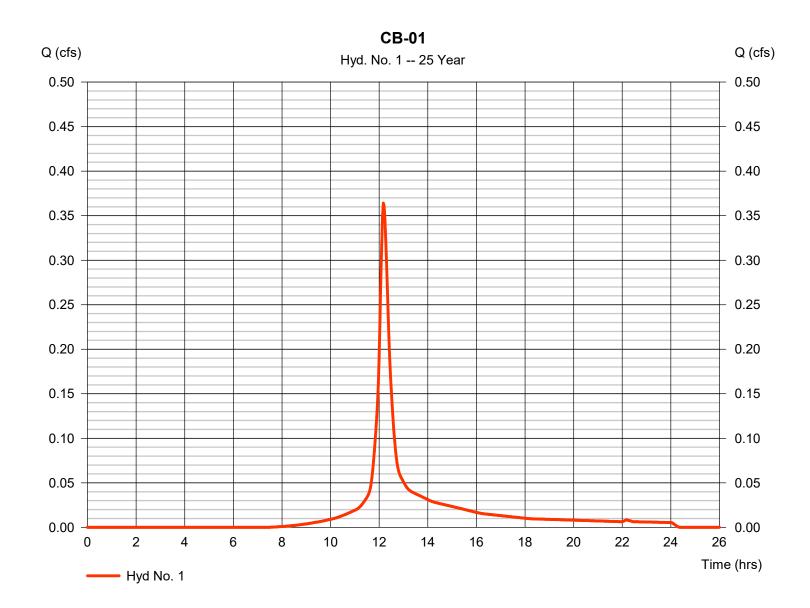
Hyd. No. 30

TOTAL SITE

Hydrograph type = Combine Peak discharge = 6.762 cfsStorm frequency Time to peak = 10 yrs $= 12.27 \, hrs$ Time interval = 2 min Hyd. volume = 27,001 cuftInflow hyds. = 19, 29 Contrib. drain. area = 1.038 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.364	2	730	1,482				CB-01
2	SCS Runoff	0.671	2	726	2,299				CB-01A
3	SCS Runoff	0.321	2	724	1,035				CB-02
4	SCS Runoff	0.439	2	724	1,418				CB-03
5	SCS Runoff	0.318	2	724	1,036				CB-04
6	SCS Runoff	0.648	2	724	2,026				CB-05
7	SCS Runoff	0.364	2	724	1,164				CB-06
8	SCS Runoff	0.594	2	724	1,936				CB-07
9	SCS Runoff	0.672	2	724	2,214				CB-08
10	SCS Runoff	0.830	2	724	2,733				CB-09
11	SCS Runoff	0.790	2	724	2,548				CB-10
12	SCS Runoff	0.720	2	728	2,774				CB-11
13	SCS Runoff	1.683	2	724	5,839				PP-01
14	SCS Runoff	2.577	2	724	8,691				PP-02
15	SCS Runoff	4.148	2	724	14,393				RF-01
16	SCS Runoff	4.055	2	724	14,070				RF-02
17	SCS Runoff	0.745	2	724	2,586				RF-03
18	SCS Runoff	0.714	2	724	2,478				RF-04
19	SCS Runoff	2.421	2	740	12,677				PR-WS-01
20	Combine	1.865	2	724	6,841	1, 2, 3,			COMBINE-1
21	Combine	6.276	2	724	22,157	6, 7, 8, 9, 12, 16,			COMBINE-2
22	Combine	8.142	2	724	28,998	20, 21			TO SOUTH INFIL SYS
23	Combine	6.525	2	724	22,128	4, 5, 10,			TO NORTH INFIL SYS
24	Reservoir	0.036	2	742	49	11, 15, 13	142.11	1,721	SOUTH POR PVMT
25	Reservoir	0.031	2	744	42	14	141.60	2,632	NORTH POR PVMT
26	Reservoir	3.888	2	734	11,946	22	143.96	8,508	SOUTH INFIL SYS
27	Reservoir	4.442	2	728	9,585	23	144.19	6,181	NORTH INFIL SYS
28	Combine	1.459	2	724	5,063	17, 18,			COMBINE-3
29	Combine	8.975	2	728	26,685	24, 25, 26,			SYSTEM OUTLET
30	Combine	10.69	2	730	39,362	27, 28 19, 29			TOTAL SITE
F0173-02 Hydrographs - Proposed.gpw					Return Period: 25 Year			Friday, 07 / 9 / 2021	

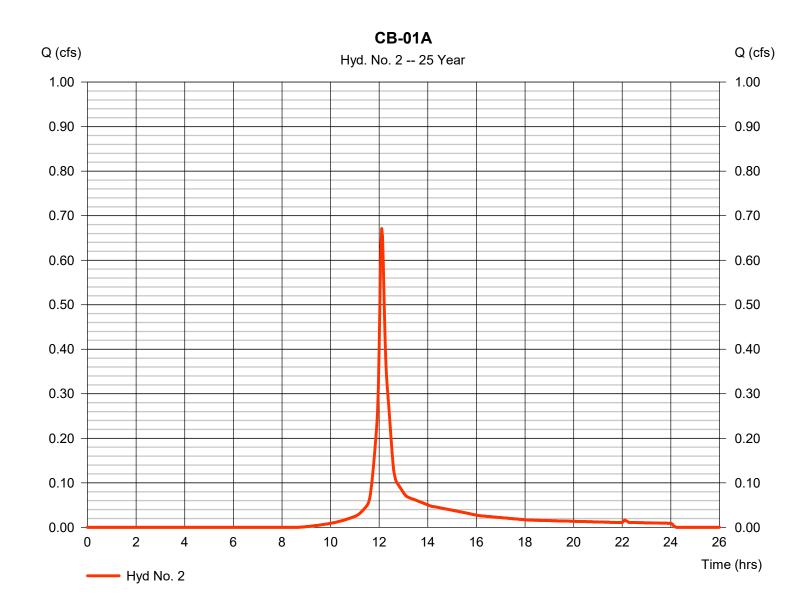

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 1

CB-01

Hydrograph type = SCS Runoff Peak discharge = 0.364 cfsStorm frequency = 25 yrs Time to peak = 12.17 hrsTime interval = 2 min Hyd. volume = 1,482 cuft Drainage area Curve number = 0.108 ac= 76 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 14.20 min = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

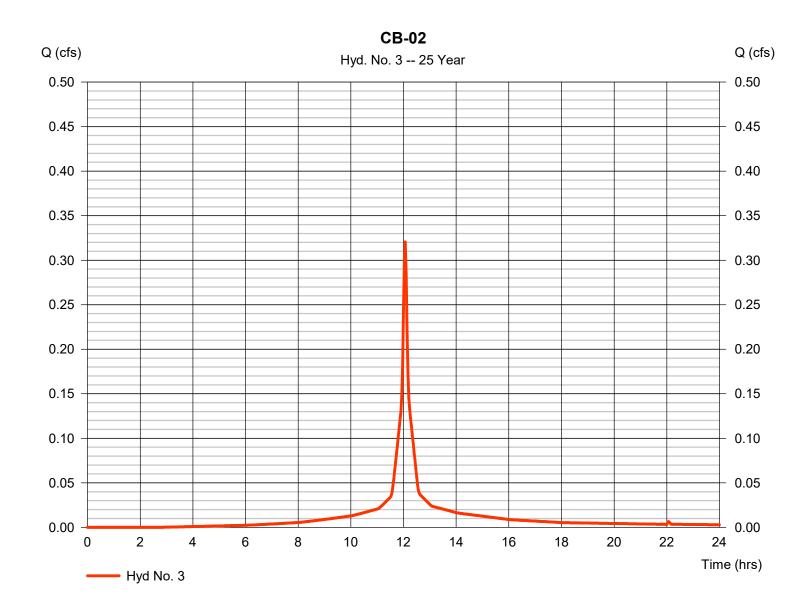

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 2

CB-01A

Hydrograph type = SCS Runoff Peak discharge = 0.671 cfsStorm frequency = 25 yrs Time to peak $= 12.10 \, hrs$ Time interval = 2 min Hyd. volume = 2.299 cuft Drainage area Curve number = 0.194 ac= 70 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 7.80 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 3

CB-02

Hydrograph type = SCS Runoff Peak discharge = 0.321 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,035 cuftDrainage area Curve number = 0.054 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

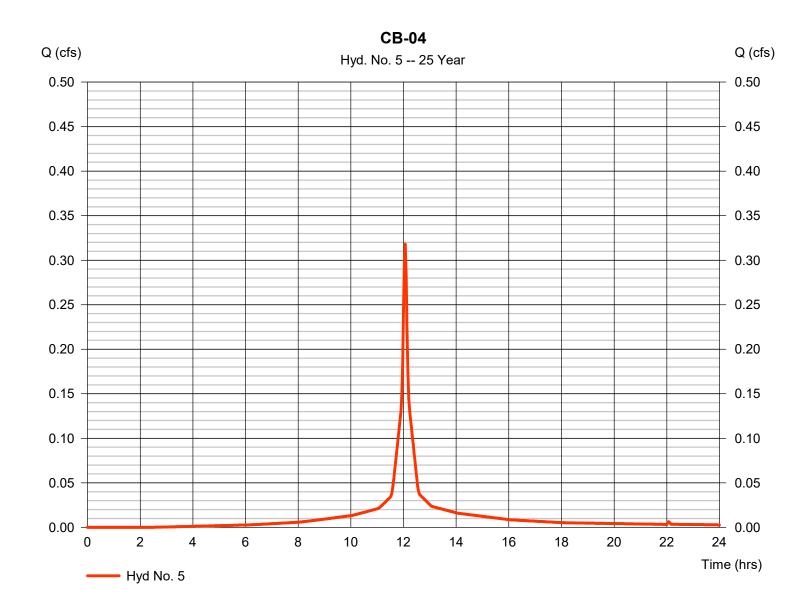
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 4

CB-03

Hydrograph type = SCS Runoff Peak discharge = 0.439 cfsStorm frequency = 25 yrs Time to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 1,418 cuft Drainage area Curve number = 0.074 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

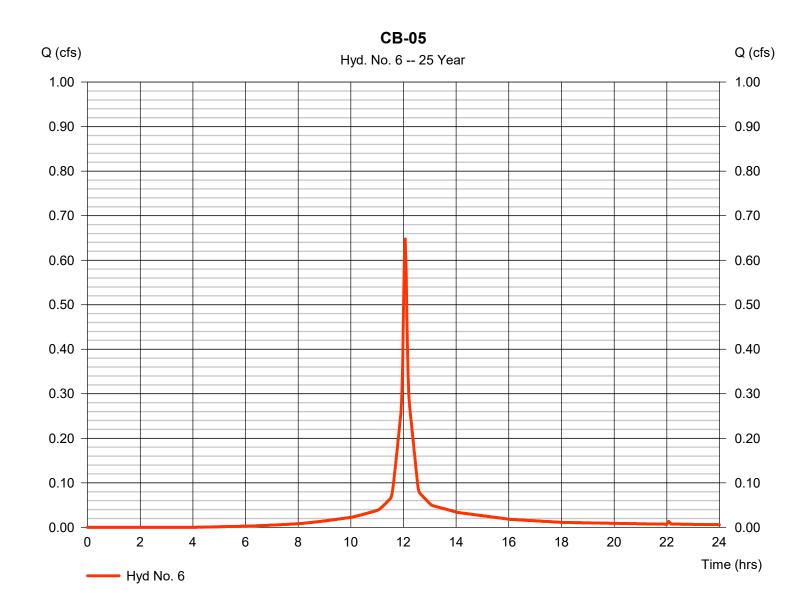

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 5

CB-04

Hydrograph type = SCS Runoff Peak discharge = 0.318 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,036 cuftDrainage area Curve number = 0.053 ac= 93 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

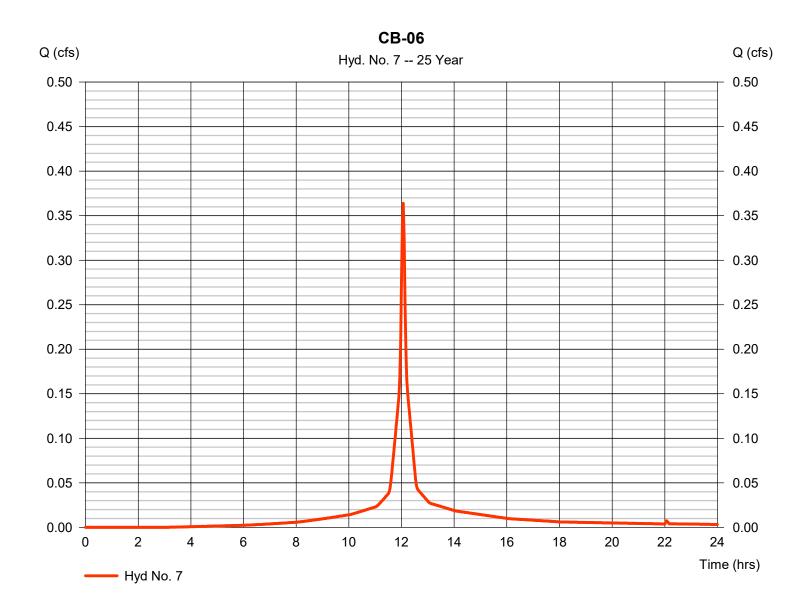

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 6

CB-05

Hydrograph type = SCS Runoff Peak discharge = 0.648 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,026 cuftDrainage area Curve number = 0.115 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

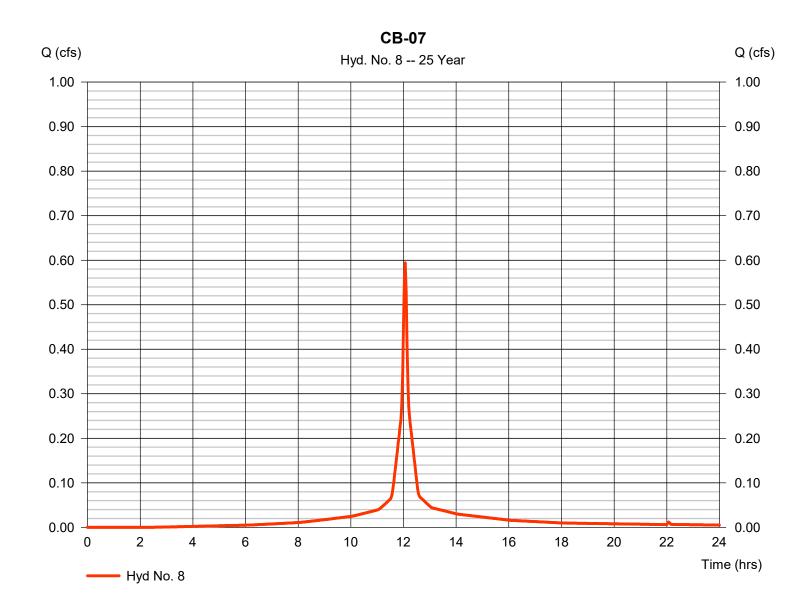

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 7

CB-06

Hydrograph type = SCS Runoff Peak discharge = 0.364 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,164 cuft Drainage area Curve number = 0.062 ac= 91 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

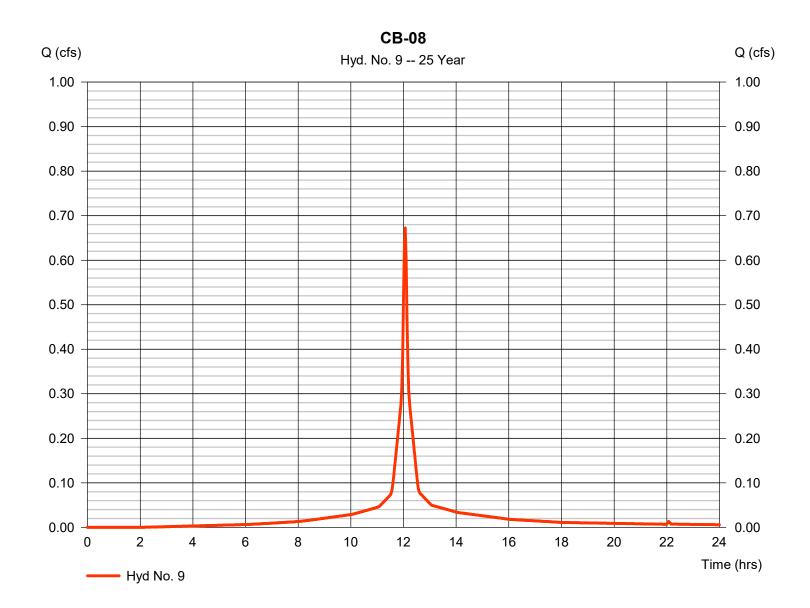

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 8

CB-07

Hydrograph type = SCS Runoff Peak discharge = 0.594 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,936 cuft Drainage area Curve number = 0.099 ac= 93 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

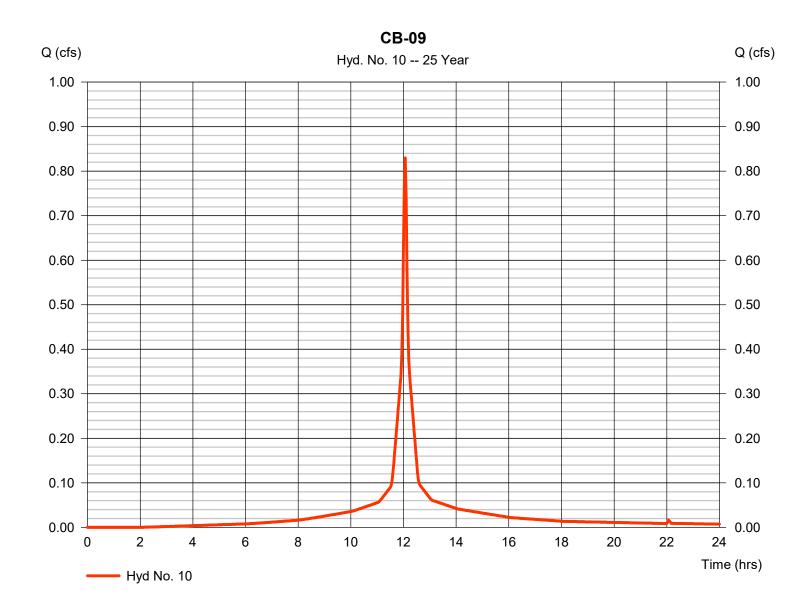

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 9

CB-08

Hydrograph type = SCS Runoff Peak discharge = 0.672 cfsStorm frequency = 25 yrs Time to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,214 cuft Drainage area = 0.111 acCurve number = 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.50 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

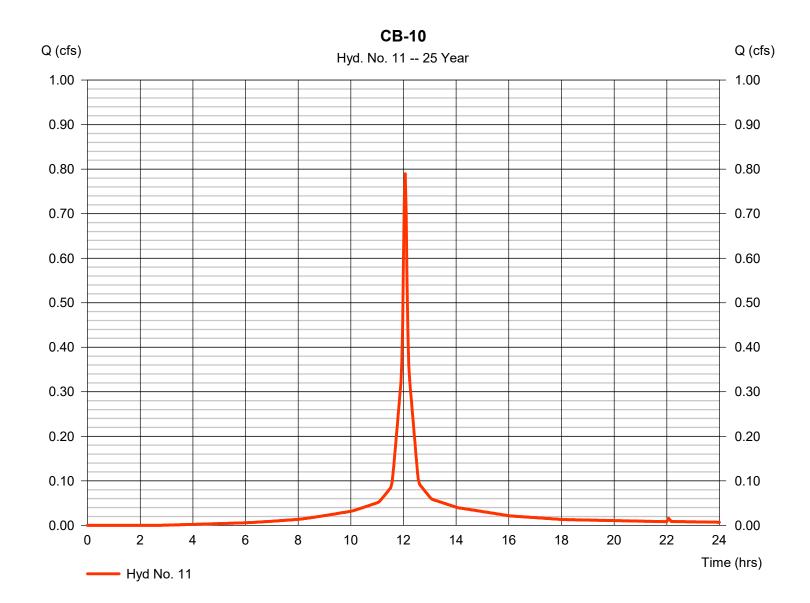

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 10

CB-09

Hydrograph type = SCS Runoff Peak discharge = 0.830 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,733 cuftDrainage area Curve number = 0.137 ac= 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

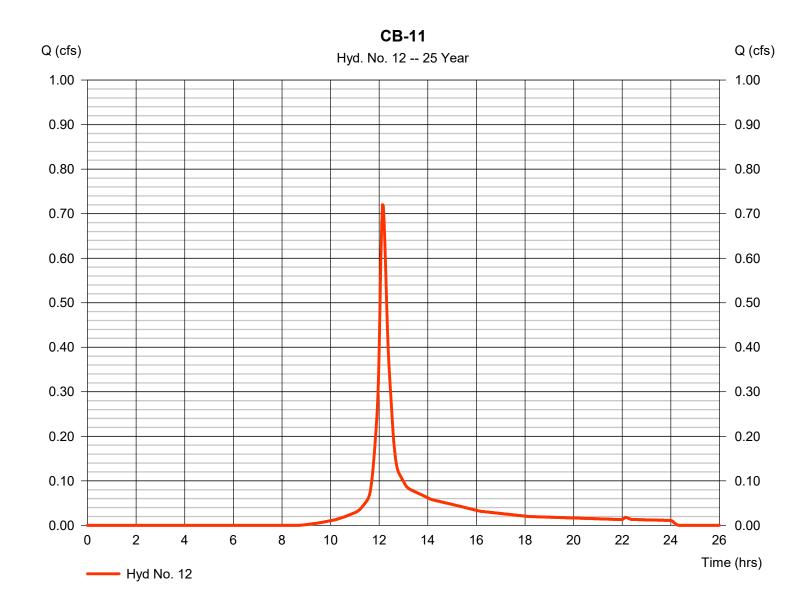

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 11

CB-10

Hydrograph type = SCS Runoff Peak discharge = 0.790 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,548 cuftDrainage area Curve number = 0.133 ac= 92 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

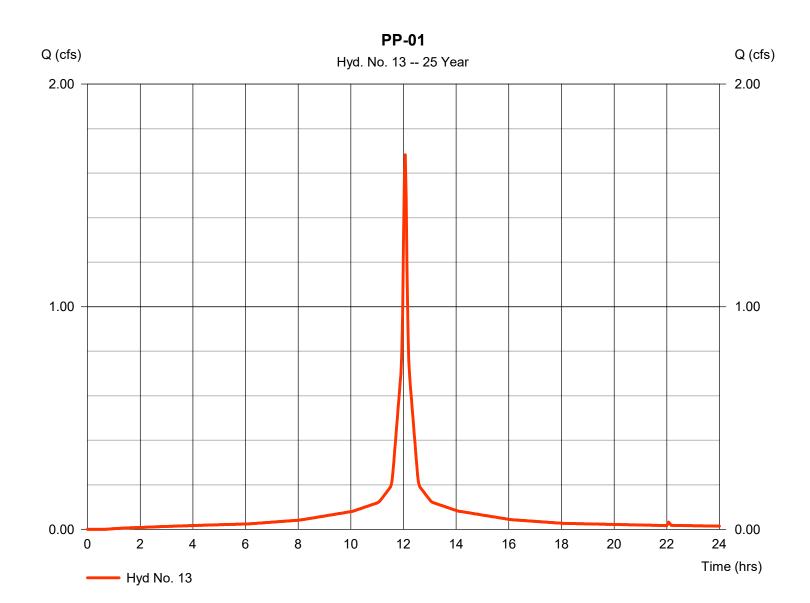

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 12

CB-11

Hydrograph type = SCS Runoff Peak discharge = 0.720 cfsStorm frequency = 25 yrs Time to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 2.774 cuftDrainage area = 0.227 acCurve number = 70 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 10.90 min = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

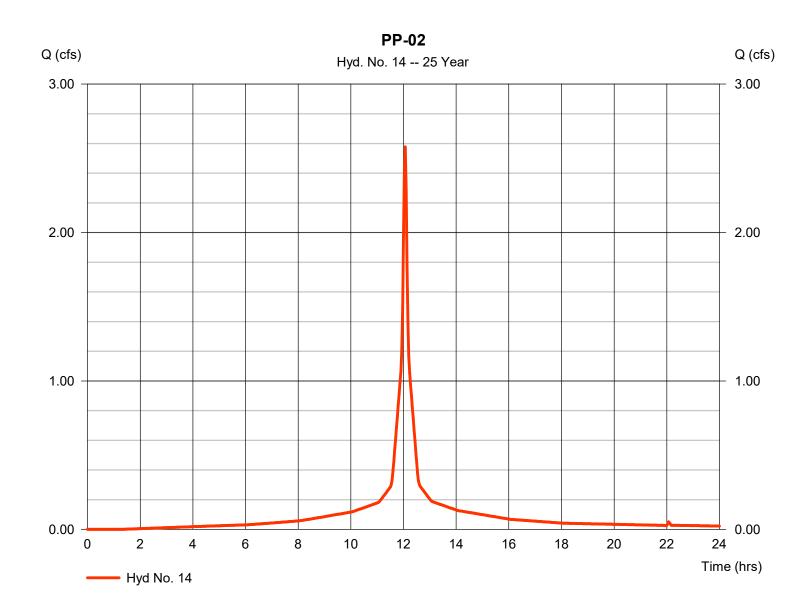

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 13

PP-01

= SCS Runoff Hydrograph type Peak discharge = 1.683 cfsStorm frequency = 25 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 5.839 cuftDrainage area = 0.271 acCurve number = 98 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 14

PP-02

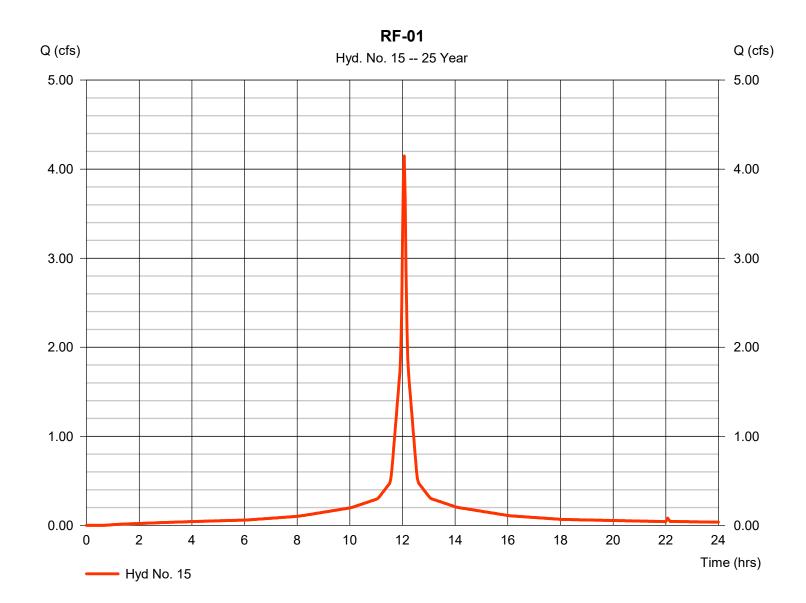
= SCS Runoff Hydrograph type Peak discharge = 2.577 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 8,691 cuft Drainage area Curve number = 0.419 ac= 96 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

= 24 hrs

Friday, 07 / 9 / 2021

= 484

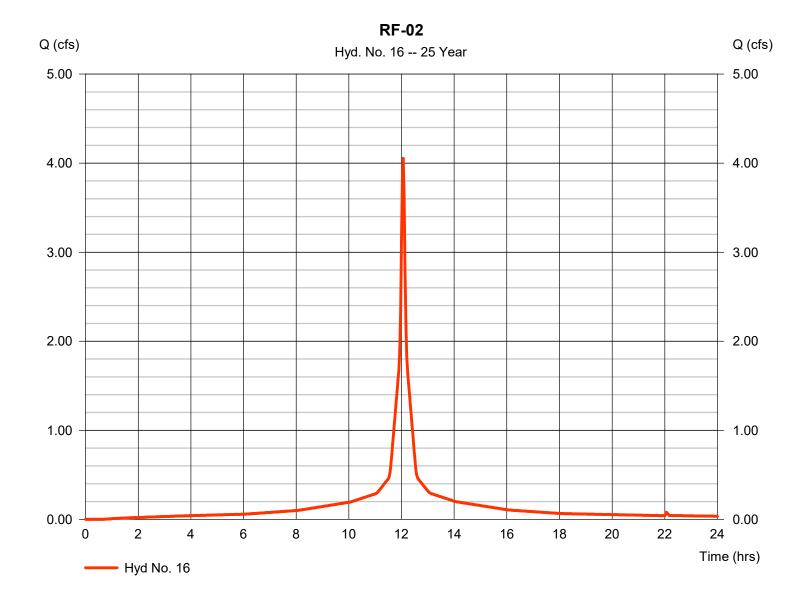

Hyd. No. 15

Storm duration

RF-01

Hydrograph type = SCS Runoff Peak discharge = 4.148 cfsStorm frequency = 25 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 14,393 cuft Curve number Drainage area = 0.668 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III

Shape factor

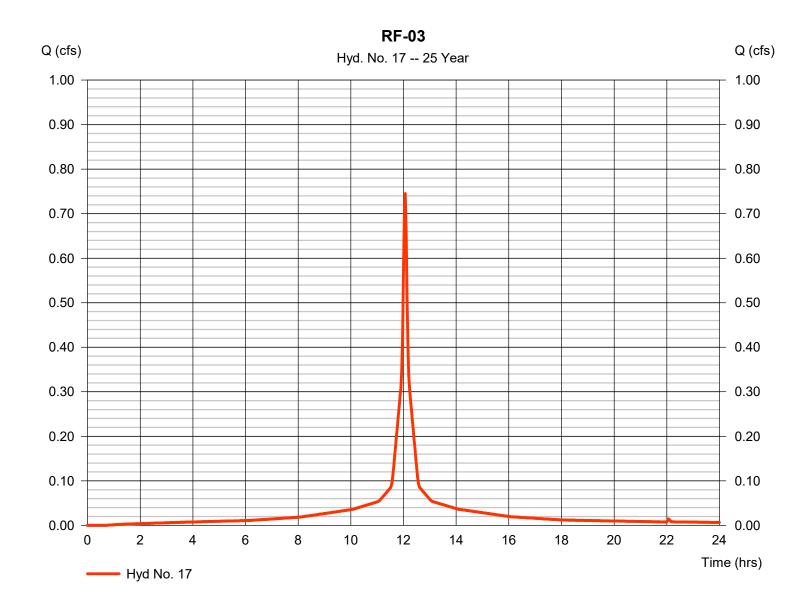

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 16

RF-02

Hydrograph type = SCS Runoff Peak discharge = 4.055 cfsStorm frequency = 25 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 14,070 cuftDrainage area Curve number = 0.653 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

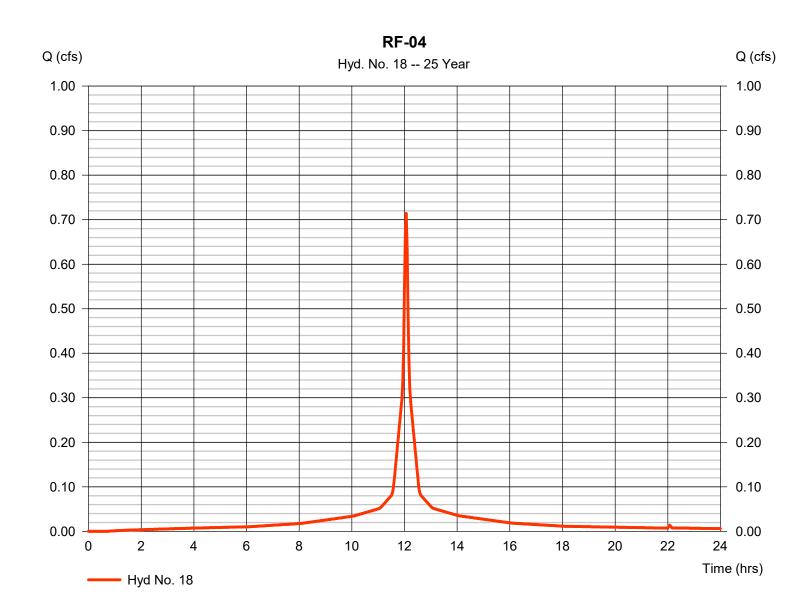

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 17

RF-03

Hydrograph type = SCS Runoff Peak discharge = 0.745 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,586 cuftDrainage area Curve number = 0.120 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

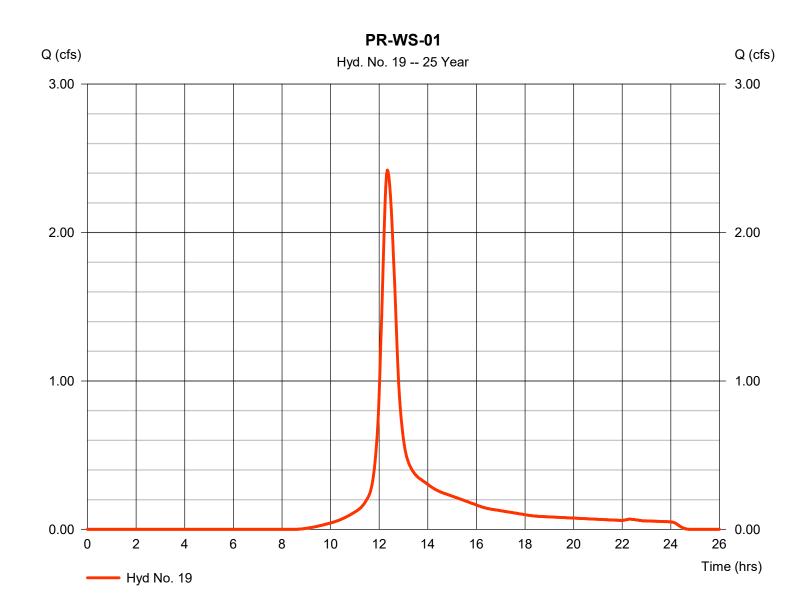

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 18

RF-04

Hydrograph type = SCS Runoff Peak discharge = 0.714 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,478 cuftDrainage area Curve number = 0.115 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

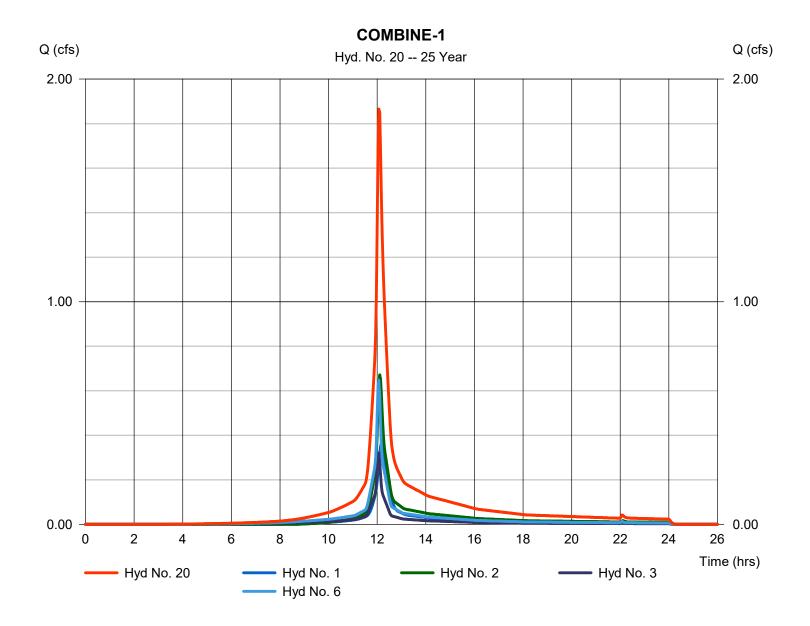

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 19

PR-WS-01

= SCS Runoff Hydrograph type Peak discharge = 2.421 cfsStorm frequency = 25 yrs Time to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 12,677 cuft Drainage area Curve number = 1.038 ac= 71 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 27.60 min = User Total precip. = 6.57 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

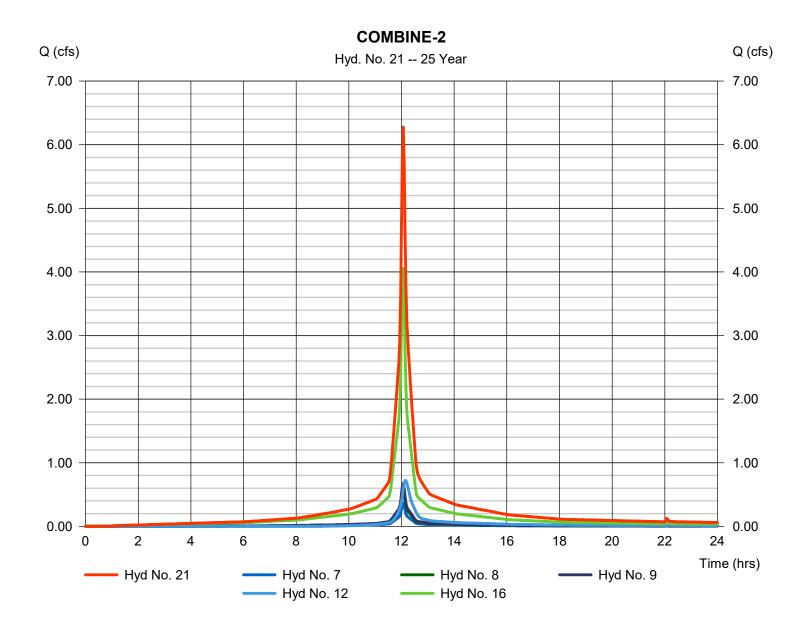

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 20

COMBINE-1

Hydrograph type = Combine Peak discharge = 1.865 cfsStorm frequency = 25 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 6,841 cuft Inflow hyds. = 1, 2, 3, 6Contrib. drain. area = 0.471 ac

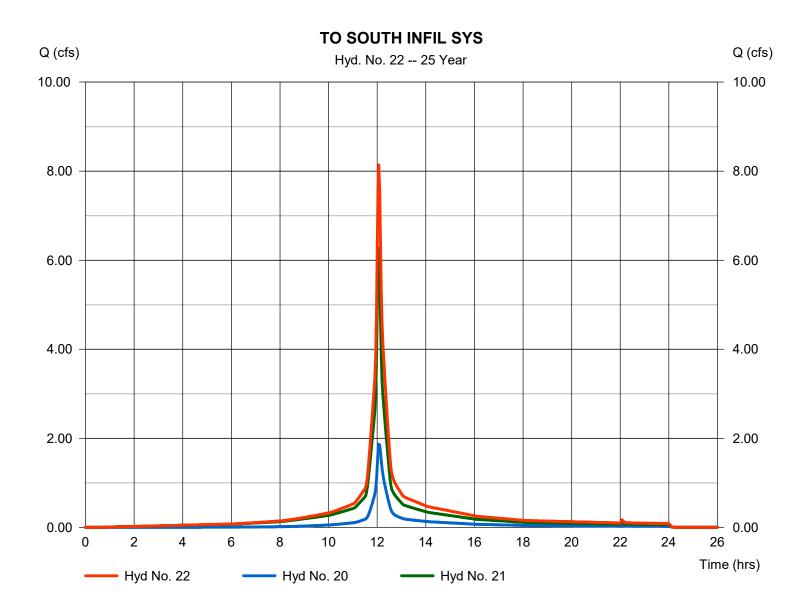

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 21

COMBINE-2

Hydrograph type = Combine Peak discharge = 6.276 cfsStorm frequency Time to peak = 25 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 22,157 cuft Inflow hyds. = 7, 8, 9, 12, 16 Contrib. drain. area = 1.152 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 22

TO SOUTH INFIL SYS

Hydrograph type = Combine Peak discharge = 8.142 cfsStorm frequency Time to peak = 25 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 28,998 cuft Inflow hyds. = 20, 21 Contrib. drain. area = 0.000 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

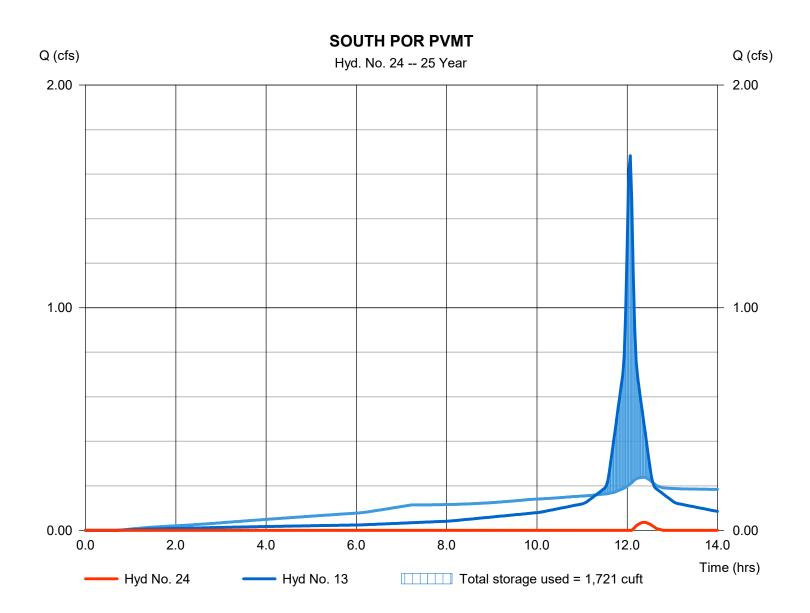
Friday, 07 / 9 / 2021

Hyd. No. 23

TO NORTH INFIL SYS

Hydrograph type = Combine Peak discharge = 6.525 cfsStorm frequency Time to peak = 25 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 22,128 cuft Inflow hyds. = 4, 5, 10, 11, 15 Contrib. drain. area = 1.065 ac

TO NORTH INFIL SYS Q (cfs) Q (cfs) Hyd. No. 23 -- 25 Year 7.00 7.00 6.00 6.00 5.00 5.00 4.00 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 2 6 8 10 12 14 16 18 20 22 24 Time (hrs) Hyd No. 5 Hyd No. 23 Hyd No. 4 Hyd No. 10 Hyd No. 11 - Hyd No. 15

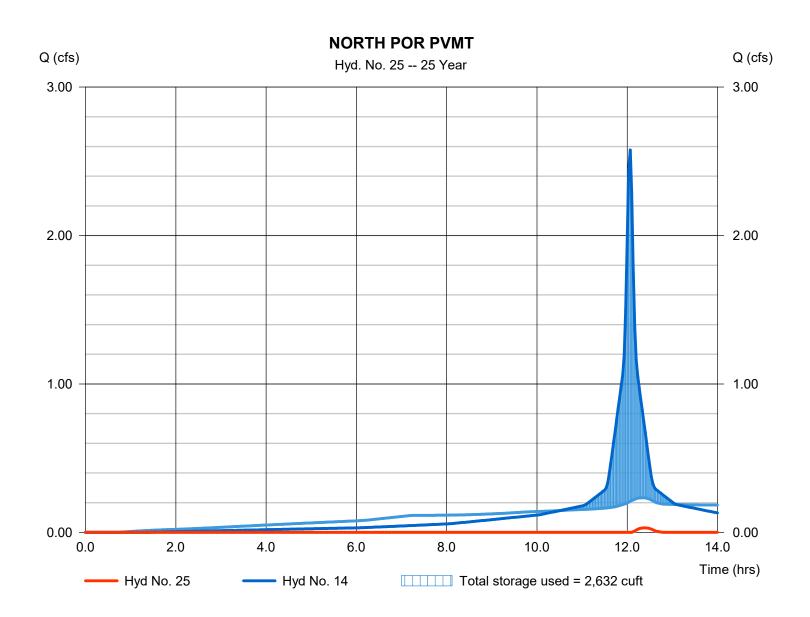

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 24

SOUTH POR PVMT

Hydrograph type = Reservoir Peak discharge = 0.036 cfsStorm frequency = 25 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 49 cuft = 13 - PP-01 Max. Elevation Inflow hyd. No. $= 142.11 \, \text{ft}$ = SOUTH POROUS PVMT Reservoir name Max. Storage = 1,721 cuft

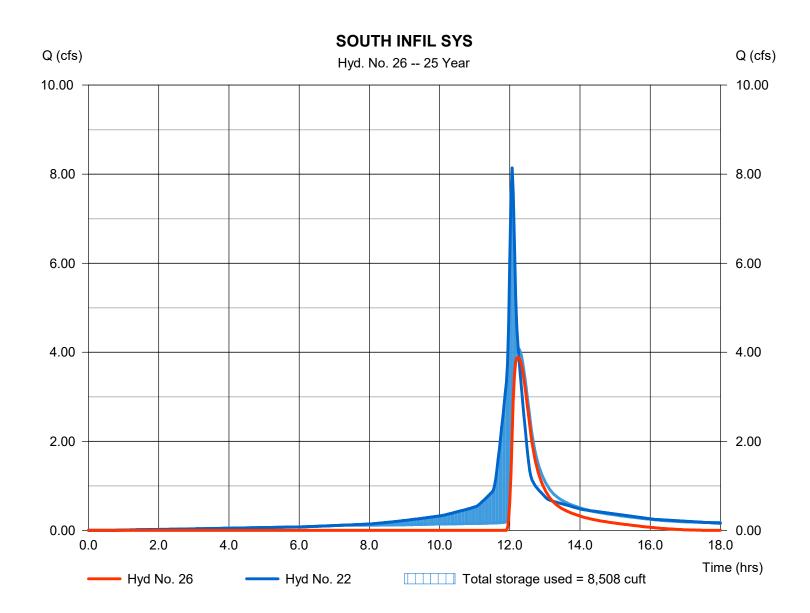

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 25

NORTH POR PVMT

Hydrograph type Peak discharge = 0.031 cfs= Reservoir Storm frequency = 25 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 42 cuft Max. Elevation = 141.60 ftInflow hyd. No. = 14 - PP-02 Reservoir name = NORTH POROUS PVMT Max. Storage = 2,632 cuft

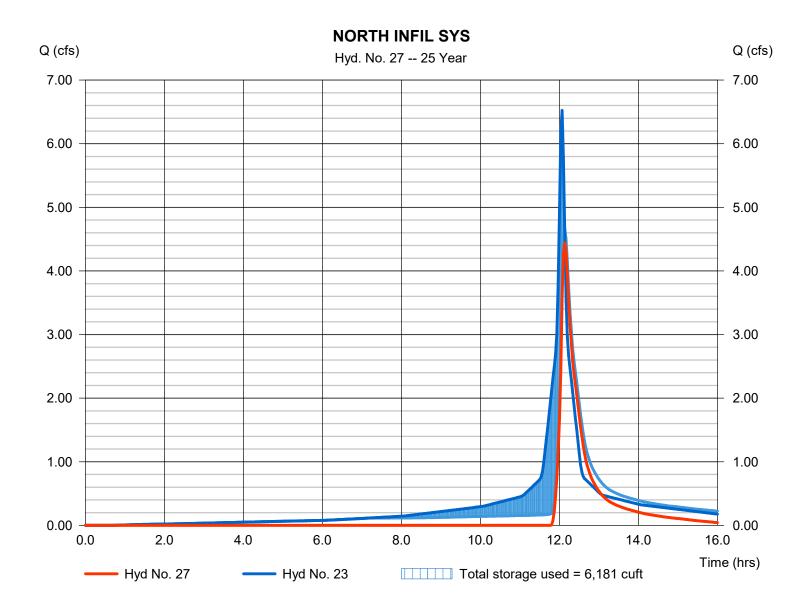

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 26

SOUTH INFIL SYS

Hydrograph type = Reservoir Peak discharge = 3.888 cfsStorm frequency = 25 yrsTime to peak $= 12.23 \, hrs$ Time interval = 2 min Hyd. volume = 11,946 cuft Inflow hyd. No. Max. Elevation = 22 - TO SOUTH INFIL SYS = 143.96 ft= SOUTH INFIL SYS Reservoir name Max. Storage = 8,508 cuft

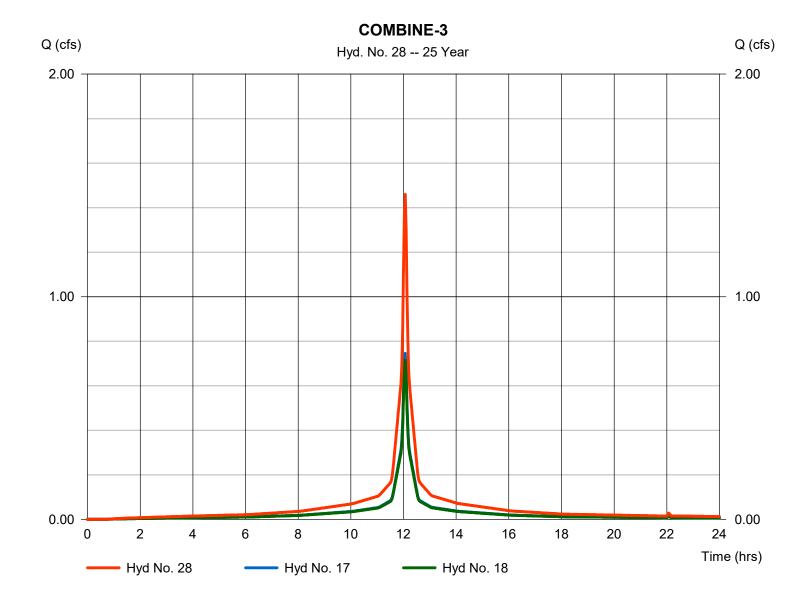

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 27

NORTH INFIL SYS

Hydrograph type Peak discharge = 4.442 cfs= Reservoir Storm frequency = 25 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 9,585 cuft = 23 - TO NORTH INFIL SYS Max. Elevation Inflow hyd. No. = 144.19 ft= NORTH INFIL SYS Reservoir name Max. Storage = 6,181 cuft

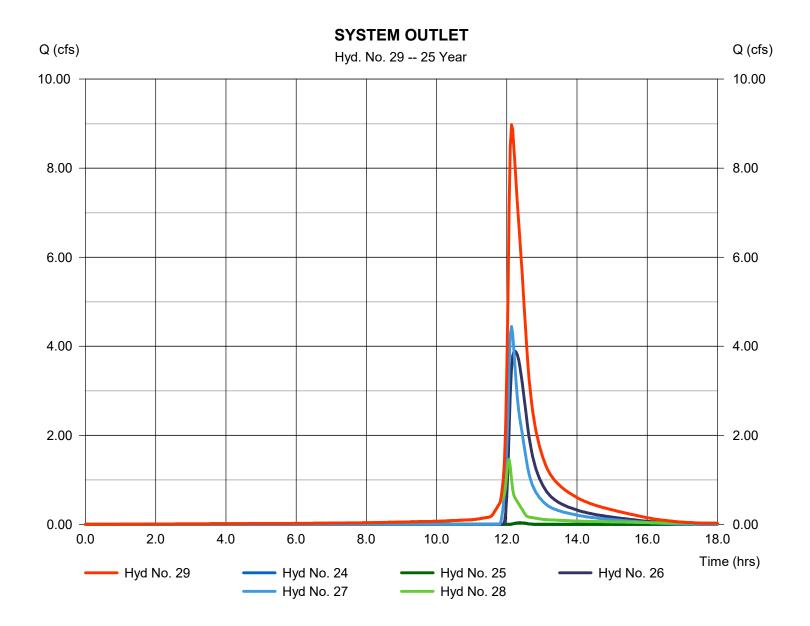

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 28

COMBINE-3

Hydrograph type = Combine Peak discharge = 1.459 cfsTime to peak Storm frequency = 25 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 5,063 cuftInflow hyds. = 17, 18 Contrib. drain. area = 0.235 ac

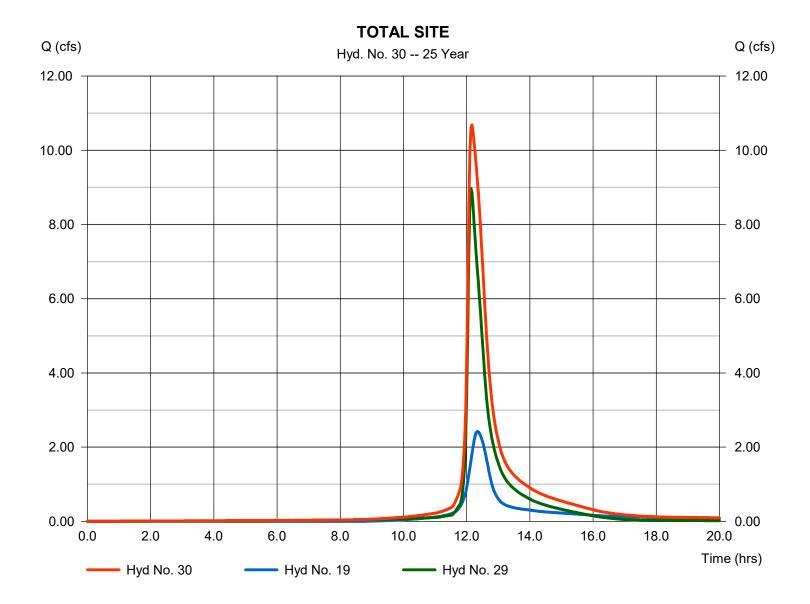

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 29

SYSTEM OUTLET

Hydrograph type = Combine Peak discharge = 8.975 cfsStorm frequency Time to peak = 25 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 26,685 cuft Inflow hyds. = 24, 25, 26, 27, 28 Contrib. drain. area = 0.000 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

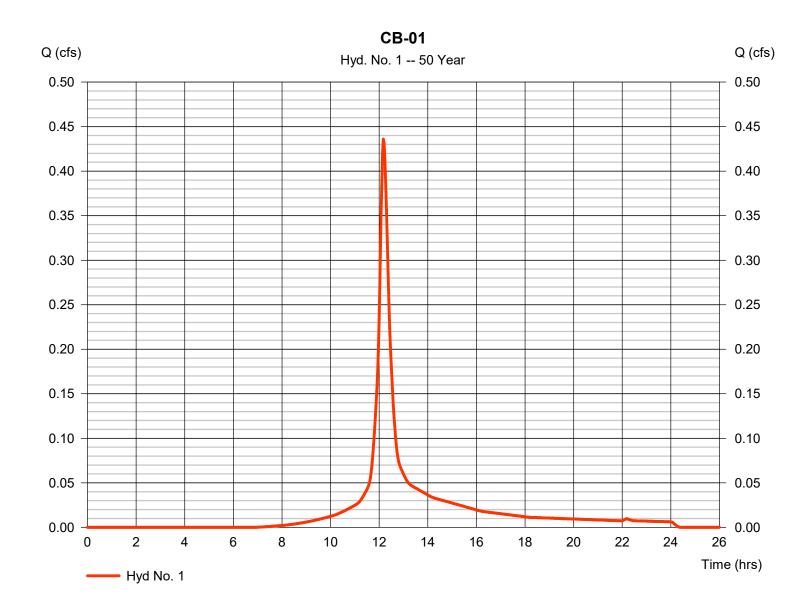
Hyd. No. 30

TOTAL SITE

Hydrograph type = Combine Peak discharge = 10.69 cfsStorm frequency Time to peak = 25 yrs $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 39,362 cuft Inflow hyds. = 19, 29Contrib. drain. area = 1.038 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.436	2	730	1,778				CB-01
2	SCS Runoff	0.822	2	726	2,808				CB-01A
3	SCS Runoff	0.366	2	724	1,193				CB-02
4	SCS Runoff	0.502	2	724	1,634				CB-03
5	SCS Runoff	0.363	2	724	1,192				CB-04
6	SCS Runoff	0.747	2	724	2,357				CB-05
7	SCS Runoff	0.417	2	724	1,344				CB-06
8	SCS Runoff	0.678	2	724	2,226				CB-07
9	SCS Runoff	0.766	2	724	2,540				CB-08
10	SCS Runoff	0.945	2	724	3,136				CB-09
11	SCS Runoff	0.902	2	724	2,937				CB-10
12	SCS Runoff	0.883	2	728	3,388				CB-11
13	SCS Runoff	1.907	2	724	6,641				PP-01
14	SCS Runoff	2.926	2	724	9,928				PP-02
15	SCS Runoff	4.701	2	724	16,369				RF-01
16	SCS Runoff	4.595	2	724	16,001				RF-02
17	SCS Runoff	0.844	2	724	2,941				RF-03
18	SCS Runoff	0.809	2	724	2,818				RF-04
19	SCS Runoff	2.955	2	740	15,436				PR-WS-01
20	Combine	2.210	2	724	8,135	1, 2, 3,			COMBINE-1
21	Combine	7.186	2	724	25,500	6, 7, 8, 9, 12, 16,			COMBINE-2
22	Combine	9.396	2	724	33,635	20, 21			TO SOUTH INFIL SYS
23	Combine	7.413	2	724	25,268	4, 5, 10,			TO NORTH INFIL SYS
24	Reservoir	0.106	2	742	184	11, 15, 13	142.19	1,961	SOUTH POR PVMT
25	Reservoir	0.105	2	744	188	14	141.69	3,036	NORTH POR PVMT
26	Reservoir	5.328	2	732	15,547	22	144.41	9,347	SOUTH INFIL SYS
27	Reservoir	5.575	2	728	12,049	23	144.56	6,462	NORTH INFIL SYS
28	Combine	1.654	2	724	5,759	17, 18,			COMBINE-3
29	Combine	11.51	2	728	33,726	24, 25, 26,			SYSTEM OUTLET
30	Combine	13.64	2	730	49,162	27, 28 19, 29			TOTAL SITE
F0173-02 Hydrographs - Proposed.gpw					Return Period: 50 Year			Friday, 07 / 9 / 2021	

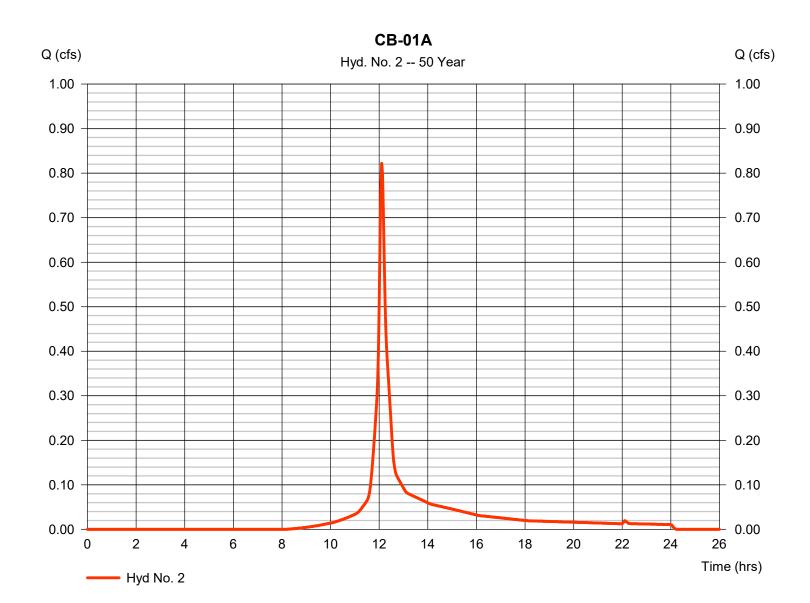

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 1

CB-01

Hydrograph type = SCS Runoff Peak discharge = 0.436 cfsStorm frequency = 50 yrsTime to peak = 12.17 hrsTime interval = 2 min Hyd. volume = 1,778 cuft Drainage area Curve number = 0.108 ac= 76 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 14.20 min = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

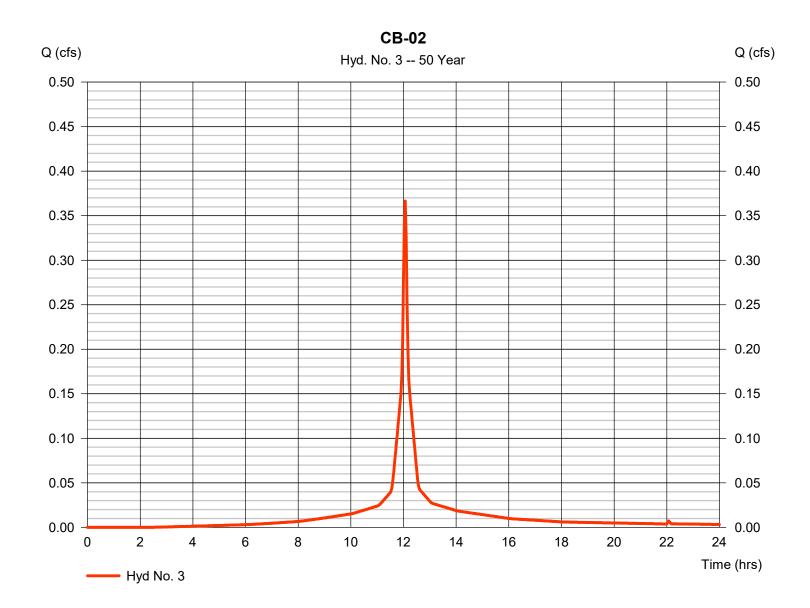


Friday, 07 / 9 / 2021

Hyd. No. 2

CB-01A

Hydrograph type = SCS Runoff Peak discharge = 0.822 cfsStorm frequency = 50 yrsTime to peak = 12.10 hrsTime interval = 2 min Hyd. volume = 2.808 cuft Drainage area Curve number = 0.194 ac= 70 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 7.80 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

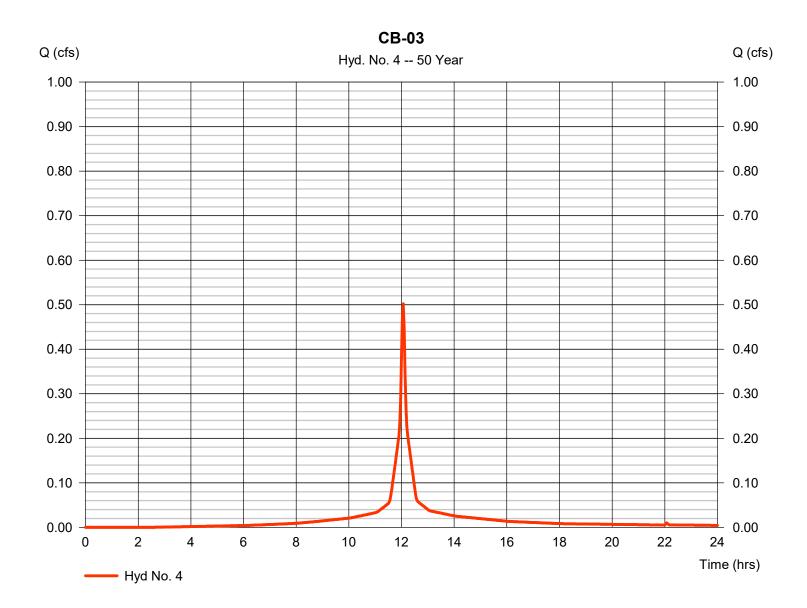

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 3

CB-02

Hydrograph type = SCS Runoff Peak discharge = 0.366 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,193 cuft Drainage area Curve number = 0.054 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

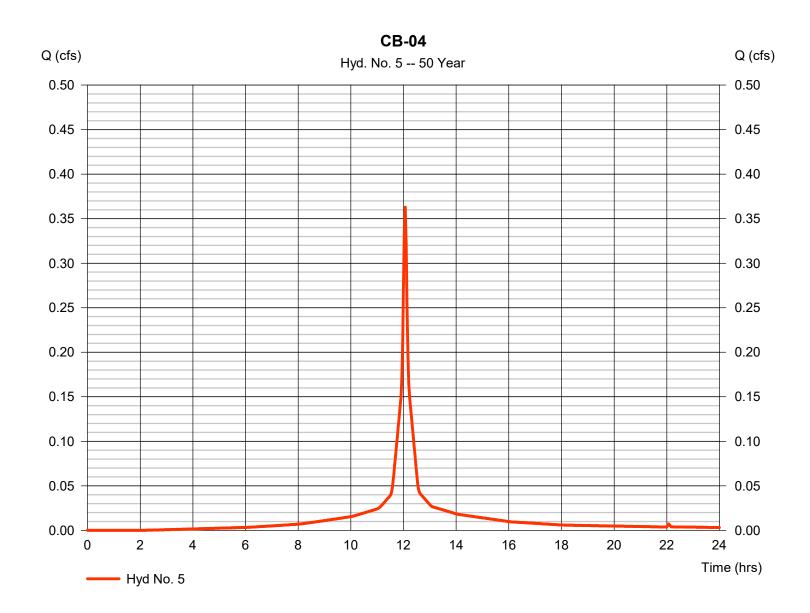


Friday, 07 / 9 / 2021

Hyd. No. 4

CB-03

Hydrograph type = SCS Runoff Peak discharge = 0.502 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 1,634 cuft Drainage area Curve number = 0.074 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

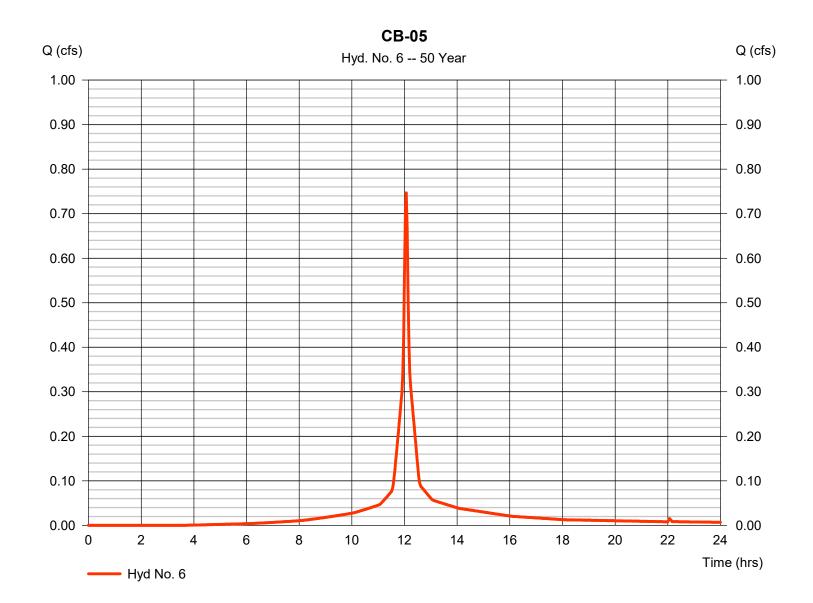


Friday, 07 / 9 / 2021

Hyd. No. 5

CB-04

Hydrograph type = SCS Runoff Peak discharge = 0.363 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,192 cuft Drainage area Curve number = 0.053 ac= 93 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

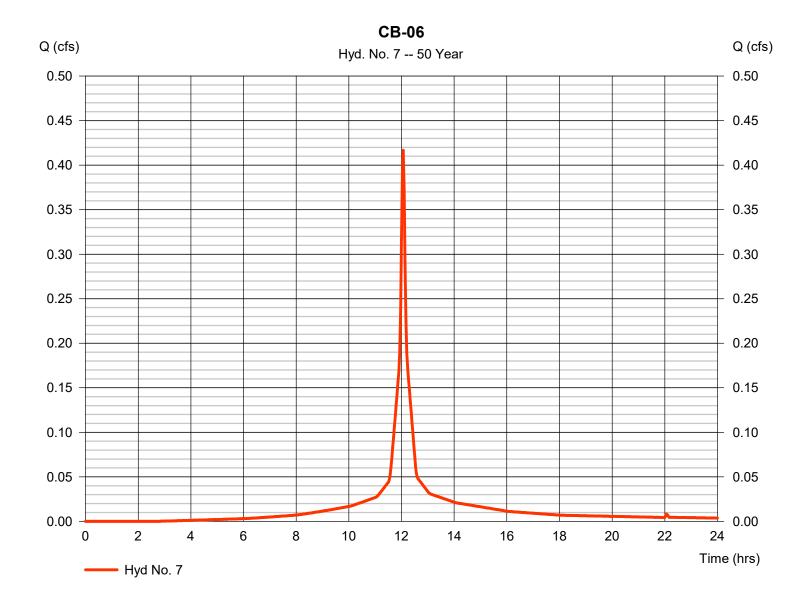


Friday, 07 / 9 / 2021

Hyd. No. 6

CB-05

Hydrograph type = SCS Runoff Peak discharge = 0.747 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,357 cuftDrainage area Curve number = 0.115 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

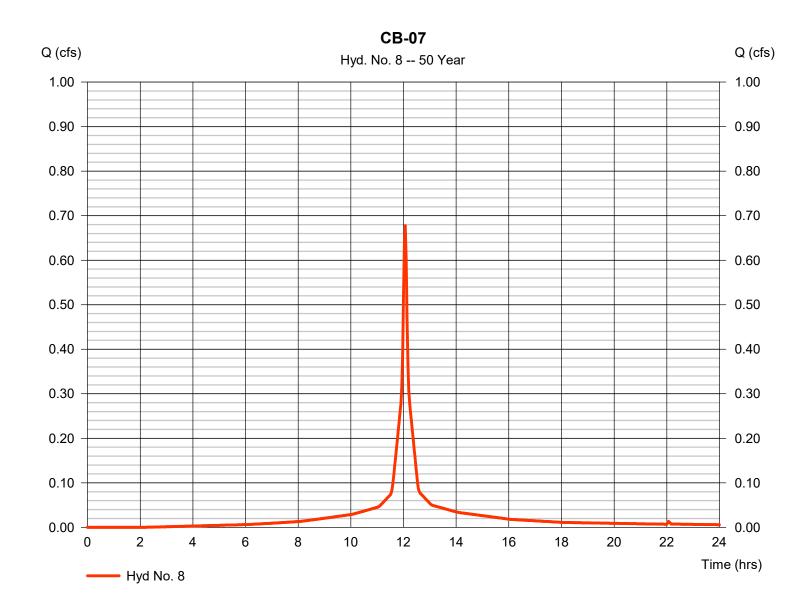

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 7

CB-06

Hydrograph type = SCS Runoff Peak discharge = 0.417 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,344 cuft Drainage area Curve number = 0.062 ac= 91 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

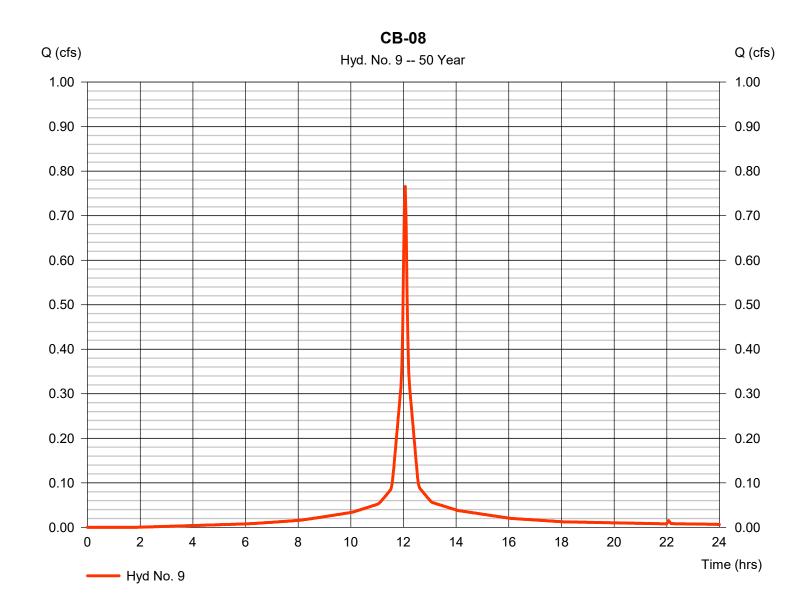

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 8

CB-07

Hydrograph type = SCS Runoff Peak discharge = 0.678 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2.226 cuft Drainage area Curve number = 0.099 ac= 93 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

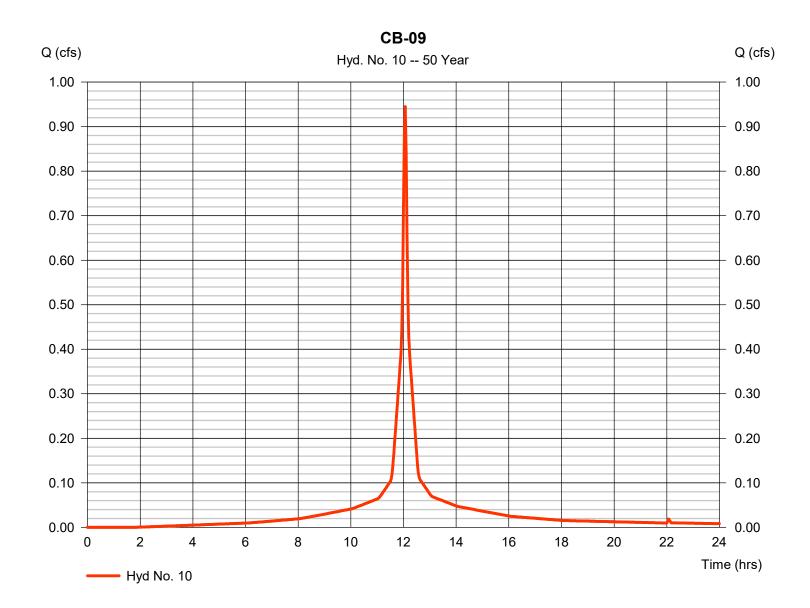

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 9

CB-08

Hydrograph type = SCS Runoff Peak discharge = 0.766 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,540 cuftDrainage area = 0.111 acCurve number = 94 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.50 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

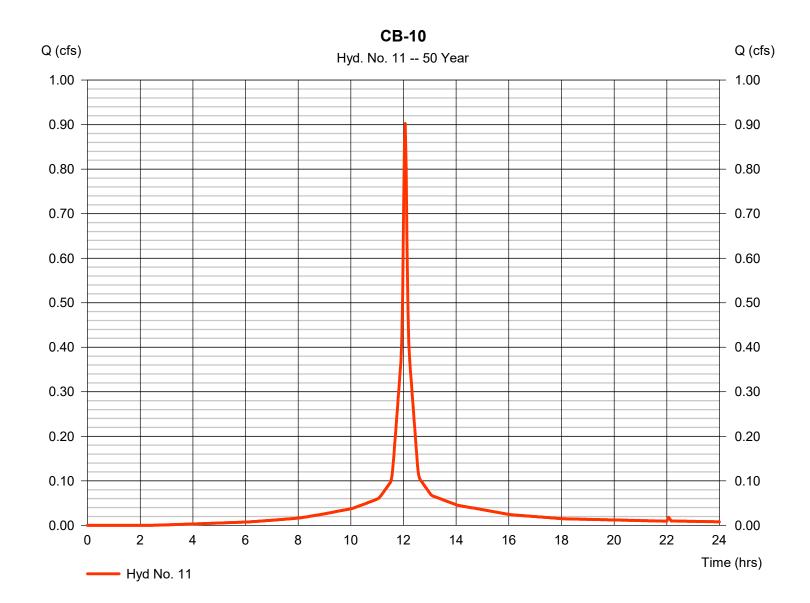


Friday, 07 / 9 / 2021

Hyd. No. 10

CB-09

Hydrograph type = SCS Runoff Peak discharge = 0.945 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,136 cuftDrainage area Curve number = 0.137 ac= 94 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

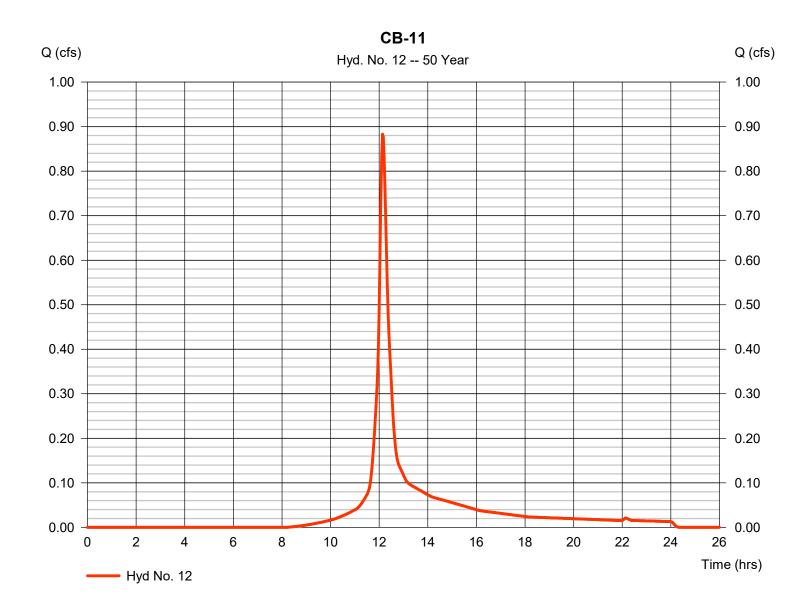


Friday, 07 / 9 / 2021

Hyd. No. 11

CB-10

Hydrograph type = SCS Runoff Peak discharge = 0.902 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,937 cuftDrainage area = 0.133 acCurve number = 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

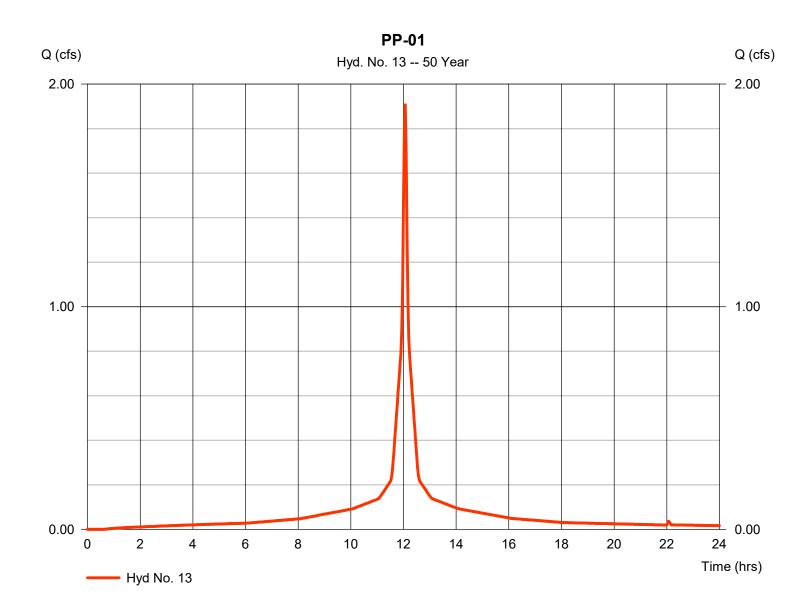


Friday, 07 / 9 / 2021

Hyd. No. 12

CB-11

Hydrograph type = SCS Runoff Peak discharge = 0.883 cfsStorm frequency = 50 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 3,388 cuft Drainage area = 0.227 acCurve number = 70 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 10.90 min = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

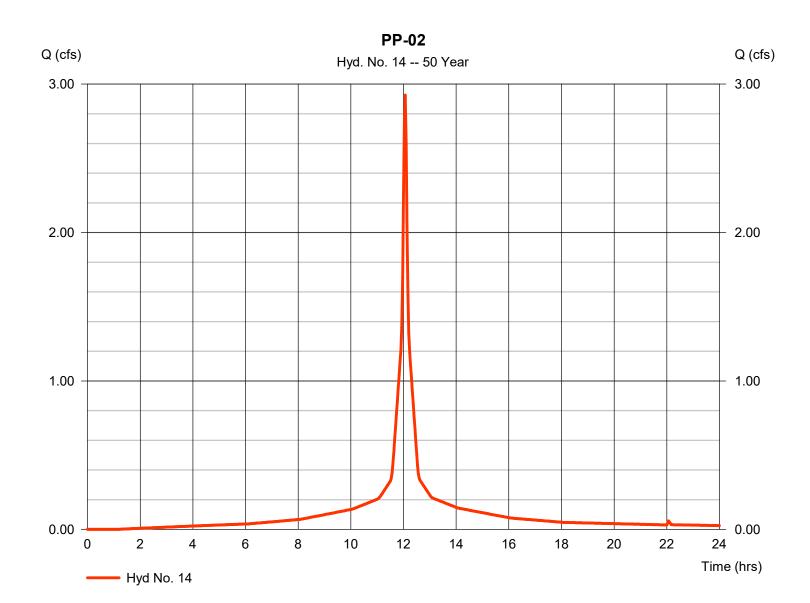


Friday, 07 / 9 / 2021

Hyd. No. 13

PP-01

= SCS Runoff Hydrograph type Peak discharge = 1.907 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 6,641 cuftDrainage area = 0.271 acCurve number = 98 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method = User Time of conc. (Tc) $= 5.00 \, \text{min}$ Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

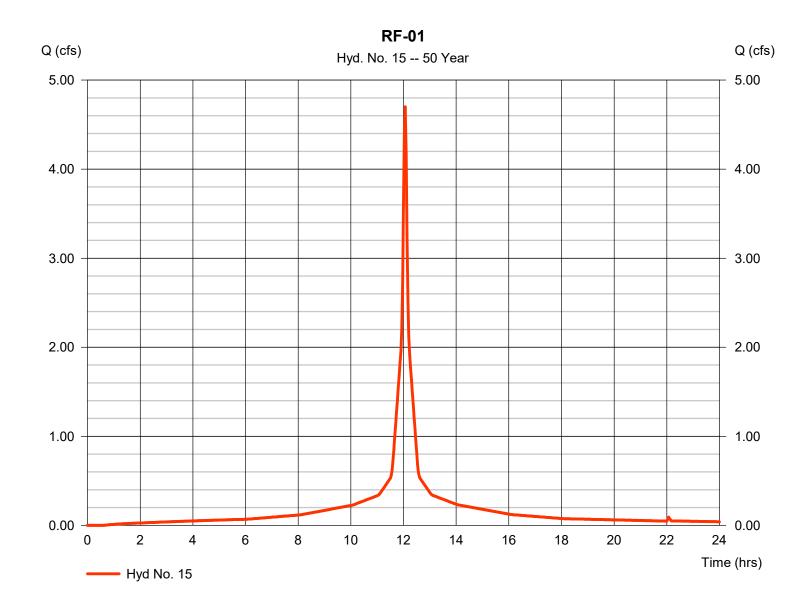
Friday, 07 / 9 / 2021

Hyd. No. 14

PP-02

= SCS Runoff Hydrograph type Peak discharge = 2.926 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 9,928 cuft Drainage area Curve number = 0.419 ac= 96 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

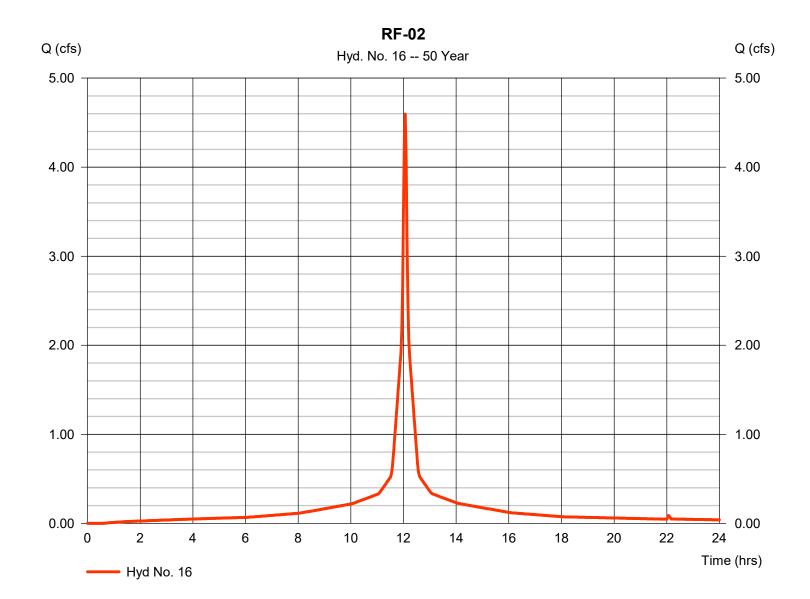

Friday, 07 / 9 / 2021

Hyd. No. 15

RF-01

Hydrograph type = SCS Runoff Peak discharge = 4.701 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 16,369 cuftDrainage area Curve number = 0.668 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III

Storm duration = 7.44 in Distribution = 1 yper Storm duration = 24 hrs Shape factor = 484

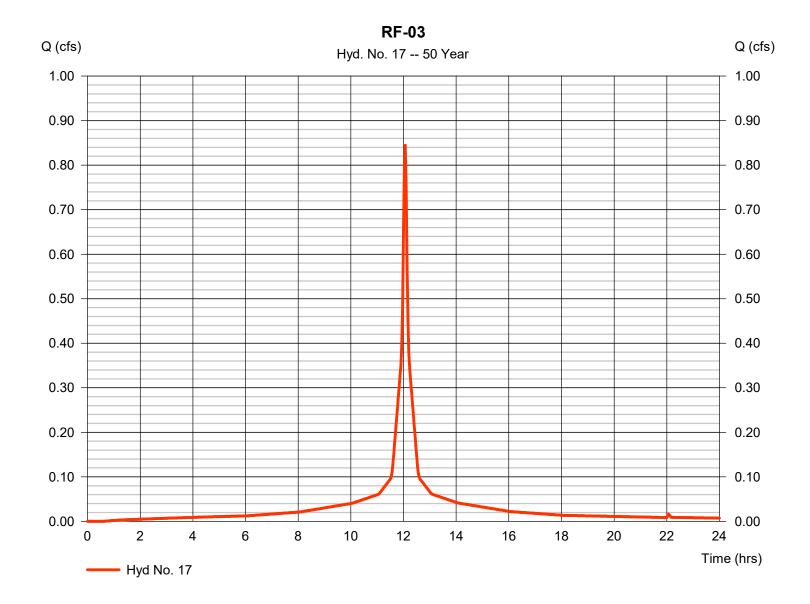


Friday, 07 / 9 / 2021

Hyd. No. 16

RF-02

Hydrograph type = SCS Runoff Peak discharge = 4.595 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 16,001 cuftDrainage area Curve number = 0.653 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

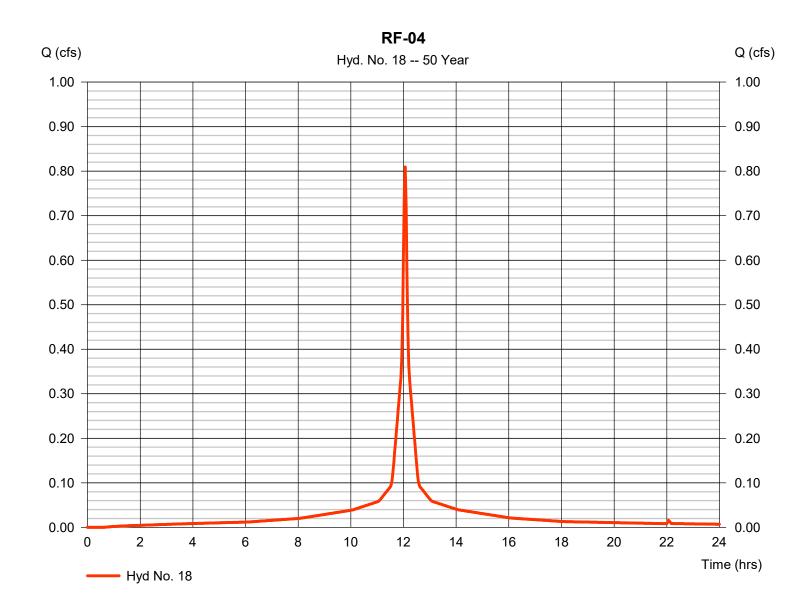


Friday, 07 / 9 / 2021

Hyd. No. 17

RF-03

Hydrograph type = SCS Runoff Peak discharge = 0.844 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,941 cuftDrainage area = 0.120 acCurve number = 98 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

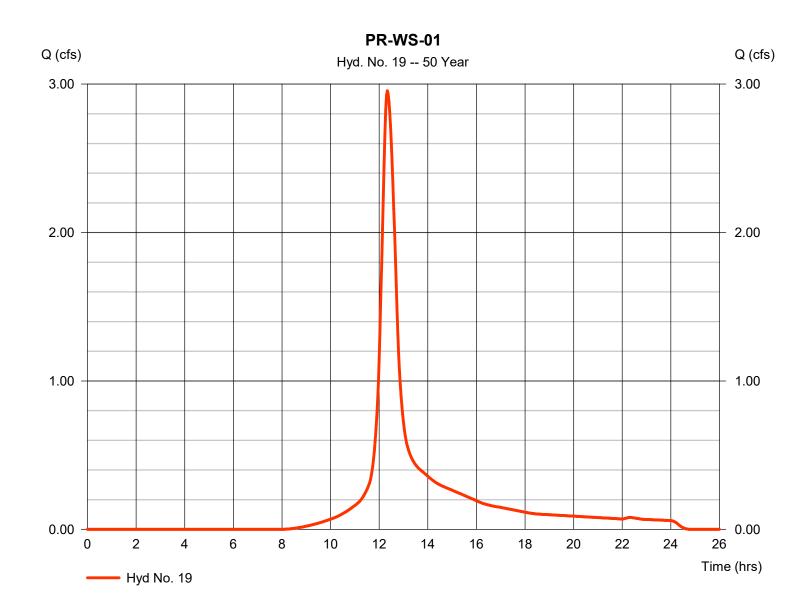


Friday, 07 / 9 / 2021

Hyd. No. 18

RF-04

Hydrograph type = SCS Runoff Peak discharge = 0.809 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,818 cuft Drainage area Curve number = 0.115 ac= 98 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

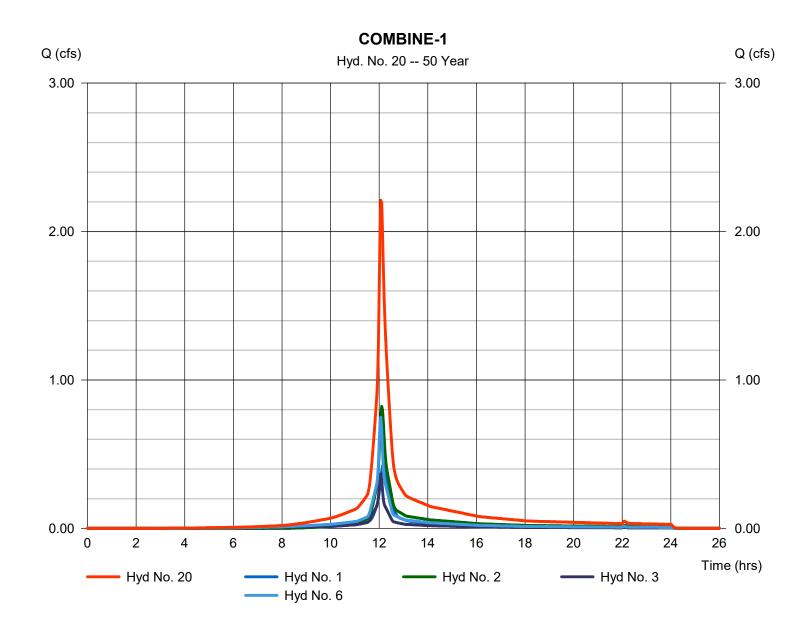

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 19

PR-WS-01

= SCS Runoff Hydrograph type Peak discharge = 2.955 cfsStorm frequency = 50 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 15,436 cuft Drainage area Curve number = 1.038 ac= 71 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 27.60 min = User Total precip. = 7.44 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

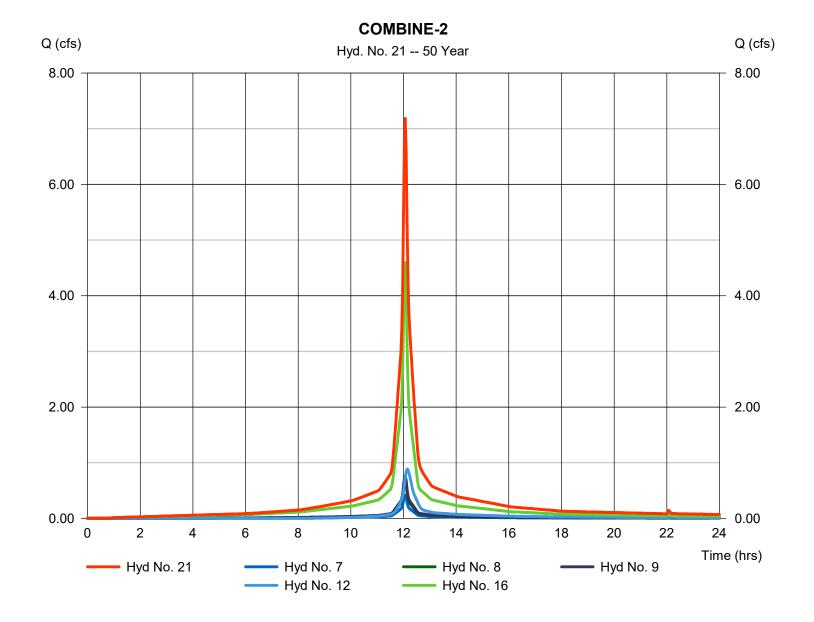


Friday, 07 / 9 / 2021

Hyd. No. 20

COMBINE-1

Hydrograph type = Combine Peak discharge = 2.210 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 8,135 cuft Inflow hyds. = 1, 2, 3, 6Contrib. drain. area = 0.471 ac

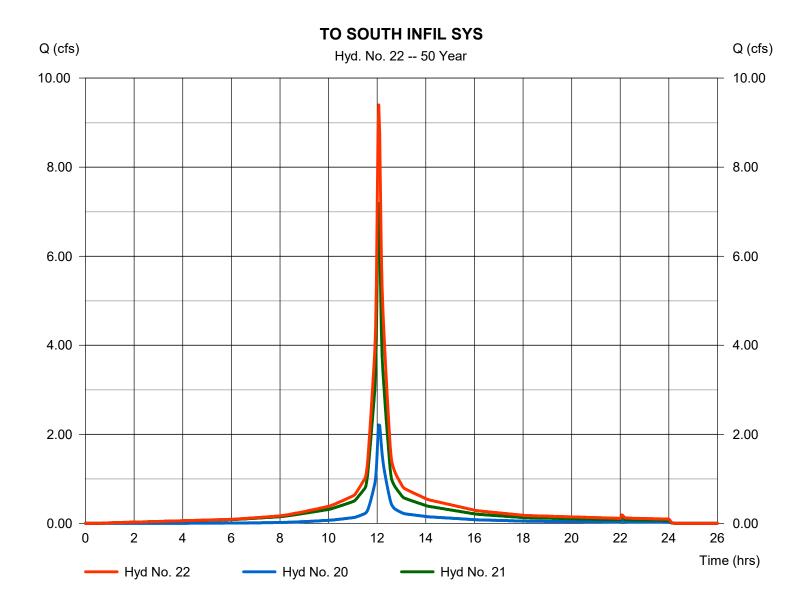


Friday, 07 / 9 / 2021

Hyd. No. 21

COMBINE-2

Hydrograph type = Combine Storm frequency = 50 yrs Time interval = 2 min Inflow hyds. = 7, 8, 9, 12, 16 Peak discharge = 7.186 cfs
Time to peak = 12.07 hrs
Hyd. volume = 25,500 cuft
Contrib. drain. area = 1.152 ac



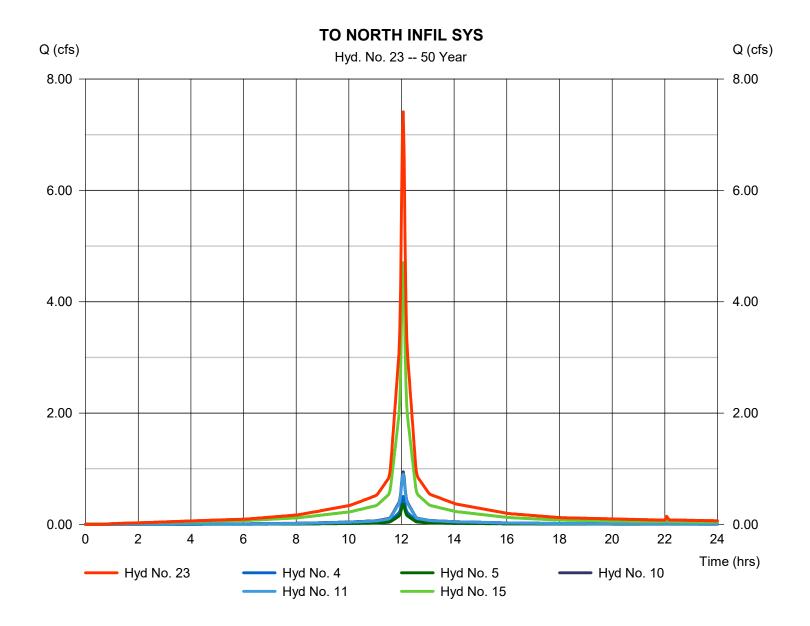
Friday, 07 / 9 / 2021

Hyd. No. 22

TO SOUTH INFIL SYS

Peak discharge Hydrograph type = Combine = 9.396 cfsStorm frequency Time to peak = 50 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 33,635 cuft Inflow hyds. = 20, 21 Contrib. drain. area = 0.000 ac

Friday, 07 / 9 / 2021

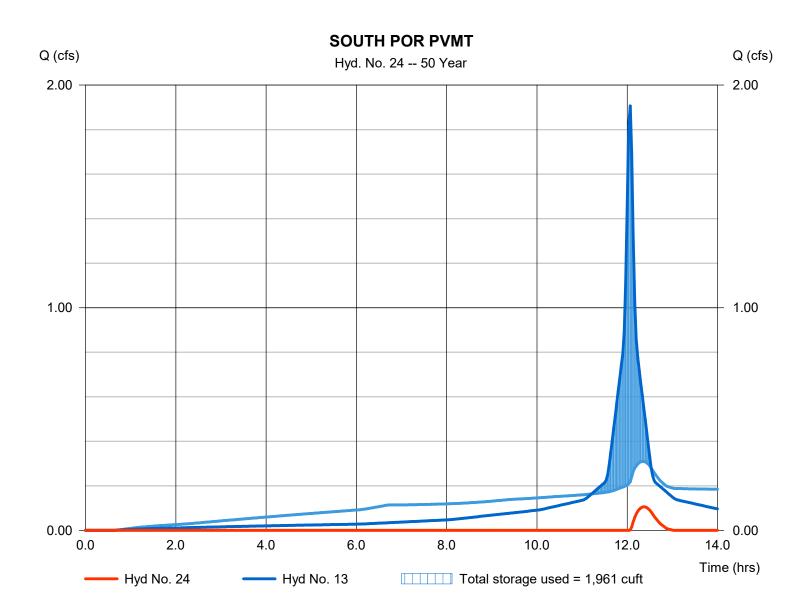

Hyd. No. 23

TO NORTH INFIL SYS

Hydrograph type = Combine Storm frequency = 50 yrs Time interval = 2 min

Inflow hyds. = 4, 5, 10, 11, 15

Peak discharge = 7.413 cfs
Time to peak = 12.07 hrs
Hyd. volume = 25,268 cuft
Contrib. drain. area = 1.065 ac

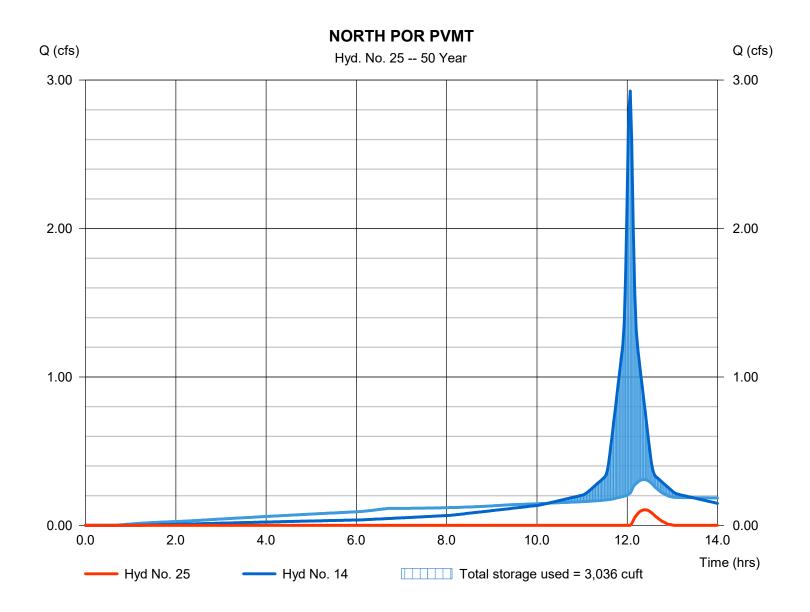

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 24

SOUTH POR PVMT

Hydrograph type = Reservoir Peak discharge = 0.106 cfsStorm frequency = 50 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 184 cuft Inflow hyd. No. = 13 - PP-01 Max. Elevation = 142.19 ft= SOUTH POROUS PVMT Reservoir name Max. Storage = 1,961 cuft

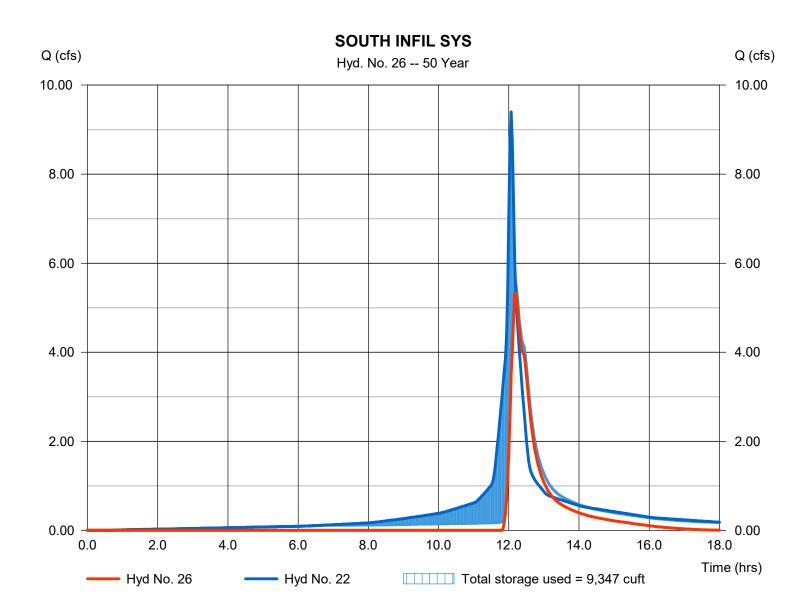

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 25

NORTH POR PVMT

Hydrograph type = Reservoir Peak discharge = 0.105 cfsStorm frequency = 50 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 188 cuft Inflow hyd. No. = 14 - PP-02 Max. Elevation = 141.69 ftReservoir name = NORTH POROUS PVMT Max. Storage = 3,036 cuft

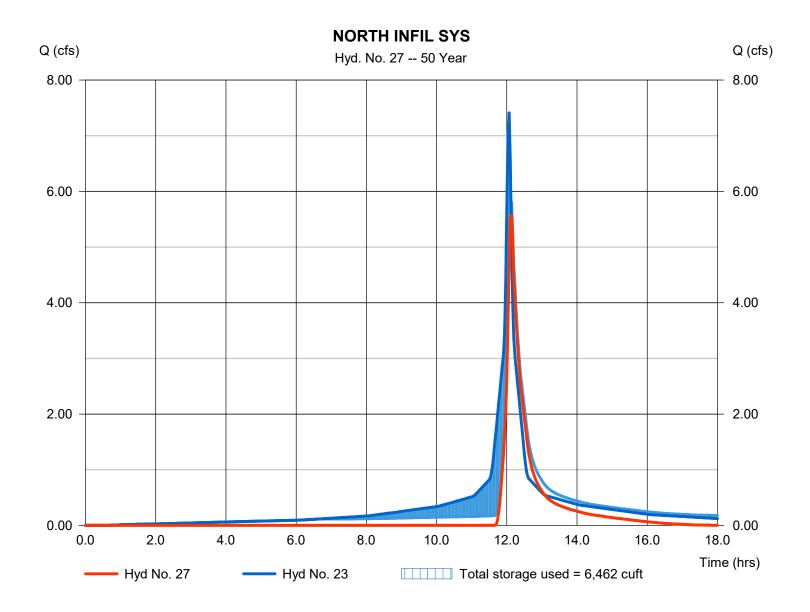

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 26

SOUTH INFIL SYS

Hydrograph type = Reservoir Peak discharge = 5.328 cfsStorm frequency = 50 yrsTime to peak $= 12.20 \, hrs$ Time interval = 2 min Hyd. volume = 15,547 cuft Inflow hyd. No. Max. Elevation = 22 - TO SOUTH INFIL SYS = 144.41 ft= SOUTH INFIL SYS Reservoir name Max. Storage = 9,347 cuft

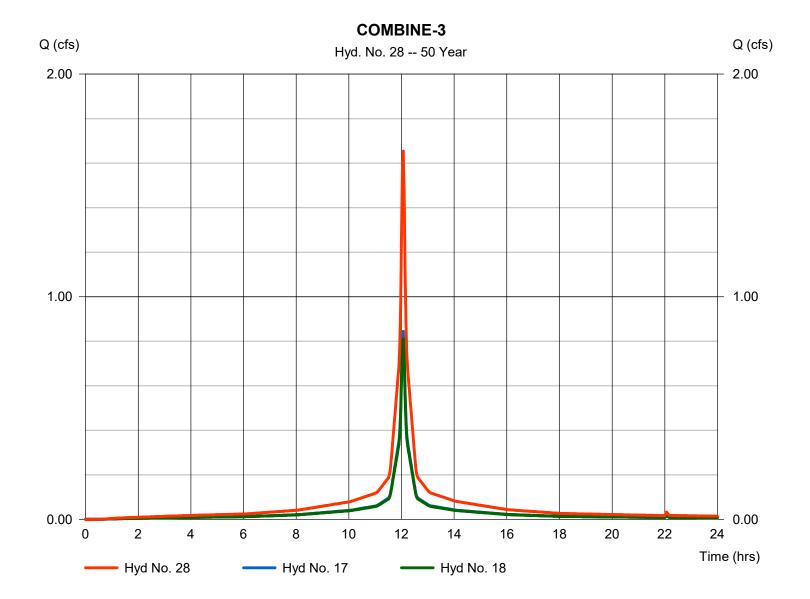

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 27

NORTH INFIL SYS

Hydrograph type = Reservoir Peak discharge = 5.575 cfsStorm frequency = 50 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 12,049 cuftInflow hyd. No. Max. Elevation = 144.56 ft= 23 - TO NORTH INFIL SYS = NORTH INFIL SYS Reservoir name Max. Storage = 6,462 cuft

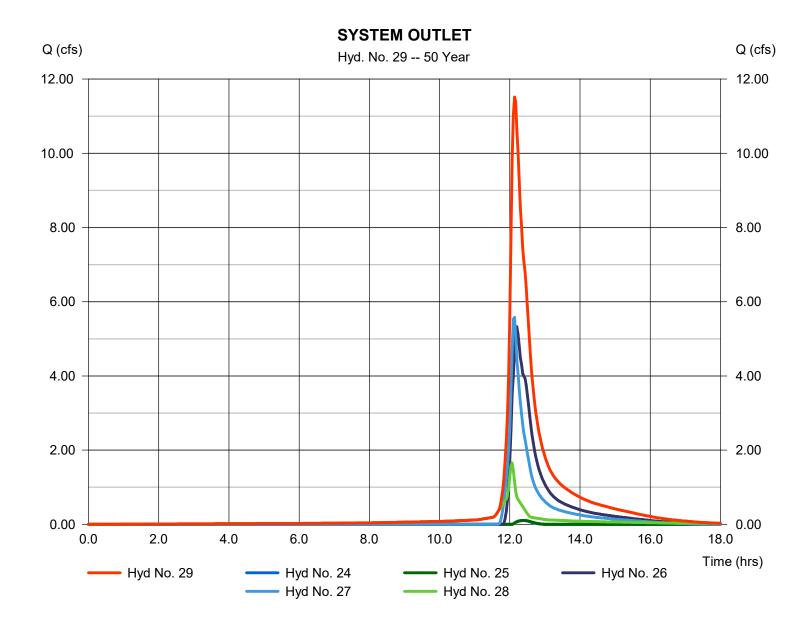


Friday, 07 / 9 / 2021

Hyd. No. 28

COMBINE-3

Hydrograph type = Combine Peak discharge = 1.654 cfsTime to peak Storm frequency = 50 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 5,759 cuftInflow hyds. = 17, 18 Contrib. drain. area = 0.235 ac

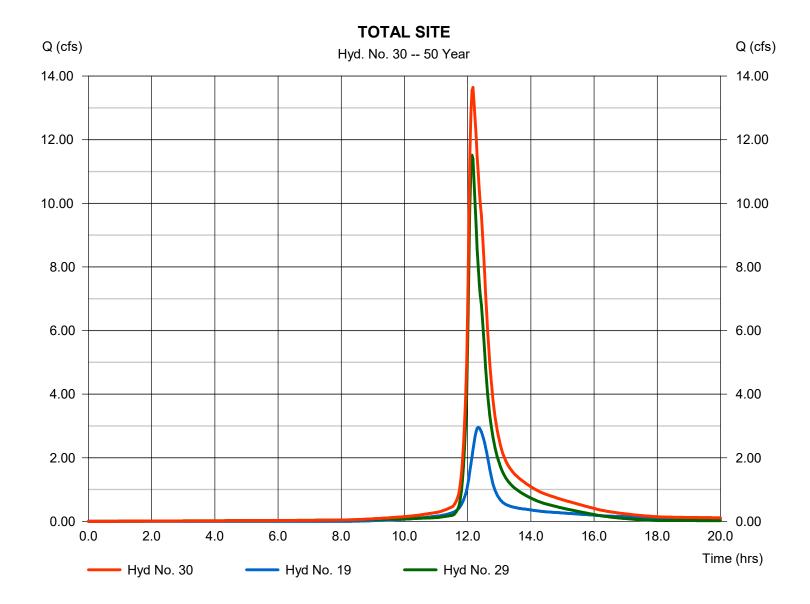

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 29

SYSTEM OUTLET

Hydrograph type = Combine Peak discharge = 11.51 cfsStorm frequency Time to peak = 50 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 33,726 cuft Inflow hyds. = 24, 25, 26, 27, 28 Contrib. drain. area = 0.000 ac



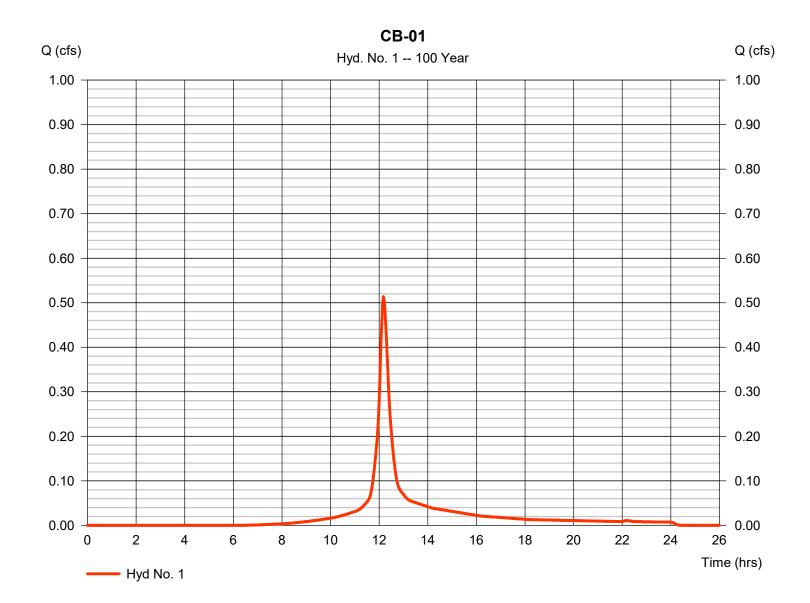
Friday, 07 / 9 / 2021

Hyd. No. 30

TOTAL SITE

Hydrograph type = Combine Peak discharge = 13.64 cfsStorm frequency Time to peak = 50 yrs $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 49,162 cuft Inflow hyds. = 19, 29Contrib. drain. area = 1.038 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

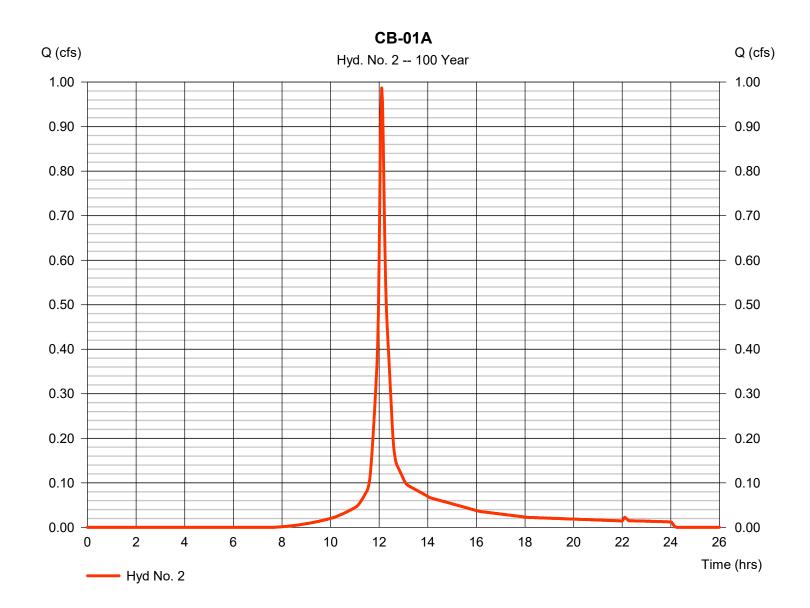

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.514	2	730	2,101				CB-01
2	SCS Runoff	0.987	2	726	3,369				CB-01A
3	SCS Runoff	0.415	2	724	1,362				CB-02
4	SCS Runoff	0.569	2	724	1,866				CB-03
5	SCS Runoff	0.410	2	724	1,358				CB-04
6	SCS Runoff	0.852	2	724	2,712				CB-05
7	SCS Runoff	0.473	2	724	1,538				CB-06
8	SCS Runoff	0.767	2	724	2,537				CB-07
9	SCS Runoff	0.865	2	724	2,890				CB-08
10	SCS Runoff	1.068	2	724	3,567				CB-09
11	SCS Runoff	1.023	2	724	3,354				CB-10
12	SCS Runoff	1.061	2	728	4,065				CB-11
13	SCS Runoff	2.147	2	724	7,498				PP-01
14	SCS Runoff	3.298	2	724	11,250				PP-02
15	SCS Runoff	5.291	2	724	18,482				RF-01
16	SCS Runoff	5.172	2	724	18,067				RF-02
17	SCS Runoff	0.951	2	724	3,320				RF-03
18	SCS Runoff	0.911	2	724	3,182				RF-04
19	SCS Runoff	3.537	2	740	18,471				PR-WS-01
20	Combine	2.583	2	724	9,543	1, 2, 3,			COMBINE-1
21	Combine	8.161	2	724	29,097	6, 7, 8, 9,			COMBINE-2
22	Combine	10.74	2	724	38,640	12, 16, 20, 21			TO SOUTH INFIL SYS
23	Combine	8.361	2	724	28,626	4, 5, 10,			TO NORTH INFIL SYS
24	Reservoir	0.191	2	742	397	11, 15, 13	142.28	2,200	SOUTH POR PVMT
25	Reservoir	0.200	2	744	446	14	141.79	3,450	NORTH POR PVMT
26	Reservoir	7.056	2	730	19,539	22	144.94	9,955	SOUTH INFIL SYS
27	Reservoir	6.513	2	726	14,748	23	144.89	6,718	NORTH INFIL SYS
28	Combine	1.861	2	724	6,502	17, 18,			COMBINE-3
29	Combine	14.90	2	728	41,632	24, 25, 26,			SYSTEM OUTLET
30	Combine	17.35	2	728	60,103	27, 28 19, 29			TOTAL SITE
F01	F0173-02 Hydrographs - Proposed.gpw			Return F	Return Period: 100 Year			Friday, 07 / 9 / 2021	

Friday, 07 / 9 / 2021

Hyd. No. 1

CB-01

Hydrograph type = SCS Runoff Peak discharge = 0.514 cfsStorm frequency = 100 yrsTime to peak = 12.17 hrsTime interval = 2 min Hyd. volume = 2.101 cuftDrainage area Curve number = 0.108 ac= 76 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 14.20 min = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

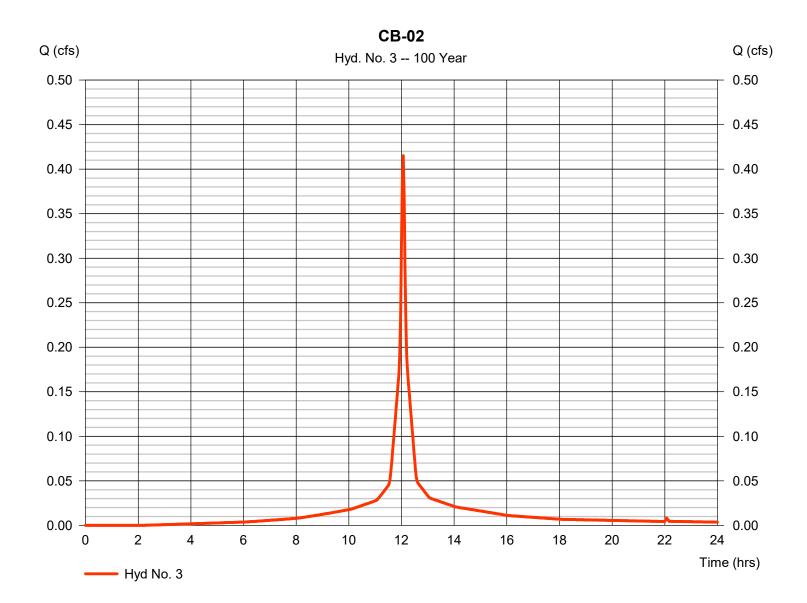


Friday, 07 / 9 / 2021

Hyd. No. 2

CB-01A

Hydrograph type = SCS Runoff Peak discharge = 0.987 cfsStorm frequency = 100 yrsTime to peak = 12.10 hrsTime interval = 2 min Hyd. volume = 3,369 cuftDrainage area Curve number = 0.194 ac= 70 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.80 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

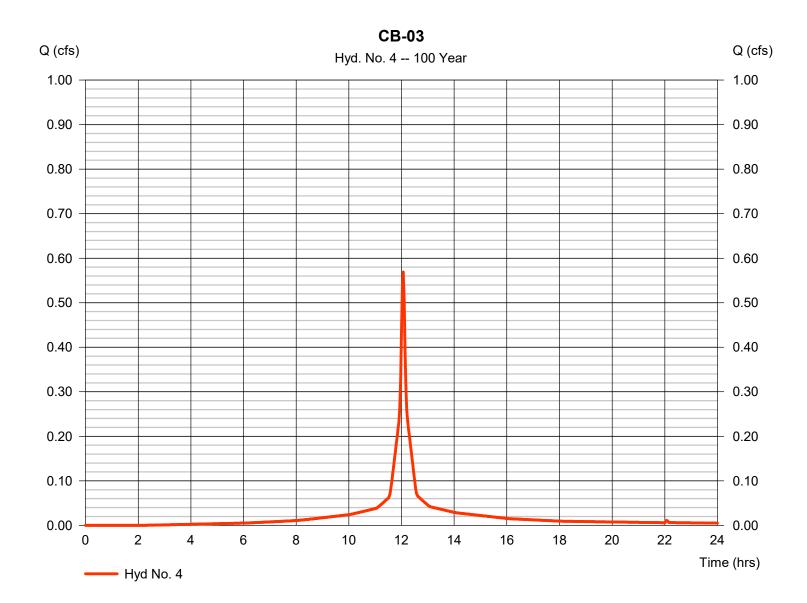


Friday, 07 / 9 / 2021

Hyd. No. 3

CB-02

Hydrograph type = SCS Runoff Peak discharge = 0.415 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,362 cuftDrainage area Curve number = 0.054 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

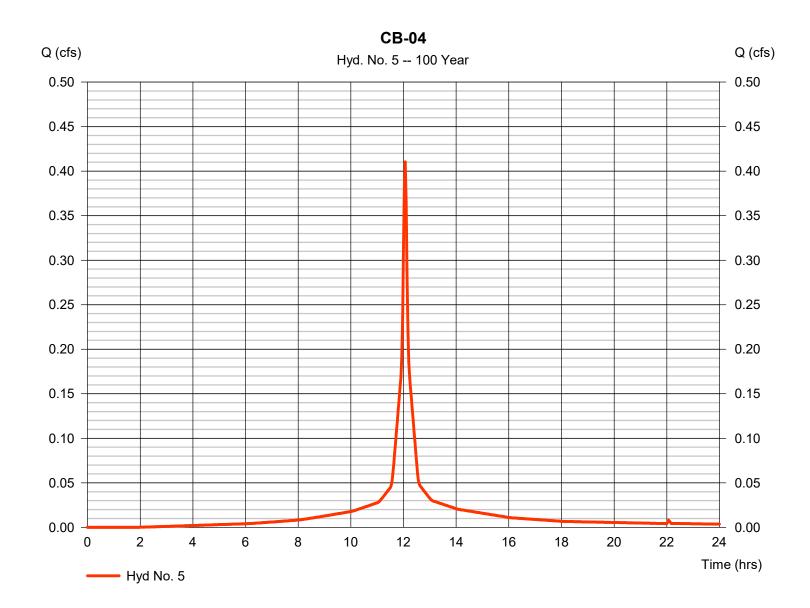


Friday, 07 / 9 / 2021

Hyd. No. 4

CB-03

Hydrograph type = SCS Runoff Peak discharge = 0.569 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,866 cuft Drainage area Curve number = 0.074 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

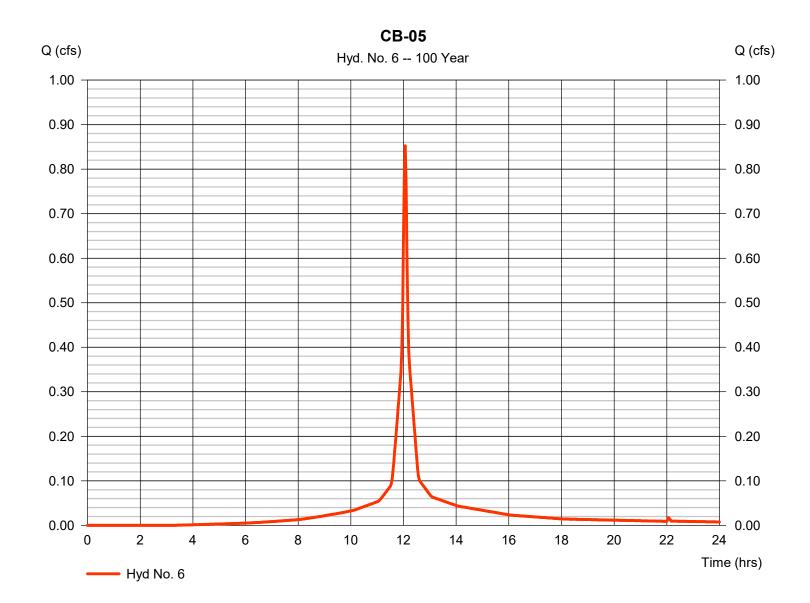


Friday, 07 / 9 / 2021

Hyd. No. 5

CB-04

Hydrograph type = SCS Runoff Peak discharge = 0.410 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,358 cuftDrainage area Curve number = 0.053 ac= 93 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

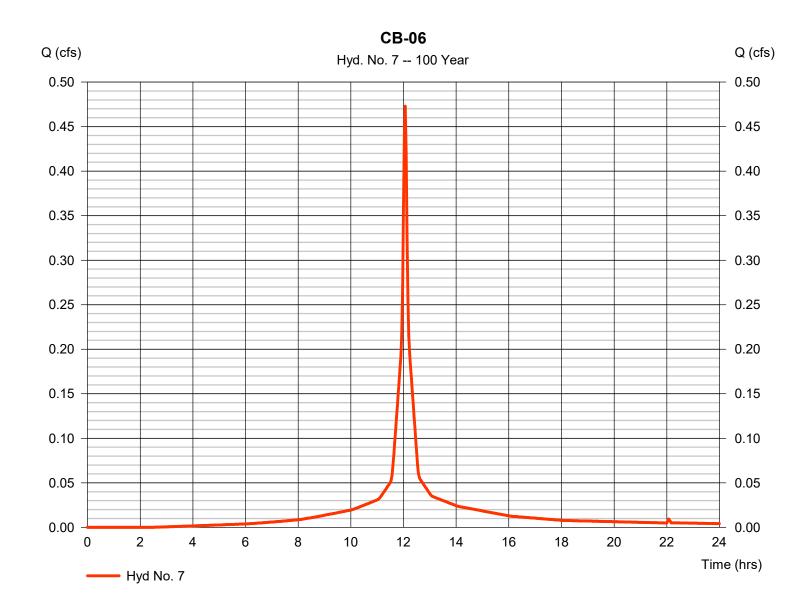


Friday, 07 / 9 / 2021

Hyd. No. 6

CB-05

Hydrograph type = SCS Runoff Peak discharge = 0.852 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,712 cuftDrainage area Curve number = 0.115 ac= 88 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

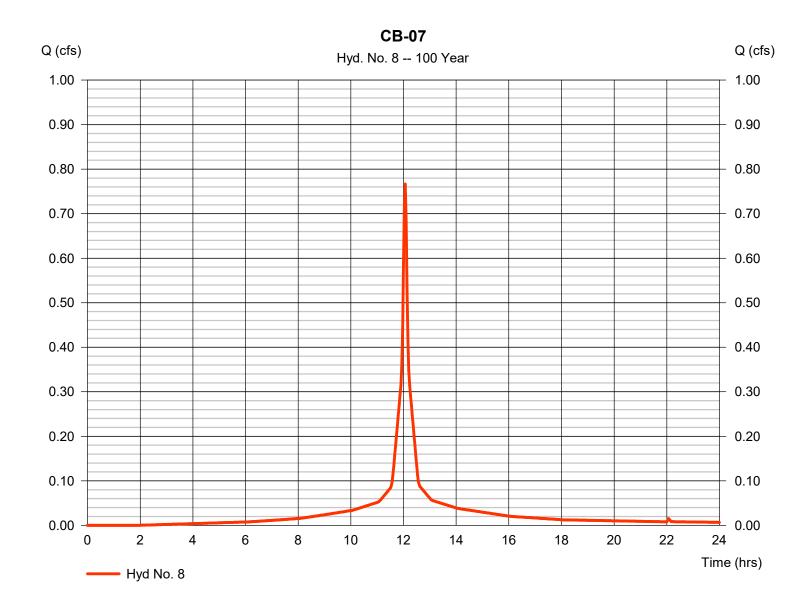

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 7

CB-06

Hydrograph type = SCS Runoff Peak discharge = 0.473 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 1,538 cuft Drainage area Curve number = 0.062 ac= 91 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

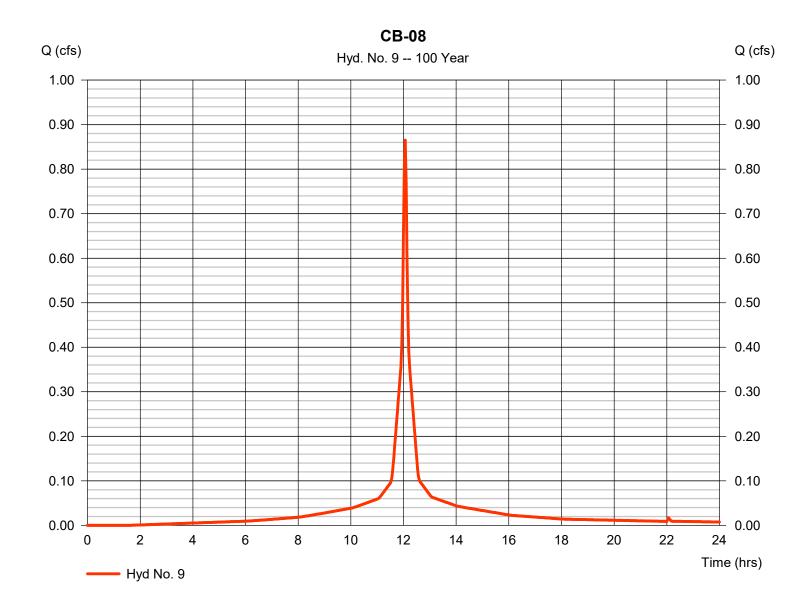


Friday, 07 / 9 / 2021

Hyd. No. 8

CB-07

Hydrograph type = SCS Runoff Peak discharge = 0.767 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,537 cuftDrainage area Curve number = 0.099 ac= 93 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

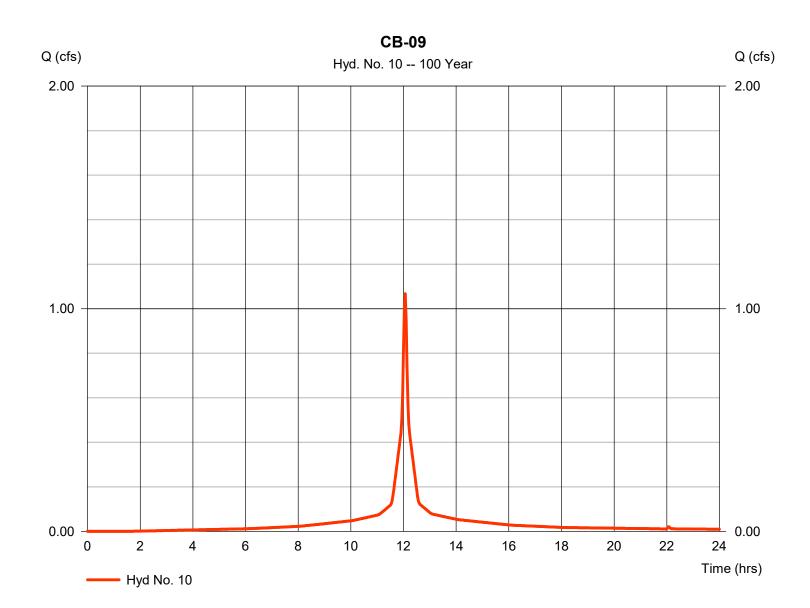


Friday, 07 / 9 / 2021

Hyd. No. 9

CB-08

Hydrograph type = SCS Runoff Peak discharge = 0.865 cfsStorm frequency = 100 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 2,890 cuftDrainage area Curve number = 0.111 ac= 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.50 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

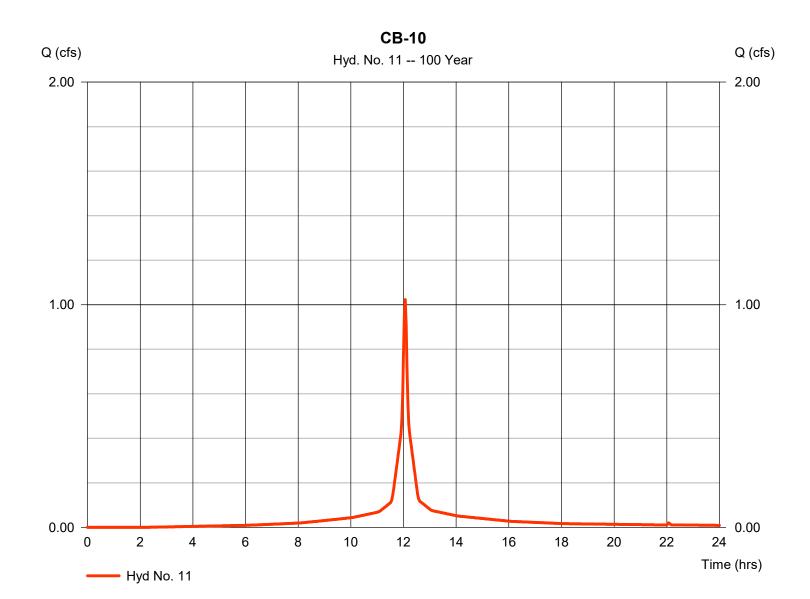

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 10

CB-09

Hydrograph type = SCS Runoff Peak discharge = 1.068 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,567 cuftDrainage area Curve number = 0.137 ac= 94 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

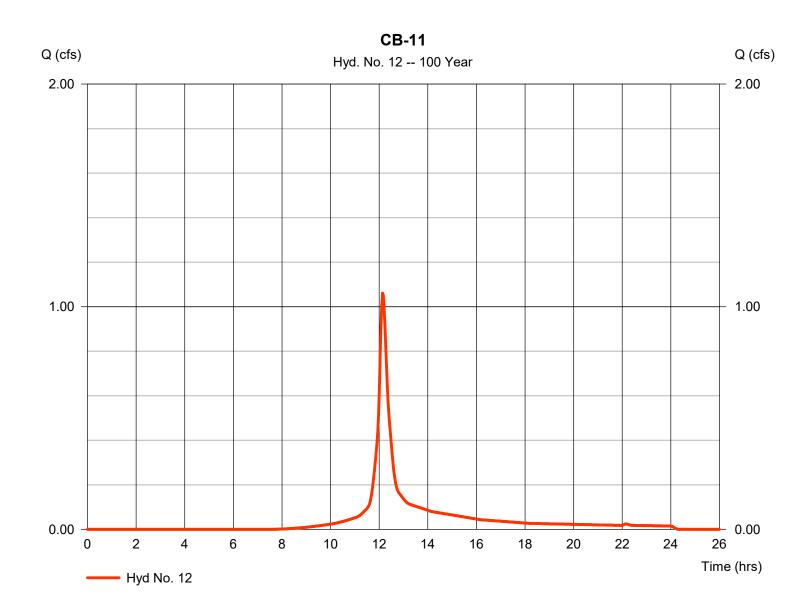


Friday, 07 / 9 / 2021

Hyd. No. 11

CB-10

Hydrograph type = SCS Runoff Peak discharge = 1.023 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,354 cuftDrainage area Curve number = 0.133 ac= 92 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

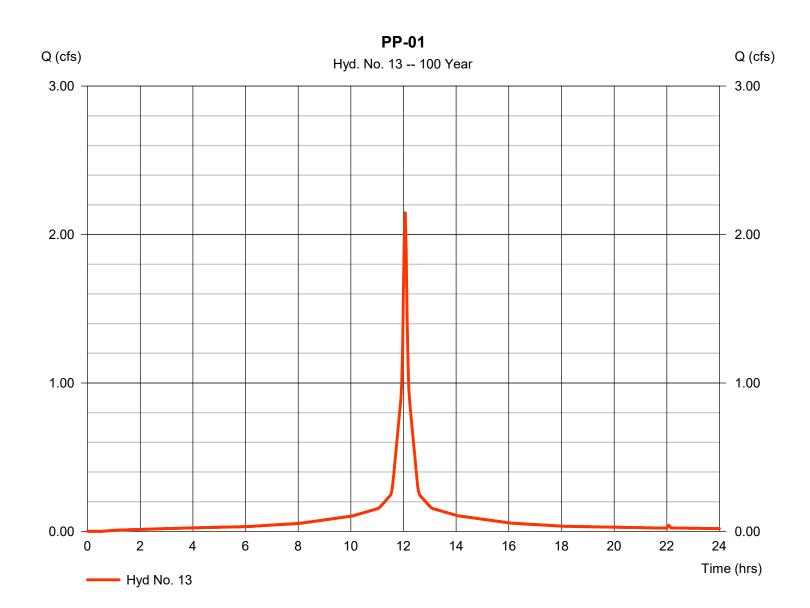


Friday, 07 / 9 / 2021

Hyd. No. 12

CB-11

Hydrograph type = SCS Runoff Peak discharge = 1.061 cfsStorm frequency = 100 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 4,065 cuftDrainage area = 0.227 acCurve number = 70 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) = 10.90 min = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

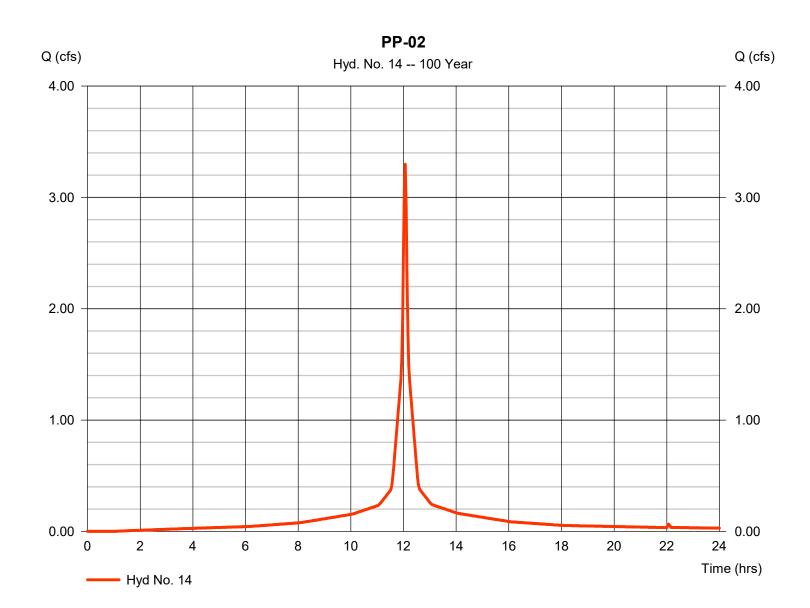

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 13

PP-01

= 2.147 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 7,498 cuft Drainage area = 0.271 acCurve number = 98 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

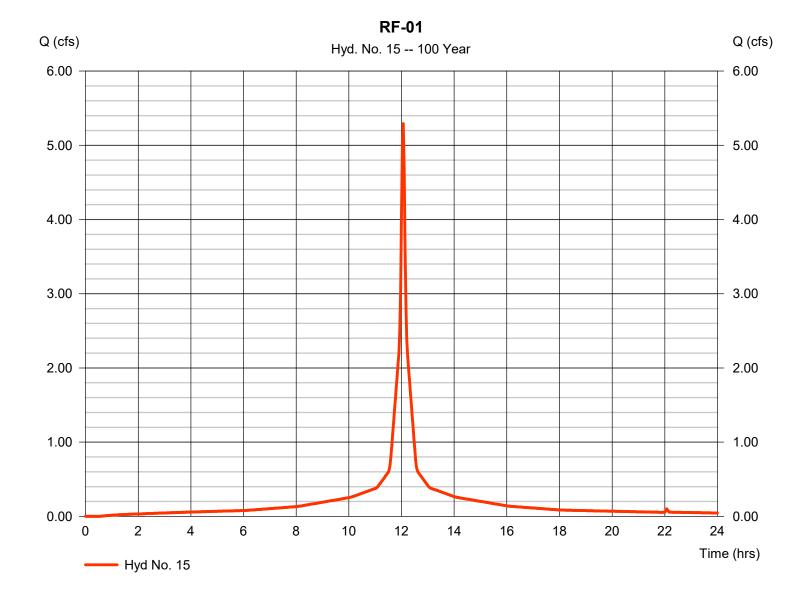


Friday, 07 / 9 / 2021

Hyd. No. 14

PP-02

Hydrograph type = SCS Runoff Peak discharge = 3.298 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 11,250 cuft Drainage area Curve number = 0.419 ac= 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

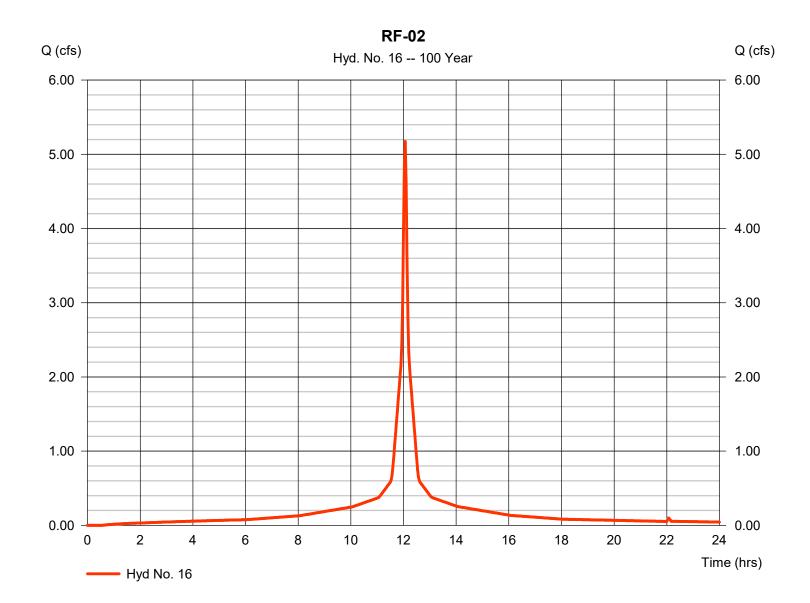


Friday, 07 / 9 / 2021

Hyd. No. 15

RF-01

Hydrograph type = SCS Runoff Peak discharge = 5.291 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 18,482 cuft Drainage area Curve number = 0.668 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

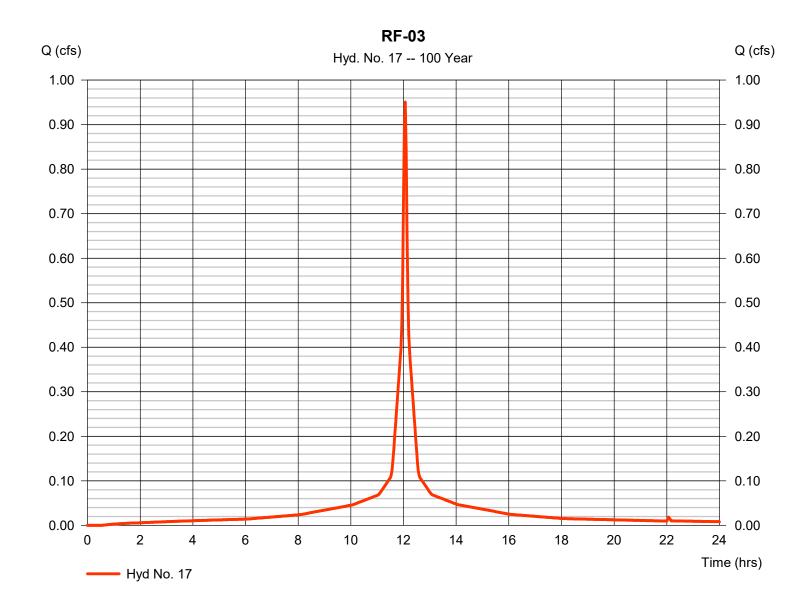


Friday, 07 / 9 / 2021

Hyd. No. 16

RF-02

Hydrograph type = SCS Runoff Peak discharge = 5.172 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 18,067 cuftDrainage area Curve number = 0.653 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

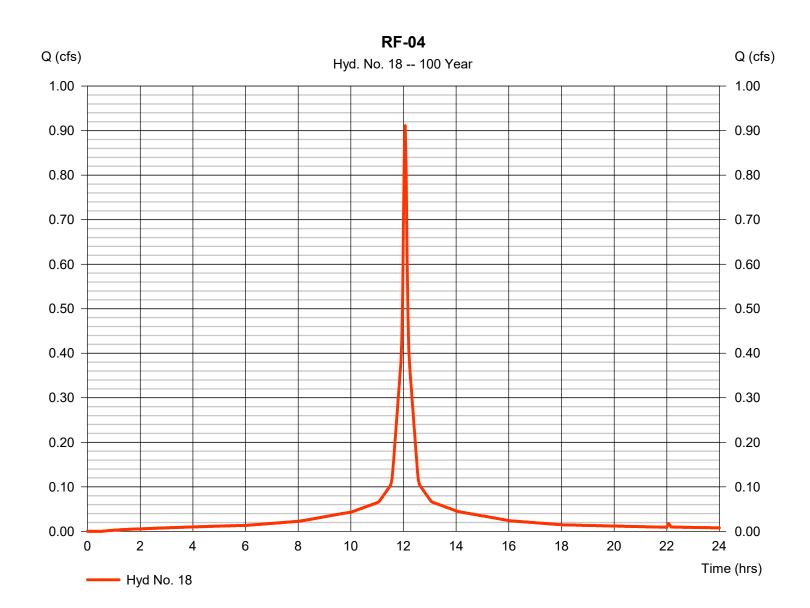


Friday, 07 / 9 / 2021

Hyd. No. 17

RF-03

Hydrograph type = SCS Runoff Peak discharge = 0.951 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,320 cuftDrainage area Curve number = 0.120 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

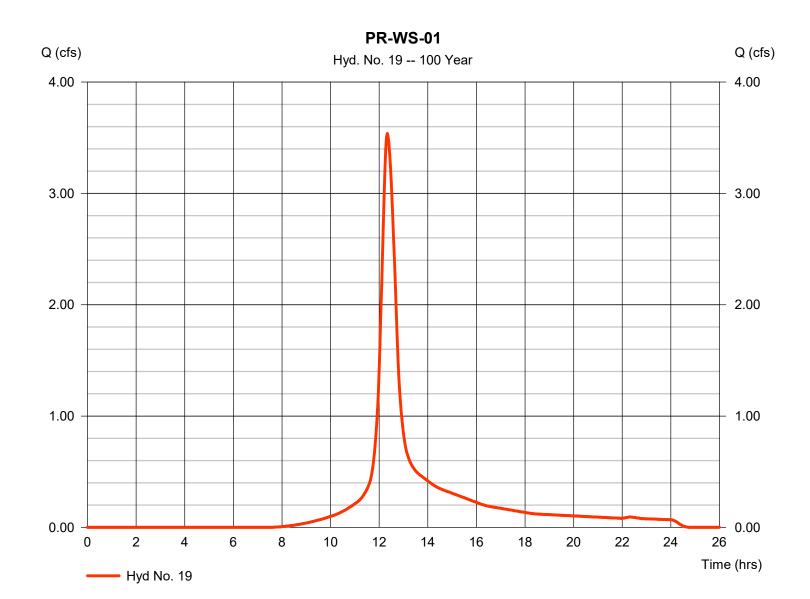

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 18

RF-04

Hydrograph type = SCS Runoff Peak discharge = 0.911 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,182 cuftDrainage area Curve number = 0.115 ac= 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

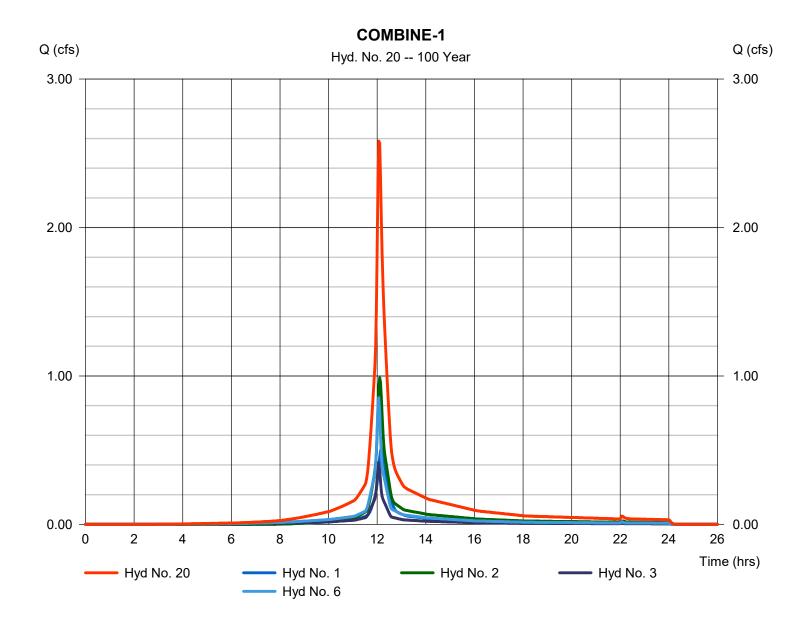


Friday, 07 / 9 / 2021

Hyd. No. 19

PR-WS-01

Hydrograph type = SCS Runoff Peak discharge = 3.537 cfsStorm frequency = 100 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 18,471 cuft Drainage area Curve number = 1.038 ac= 71 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) = 27.60 min = User Total precip. = 8.37 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

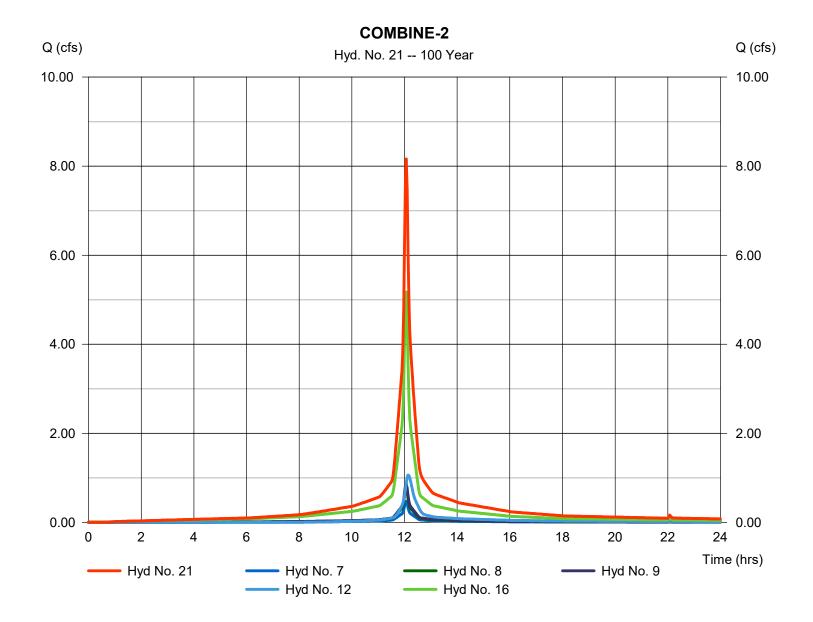

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 20

COMBINE-1

Hydrograph type = Combine Peak discharge = 2.583 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 9,543 cuft Inflow hyds. = 1, 2, 3, 6Contrib. drain. area = 0.471 ac

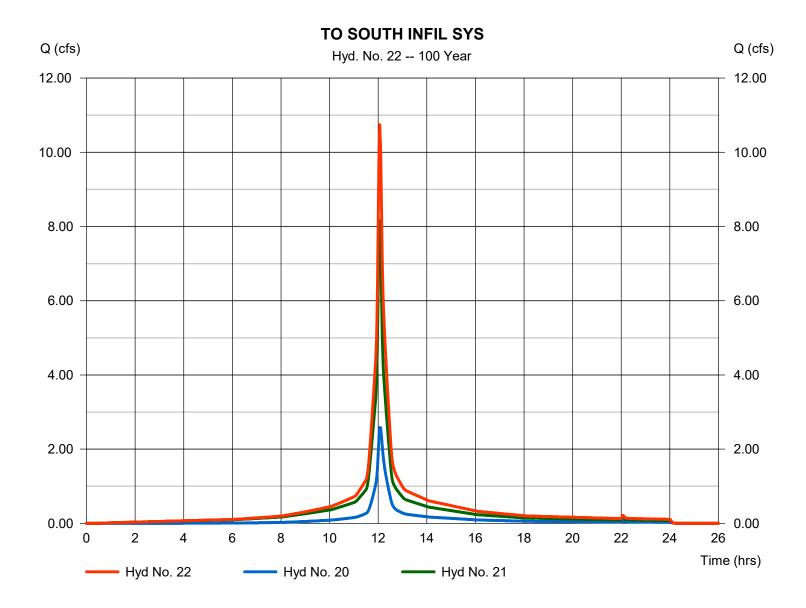

Friday, 07 / 9 / 2021

Hyd. No. 21

COMBINE-2

Hydrograph type = Combine
Storm frequency = 100 yrs
Time interval = 2 min
Inflow hyds. = 7, 8, 9, 12, 16

Peak discharge = 8.161 cfs
Time to peak = 12.07 hrs
Hyd. volume = 29,097 cuft
Contrib. drain. area = 1.152 ac



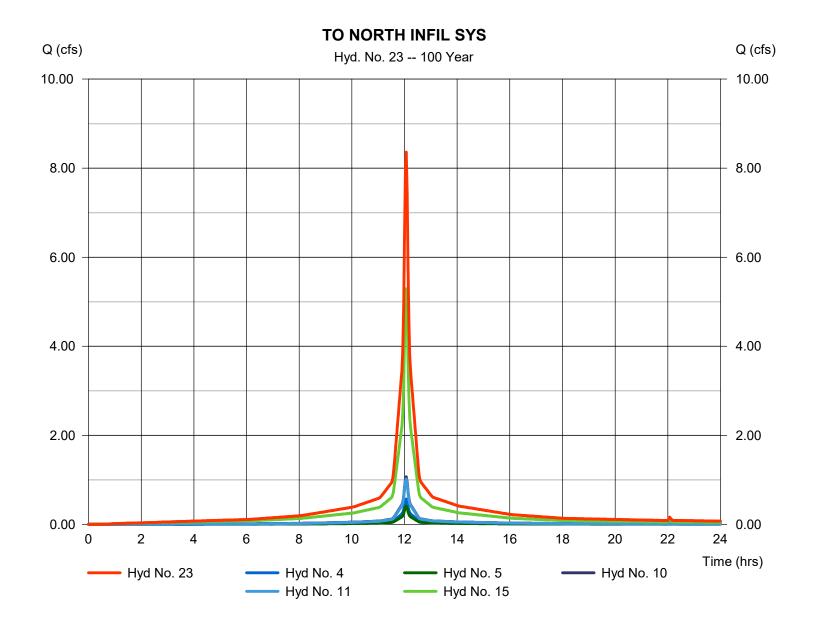
Friday, 07 / 9 / 2021

Hyd. No. 22

TO SOUTH INFIL SYS

Hydrograph type = Combine Peak discharge = 10.74 cfsStorm frequency Time to peak = 100 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 38,640 cuftInflow hyds. = 20, 21 Contrib. drain. area = 0.000 ac

Friday, 07 / 9 / 2021

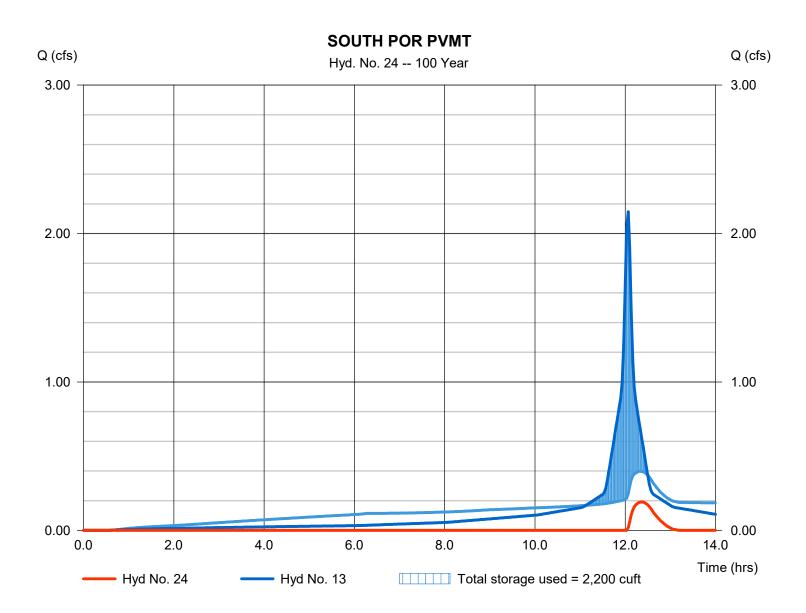

Hyd. No. 23

TO NORTH INFIL SYS

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min

Inflow hyds. = 4, 5, 10, 11, 15

Peak discharge = 8.361 cfs
Time to peak = 12.07 hrs
Hyd. volume = 28,626 cuft
Contrib. drain. area = 1.065 ac

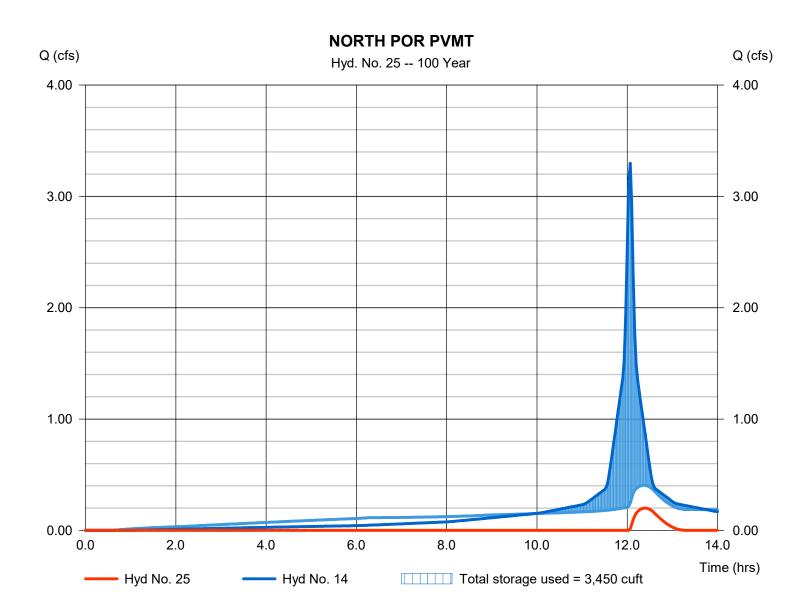

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 24

SOUTH POR PVMT

= Reservoir Hydrograph type Peak discharge = 0.191 cfsStorm frequency = 100 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 397 cuft Inflow hyd. No. Max. Elevation = 142.28 ft= 13 - PP-01 = SOUTH POROUS PVMT Reservoir name Max. Storage = 2,200 cuft

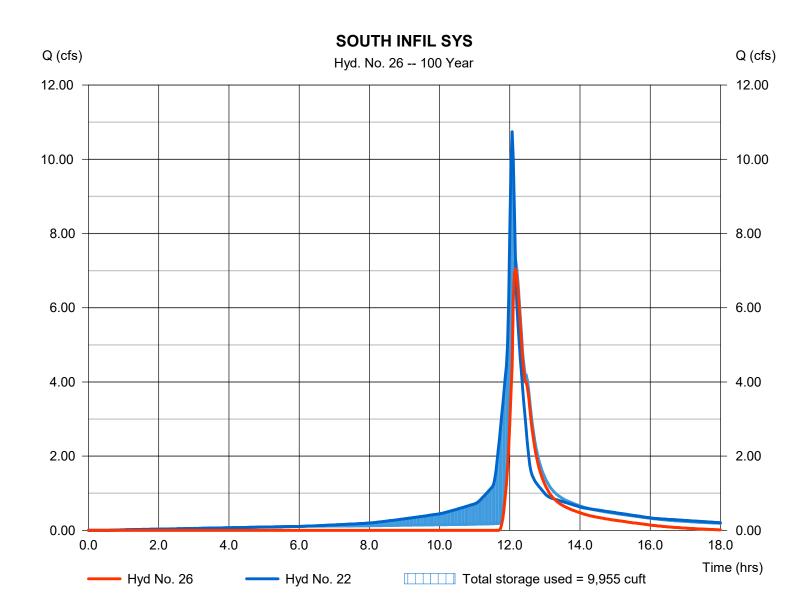

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 25

NORTH POR PVMT

Hydrograph type Peak discharge = 0.200 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 446 cuft Inflow hyd. No. Max. Elevation = 14 - PP-02 = 141.79 ftReservoir name = NORTH POROUS PVMT Max. Storage = 3,450 cuft

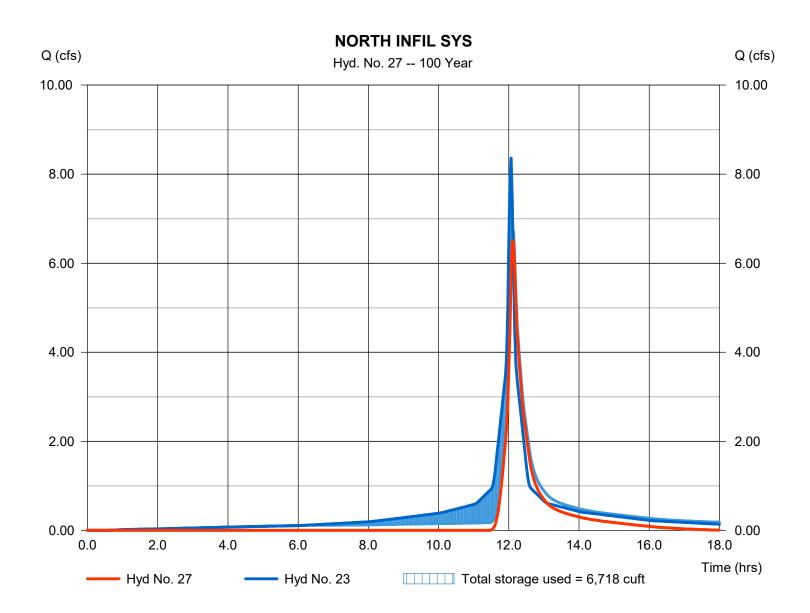

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 26

SOUTH INFIL SYS

= Reservoir Hydrograph type Peak discharge = 7.056 cfsStorm frequency = 100 yrsTime to peak $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 19,539 cuft Inflow hyd. No. Max. Elevation = 22 - TO SOUTH INFIL SYS = 144.94 ft= SOUTH INFIL SYS Reservoir name Max. Storage = 9,955 cuft

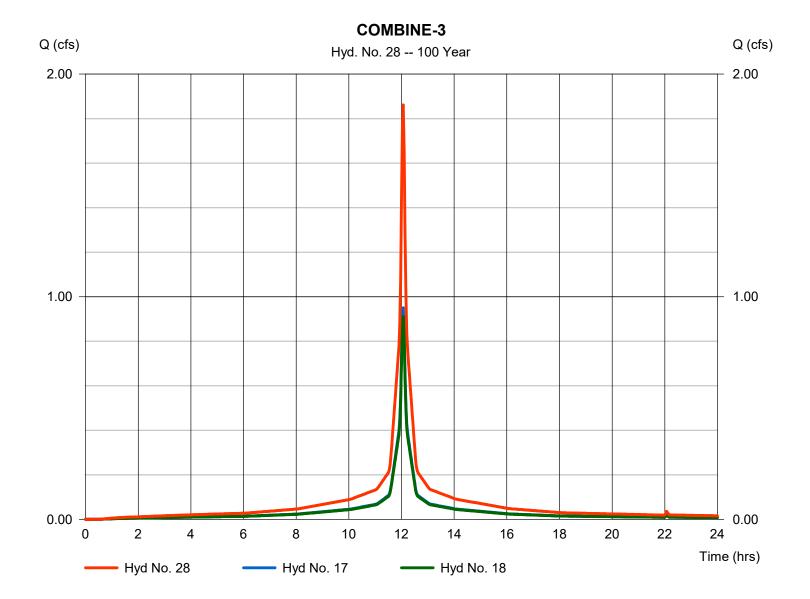

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 27

NORTH INFIL SYS

= Reservoir Hydrograph type Peak discharge = 6.513 cfsStorm frequency = 100 yrsTime to peak $= 12.10 \, hrs$ Time interval = 2 min Hyd. volume = 14,748 cuft Inflow hyd. No. Max. Elevation = 144.89 ft= 23 - TO NORTH INFIL SYS = NORTH INFIL SYS Reservoir name Max. Storage = 6,718 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

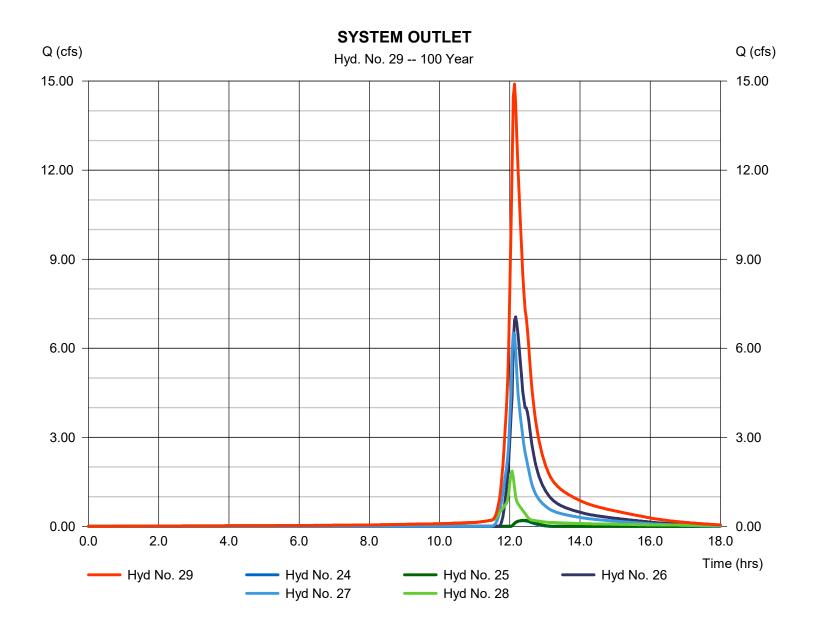
Hyd. No. 28

COMBINE-3

Hydrograph type = Combine Peak discharge = 1.861 cfsTime to peak Storm frequency = 100 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 6,502 cuft Inflow hyds. = 17, 18 Contrib. drain. area = 0.235 ac

Friday, 07 / 9 / 2021

= 14.90 cfs

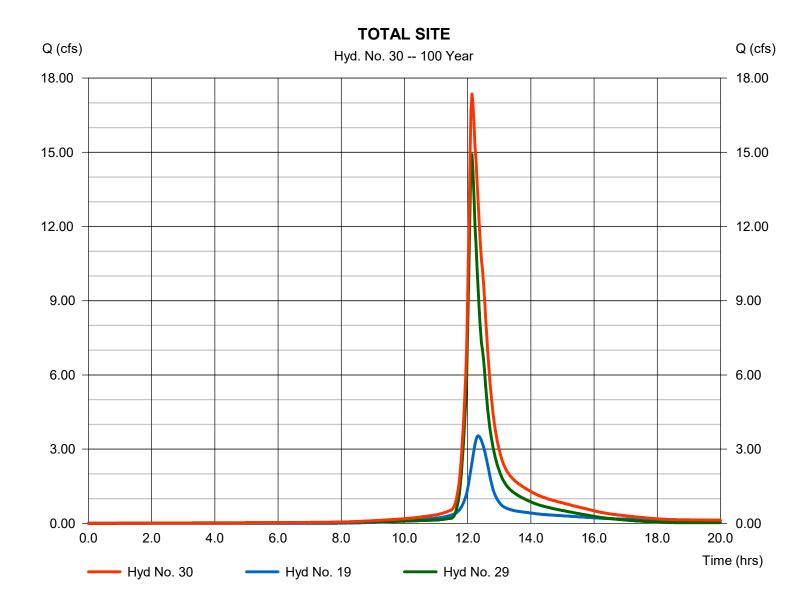

 $= 12.13 \, hrs$

Hyd. No. 29

SYSTEM OUTLET

Hydrograph type= CombinePeak dischargeStorm frequency= 100 yrsTime to peakTime interval= 2 minHyd. volume

Time interval = 2 min Hyd. volume = 41,632 cuft Inflow hyds. = 24, 25, 26, 27, 28 Contrib. drain. area = 0.000 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Friday, 07 / 9 / 2021

Hyd. No. 30

TOTAL SITE

Hydrograph type = Combine Peak discharge = 17.35 cfsStorm frequency Time to peak = 100 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 60,103 cuftInflow hyds. = 19, 29Contrib. drain. area = 1.038 ac

APPENDIX E

Date: 07/09/21
Prepared By: TAS

141 Danbury Road Wilton, CT WQV Worksheet

Required Water Quality Volume (WQV)

141 Danbury Road

Site Area in Acres, A	=	4.651	ac
Impervious Area in Acres	=	2.987	ac
Percent Impervious Cover, I	=	64.2	%
Volumetric Runoff Coefficient, R			
R = 0.05 + 0.009(I)	=	0.628	

Water Quality Volume (WQV)

$$WQV = \frac{(1'')(R)(A)}{12}$$
 = 0.243 ac·ft = 10,603 cf

Provided Water Quality Volume

	=	10,802	cf
South Porous Pavement System	=	1,415	cf
North Porous Pavement System	=	2,191	cf
South Infiltration System	=	4,284	cf
North Infiltration System	=	2,912	cf

Date: 07/09/2021 Prepared By: TAS 141 Danbury Road Wilton, CT **WQF Worksheet**

Required Water Quality Flow (WQF)

Water Quality Volume, WQV 0.243 ac-ft Drainage Area, A 4.651 ac

Runoff Depth in Watershed inches, Q

$$Q = \frac{WQV \times 12}{A} = 0.628$$
 in

Design Precipitation in inches, P 1 in

Runoff Curve Number, CN

$$CN = \frac{1000}{[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{\frac{1}{2}}]} = 96$$

From Table 4-1 in Chapter 4 of TR-55

Initial Abstraction, Ia 0.083 in 0.083

 I_a/P

From Exhibit 4-III in Chapter 4 of TR-55 q_u = Unit Peak Discharge 650 csm/in

Water Quality Flow (WQF)

 $WQF = (q_u)(A)(Q)$ 2.97 cfs

Project Name: **141 Danbury Road** Project Number: **F0173-002**

Project Location: Wilton, CT

Description: Stormwater BMP Pollutant Removal Estimate

Prepared By: **TAS** Date: **July 9, 2021**

Water Quality Area 1

		Pollutant					
Item	Units	TKN	P	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.067	0.013	3.550	0.005	0.001	0.005
Proposed, Post Treatment	lb/yr/1-in	0.040	0.003	0.359	0.002	0.000	0.000
Reduction, Pre to Post Treat		40%	78%	90%	64%	70%	90%

Water Quality Area 2

		Pollutant					
Item	Units	TKN	P	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.183	0.037	9.715	0.014	0.003	0.013
Proposed, Post Treatment	lb/yr/1-in	0.109	0.008	0.983	0.005	0.001	0.001
Reduction, Pre to Post Treat		40%	78%	90%	64%	70%	90%

Water Quality Area 3

		Pollutant					
Item	Units	TKN	P	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.043	0.009	2.293	0.003	0.001	0.003
Proposed, Post Treatment	lb/yr/1-in	0.031	0.006	1.261	0.002	0.001	0.002
Reduction, Pre to Post Treat		27%	33%	45%	32%	32%	32%

Water Quality Area 4

		Pollutant						
Item	Units	TKN	P	TSS	Pb	Cu	Zn	
Proposed, Pre Treatment	lb/yr/1-in	0.042	0.008	2.240	0.003	0.001	0.003	
Proposed, Post Treatment	lb/yr/1-in	0.031	0.006	1.232	0.002	0.000	0.002	
Reduction, Pre to Post Treat		27%	33%	45%	32%	32%	32%	

Water Quality Area 5

		Pollutant					
Item	Units	TKN	Р	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.080	0.016	4.261	0.006	0.001	0.006
Proposed, Post Treatment	lb/yr/1-in	0.048	0.010	0.852	0.002	0.001	0.002
Reduction, Pre to Post Treat		40%	40%	80%	60%	60%	60%

Water Quality Area 6

		Pollutant					
Item	Units	TKN	Р	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.000	0.000	0.000	0.000	0.000	0.000
Proposed, Post Treatment	lb/yr/1-in	0.000	0.000	0.000	0.000	0.000	0.000
Reduction, Pre to Post Treat							

Water Quality Area 7

		Pollutant					
Item	Units	TKN	Р	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.000	0.000	0.000	0.000	0.000	0.000
Proposed, Post Treatment	lb/yr/1-in	0.000	0.000	0.000	0.000	0.000	0.000
Reduction, Pre to Post Treat							

Water Quality Area 8

		Pollutant					
Item	Units	TKN	P	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.041	0.008	2.165	0.003	0.001	0.003
Proposed, Post Treatment	lb/yr/1-in	0.024	0.005	0.433	0.001	0.000	0.001
Reduction, Pre to Post Treat		40%	40%	80%	60%	60%	60%

Total Site

		Pollutant					
Item	Units	TKN	P	TSS	Pb	Cu	Zn
Proposed, Pre Treatment	lb/yr/1-in	0.456	0.092	24.226	0.035	0.008	0.032
Proposed, Post Treatment	lb/yr/1-in	0.284	0.037	5.121	0.015	0.003	0.009
Reduction, Pre to Post Treat		38%	59%	79%	57%	60%	71%

Loading Calculation

Location: Area 1 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.32 Total Area = 0.396 acres

Pollutant	<u>Reside</u>	<u>ential</u>	<u>Weig</u>	<u>ihted</u>
	Α	EMC	EMC	L
	(acres)	(mg/L)	(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.396	1.900	1.900	0.067
Total Phosphorus (P)	0.396	0.383	0.383	0.013
Total Suspended Solids	0.396	101.0	101.0	3.6
Lead	0.396	0.144	0.144	0.005
Copper	0.396	0.033	0.033	0.001
Zinc	0.396	0.135	0.135	0.005
L EMC	Pollution I	6 * EMC * [0.15 + 0.75*I] * P *A Loading (lbs/year)		
I EMC		nt Mean Concentration (mg/L) f Impervious Acres (acres)		
P	Annual Ra			
A		d Area (acres)		

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 1 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.32 Total Area = 0.396 acres

BMP: **Deep Sump Catch Basins**

Pollutant	Lin 1 (lbs)	Sum L (lbs)	RR (%)	Lremoved (lbs)	Lout (lbs)
Total Nitrogen (N)	0.067	0.067	0	0.00	0.067
Total Phosphorus (P)	0.013	0.013	0	0.00	0.013
Total Suspended Solids	3.550	3.6	20	0.71	2.8
Lead	0.005	0.005	0	0.00	0.005
Copper	0.001	0.001	0	0.00	0.001
Zinc	0.005	0.005	0	0.00	0.005
Lin 1	Pollutant Load Ar	rea 1			
Sum L RR	Sum of Pollutant Removal rate in		BMP		
Lout	Pollutant Load ou				

Notes

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Location: Area 1 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.32 Total Area = 0.396 acres

BMP: Water Quality Structure

Pollutant	Lin 1 (lbs)	Sum L (lbs)	RR (%)	Lremoved (lbs)	Lout (lbs)
Total Nitrogen (N)	0.067	0.067	18.3	0.01	0.055
Total Phosphorus (P)	0.013	0.013	66.9	0.01	0.004
Total Suspended Solids	2.840	2.8	77	2.19	0.7
Lead	0.005	0.005	46.5	0.00	0.003
Copper	0.001	0.001	56.2	0.00	0.001
Zinc	0.005	0.005	85.3	0.00	0.001
Lin 1	Pollutant Load Out	•	•	ch Basins E	ВМР
Sum L RR	Sum of Pollutant L Removal rate in po		BMP		
Lout	Pollutant Load out	_			

Notes

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Location: Area 1 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.32 Total Area = 0.396 acres

BMP: Infiltration System

Pollutant	Lin 1	Sum L	RR	Lremoved	Lout
	(lbs)	(lbs)	(-)	(lbs)	(lbs)
Total Nitrogen (N)	0.055	0.055	27	0.01	0.040
Total Phosphorus (P)	0.004	0.004	33	0.00	0.003
Total Suspended Solids	0.653	0.7	45	0.29	0.359
Lead	0.003	0.003	32	0.00	0.002
Copper	0.001	0.001	32	0.00	0.000
Zinc	0.001	0.001	32	0.00	0.000
Lin 1	Pollutant Load o	ut from WQS			
Sum L	Sum of Pollutant Load to this BMP				
RR	Removal rate in	percentage			
Lout	Pollutant Load o	ut of BMP			

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Loading Calculation

Location: Area 2 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.38 Total Area = 0.969 acres

Pollutant	Reside	<u>ential</u>	<u>Weig</u>	<u>ghted</u>
	Α	EMC	EMC	L
	(acres)	(mg/L)	(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.969	1.900	1.900	0.183
Total Phosphorus (P)	0.969	0.383	0.383	0.037
Total Suspended Solids	0.969	101.0	101.0	9.7
Lead	0.969	0.144	0.144	0.014
Copper	0.969	0.033	0.033	0.003
Zinc	0.969	0.135	0.135	0.013
L EMC I P A	Pollution L Mean Ever Fraction of Annual Ra	6 * EMC * [0.15 + 0.75*I] * P *A oading (lbs/year) nt Mean Concentration (mg/L) f Impervious Acres (acres) infall (in) d Area (acres)		

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 2 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.38 Total Area = 0.969 acres

BMP: **Deep Sump Catch Basins**

Pollutant	Lin 1 (Ibs)	Sum L (lbs)	RR (%)	Lremoved (lbs)	Lout (lbs)	
Total Nitrogen (N)	0.183	0.183	0	0.00	0.183	
Total Phosphorus (P)	0.037	0.037	0	0.00	0.037	
Total Suspended Solids	9.715	9.7	20	1.94	7.8	
Lead	0.014	0.014	0	0.00	0.014	
Copper	0.003	0.003	0	0.00	0.003	
Zinc	0.013	0.013	0	0.00	0.013	
Lin 1	Pollutant Load Area 1					
Sum L RR	Sum of Pollutant I Removal rate in p		BMP			
Lout	Pollutant Load out	-				

Notes

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Location: Area 2 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.38 Total Area = 0.969 acres

BMP: Water Quality Structure

Pollutant	Lin 1	Sum L	RR	Lremoved	Lout
	(lbs)	(lbs)	(%)	(lbs)	(lbs)
Total Nitrogen (N)	0.183	0.183	18.3	0.03	0.149
Total Phosphorus (P)	0.037	0.037	66.9	0.02	0.012
Total Suspended Solids	7.772	7.8	77	5.98	1.8
Lead	0.014	0.014	46.5	0.01	0.007
Copper	0.003	0.003	56.2	0.00	0.001
Zinc	0.013	0.013	85.3	0.01	0.002
Lin 1	Pollutant Load Out	of Deep S	ump Cat	ch Basins E	ЗМР
Sum L	Sum of Pollutant Lo				
RR	Removal rate in pe	rcentage			
Lout	Pollutant Load out	of BMP			

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Location: Area 2 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.38 Total Area = 0.969 acres

BMP: Infiltration System

Pollutant	Lin 1 (Ibs)	Sum L (lbs)	RR (-)	Lremoved (lbs)	Lout (lbs)
T					
Total Nitrogen (N)	0.149	0.149	27	0.04	0.109
Total Phosphorus (P)	0.012	0.012	33	0.00	0.008
Total Suspended Solids	1.788	1.8	45	0.80	1.0
Lead	0.007	0.007	32	0.00	0.005
Copper	0.001	0.001	32	0.00	0.001
Zinc	0.002	0.002	32	0.00	0.001
Lin 1	Pollutant Load out	-			
Sum L	Sum of Pollutant Load to this BMP				
RR	Removal rate in p	_			
Lout	Pollutant Load out	t of BMP			

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Loading Calculation

Location: Area 3 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.00 Total Area = 0.668 acres

Pollutant	Reside	<u>ential</u>	<u>Weig</u>	<u>ıhted</u>
	Α	EMC	EMC	L
	(acres)	(mg/L)	(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.668	1.900	1.900	0.043
Total Phosphorus (P)	0.668	0.383	0.383	0.009
Total Suspended Solids	0.668	101.0	101.0	2.3
Lead	0.668	0.144	0.144	0.003
Copper	0.668	0.033	0.033	0.001
Zinc	0.668	0.135	0.135	0.003
		6 * EMC * [0.15 + 0.75*I] * P *A		
L		oading (lbs/year)		
EMC		nt Mean Concentration (mg/L)		
I		f Impervious Acres (acres)		
P	Annual Ra	· ·		
A	watersne	d Area (acres)		

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 3 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.00 Total Area = 0.668 acres

BMP: Infiltration System

Pollutant	Lin 1 (lbs)	Sum L (lbs)	RR (-)	Lremoved (lbs)	Lout (lbs)	
Total Nitrogen (N)	0.043	0.043	27	0.01	0.031	
Total Phosphorus (P)	0.009	0.009	33	0.00	0.006	
Total Suspended Solids	2.293	2.3	45	1.03	1.3	
Lead	0.003	0.003	32	0.00	0.002	
Copper	0.001	0.001	32	0.00	0.001	
Zinc	0.003	0.003	32	0.00	0.002	
Lin 1 Sum L RR Lout	Pollutant Load out from WQS Sum of Pollutant Load to this BMP Removal rate in percentage Pollutant Load out of BMP					

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Loading Calculation

Location: Area 4 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.00 Total Area = 0.653 acres

Pollutant	Reside	<u>ential</u>	<u>Weig</u>	<u>lhted</u>
	Α	EMC	EMC	L
	(acres)	(mg/L)	(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.653	1.900	1.900	0.042
Total Phosphorus (P)	0.653	0.383	0.383	0.008
Total Suspended Solids	0.653	101.0	101.0	2.2
Lead	0.653	0.144	0.144	0.003
Copper	0.653	0.033	0.033	0.001
Zinc	0.653	0.135	0.135	0.003
L EMC I P A	Pollution L Mean Ever Fraction of Annual Ra	6 * EMC * [0.15 + 0.75*I] * P *A oading (lbs/year) nt Mean Concentration (mg/L) f Impervious Acres (acres) infall (in) d Area (acres)		

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 4 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.00 Total Area = 0.653 acres

BMP: Infiltration System

Pollutant	Lin 1	Sum L	RR	Lremoved	Lout
	(lbs)	(lbs)	(-)	(lbs)	(lbs)
Total Nitrogen (N)	0.042	0.042	27	0.01	0.031
Total Phosphorus (P)	0.008	0.008	33	0.00	0.006
Total Suspended Solids	2.240	2.2	45	1.01	1.2
Lead	0.003	0.003	32	0.00	0.002
Copper	0.001	0.001	32	0.00	0.000
Zinc	0.003	0.003	32	0.00	0.002
Lin 1	Pollutant Load out	from WQS			
Sum L	Sum of Pollutant Load to this BMP				
RR	Removal rate in p	ercentage			
Lout	Pollutant Load out	of BMP			

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Loading Calculation

Location: Area 5 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.39 Total Area = 0.419 acres

Pollutant	Reside	<u>ential</u>		<u>Weig</u>	<u>ıhted</u>
	Α	EMC		EMC	L
	(acres)	(mg/L)		(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.419	1.900		1.900	0.080
Total Phosphorus (P)	0.419	0.383		0.383	0.016
Total Suspended Solids	0.419	101.0		101.0	4.3
Lead	0.419	0.144		0.144	0.006
Copper	0.419	0.033		0.033	0.001
Zinc	0.419	0.135		0.135	0.006
			* [0.15 + 0.75*I] * P *A		
L	Pollution L				
			·		
		•			
•					
L EMC I P A	L = 0.226 Pollution L Mean Eve	6 * EMC Loading (nt Mean (f Imperv infall (in)	lbs/year) Concentration (mg/L) ious Acres (acres))	0.133	

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 5 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.39 Total Area = 0.419 acres

BMP: **Porous Pavement**

Pollutant	Lin 1 (lbs)	Sum L (lbs)	RR (-)	Lremoved (lbs)	Lout (lbs)
	(183)	(103)	()	(103)	(103)
Total Nitrogen (N)	0.080	0.080	40	0.03	0.048
Total Phosphorus (P)	0.016	0.016	40	0.01	0.010
Total Suspended Solids	4.261	4.3	80	3.41	0.9
Lead	0.006	0.006	60	0.00	0.002
Copper	0.001	0.001	60	0.00	0.001
Zinc	0.006	0.006	60	0.00	0.002
Lin 1	Pollutant Load	out from WQS			
Sum L	Sum of Pollutant Load to this BMP				
RR	Removal rate in	n percentage			
Lout	Pollutant Load	out of BMP			

Notes

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

Loading Calculation

Location: Area 8 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.27 Total Area = 0.271 acres

Pollutant	Reside	<u>ential</u>	<u>Weig</u>	<u>ihted</u>
	Α	EMC	EMC	L
	(acres)	(mg/L)	(mg/L)	(lbs/yr)
Total Nitrogen (N)	0.271	1.900	1.900	0.041
Total Phosphorus (P)	0.271	0.383	0.383	0.008
Total Suspended Solids	0.271	101.0	101.0	2.2
Lead	0.271	0.144	0.144	0.003
Copper	0.271	0.033	0.033	0.001
Zinc	0.271	0.135	0.135	0.003
L	Pollution L	6 * EMC * [0.15 + 0.75*I] * P *A .oading (lbs/year)		
EMC		nt Mean Concentration (mg/L)		
I		f Impervious Acres (acres)		
P	Annual Ra			
A	watersne	d Area (acres)		

Notes:

1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition* by Debo & Reese, pgs. 193-195

Location: Area 8 Condition: Proposed

Rainfall: 1 inches

Impervious Fraction: 0.27 Total Area = 0.271 acres

BMP: **Porous Pavement**

Pollutant	Lin 1	Sum L	RR	Lremoved	Lout	
	(lbs)	(lbs)	(-)	(lbs)	(lbs)	
Total Nitrogen (N)	0.041	0.041	40	0.02	0.024	
Total Phosphorus (P)	0.008	0.008	40	0.00	0.005	
Total Suspended Solids	2.165	2.2	80	1.73	0.4	
Lead	0.003	0.003	60	0.00	0.001	
Copper	0.001	0.001	60	0.00	0.000	
Zinc	0.003	0.003	60	0.00	0.001	
Lin 1	Pollutant Load out from WQS					
Sum L	Sum of Pollutant Load to this BMP					
RR	Removal rate in percentage					
Lout	Pollutant Load ou	t of BMP				

Notes:

- 1. Pollution loading calculated using *Municipal Stormwater Management, Second Edition*, by Debo & Reese, pgs. 193-195.
- 2. Pollutant removal rates for Rain Garden/Infiltration Trench and Wet Pond taken from *Municipal Stormwater Management, Second Edition*, by Debo & Reese, Tbl. 13-13, p. 748.
- 3. Pollutant removal rates for Vortechnics Stormwater Quality Unit and Deep Sump Catch Basins taken from *Final Report, Stormwater Treatment Devices Section 319 Project, Project #99-07*, Submitted to CT DEP April 15, 2002.
- 4. Pollutant removal rates for Ultra Urban Filter Catch Basin inserts taken from *Final Report:* Sediment Removal from Simulated Stormwater Runoff by Abtech Industries, Inc. UltraUrban Filter-CO in Laboratory Flume Tests, Submitted by Stan Galicki, Ph.D., Millsaps College December 9th, 2009.

APPENDIX F

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: CB-01

Location: Proposed Yard Drain - Front Lawn

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.025	0.95	0.024
Landscaped and Lawns	0.082	0.30	0.025
			0.049

Total Area: 0.108 C: 0.45

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	130	0.030	14.2

Total Tc (min) = 14.2

Name: CB-01A

Location: Proposed Yard Drain - Front Lawn

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.008	0.95	0.008
Landscaped and Lawns	0.186	0.30	0.056
			0.063

Total Area: 0.194 C: 0.33

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	50	0.020	7.8

Total Tc (min) = 7.8

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: CB-02

Location: Proposed Catch Basin - Driveway

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.043	0.95	0.041
Landscaped and Lawns	0.010	0.30	0.003
			0.044

Total Area: 0.054 C: 0.82

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.015	3.54	98	0.050	1.0

Total Tc (min) = 1.0

Minimum Tc = 5.0

Name: CB-03

Location: Proposed Catch Basin - Parking Area East

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.057	0.95	0.054
Landscaped and Lawns	0.016	0.30	0.005
			0.059

Total Area: 0.074 C: 0.80

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	60	0.033	0.8

Total Tc (min) = 4.5
Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: CB-04

Location: Proposed Catch Basin - Parking Area East

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.044	0.95	0.042
Landscaped and Lawns	0.009	0.30	0.003
			0.044

Total Area: 0.053 C: 0.84

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID	"n"	P ₂ (in)	Flow Length (ft)	Slope (ft/ft)	Time (min)
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	55	0.045	0.7

Total Tc (min) = 4.4
Minimum Tc = 5.0

Name: CB-05

Location: Proposed Catch Basin - Driveway

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.076	0.95	0.072
Landscaped and Lawns	0.039	0.30	0.012
			0.084

Total Area: 0.115 C: 0.73

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (mir					
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	65	0.040	0.8

Total Tc (min) = 4.5

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: CB-06

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.047	0.95	0.045
Landscaped and Lawns	0.015	0.30	0.004
			0.049

Total Area: 0.062 C: 0.80

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (mi					
A-B	0.24	3.54	22	0.020	4.0
B-C	0.015	3.54	58	0.025	0.9

Total Tc (min) = 4.9
Minimum Tc = 5.0

Name: CB-07

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.081	0.95	0.077
Landscaped and Lawns	0.018	0.30	0.005
			0.082

Total Area: 0.099 C: 0.83

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (mir					
A-B	0.24	3.54	15	0.020	3.0
B-C	0.015	3.54	115	0.035	1.3

Total Tc (min) = 4.3

Minimum Tc = 5.0

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: CB-08

Location: Proposed Catch Basin - Parking Area South

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.094	0.95	0.090
Landscaped and Lawns	0.017	0.30	0.005
			0.095

Total Area: 0.111 C: 0.85

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (m					Time (min)
A-B	0.24	3.54	30	0.040	3.9
B-C	0.015	3.54	140	0.035	1.5

Total Tc (min) = 5.5

Name: CB-09

Location: Proposed Catch Basin - Parking Area North

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.117	0.95	0.111
Landscaped and Lawns	0.020	0.30	0.006
			0.117

Total Area: 0.137 C: 0.86

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (m					
A-B	0.24	3.54	20	0.020	3.7
B-C	0.015	3.54	120	1.000	0.4

Total Tc (min) = 4.1

Minimum Tc = 5.0

Project No. **F0173-002** Date: 07/09/21

141 Danbury Road Wilton, CT Prepared By: TAS **Proposed C & Tc Worksheet**

CB-10 Name:

Location: Proposed Catch Basin - Parking Area North

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.104	0.95	0.098
Landscaped and Lawns	0.029	0.30	0.009
			0.107

0.81 Total Area: 0.133

Time of Concentration:

Sheet-Flow Travel Time					
Segment ID "n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (mi					
A-B	0.24	3.54	30	0.040	3.9
B-C	0.015	3.54	135	1.000	0.4

Total Tc (min) = 4.3 Minimum Tc =

Name: **CB-11**

Location: Proposed Yard Drain - Southeast Corner Site

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.010	0.95	0.010
Landscaped and Lawns	0.217	0.30	0.065
			0.075

Total Area: 0.227 0.33

Time of Concentration:

Sheet-Flow Travel Time								
Segment ID	n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)							
A-B	0.24	3.54	120	0.050	10.9			

Total Tc (min) = 10.9

141 Danbury Road Wilton, CT Proposed C & Tc Worksheet

Name: RF-01

Location: Proposed Building - North

Cover Type	Area (ac)	C	AxC
Pavement / Impervious	0.668	0.95	0.635
Landscaped and Lawns	0.000	0.30	0.000
			0.635

Total Area: 0.668 C: 0.95

Time of Concentration:

Sheet-Flow Travel Time							
Segment ID	"n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)						
A-B	0.015	3.54	50	0.015	1.0		

Total Tc (min) = 1.0

Minimum Tc = 5.0

Name: RF-02

Location: Proposed Building - South

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.653	0.95	0.620
Landscaped and Lawns	0.000	0.30	0.000
			0.620

Total Area: 0.653 C: 0.95

Time of Concentration:

Sheet-Flow Travel Time								
Segment ID	"n"	"n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)						
A-B	0.015	3.54	50	0.015	1.0			

Total Tc (min) = 1.0

Minimum Tc = 5.0

Project No. **F0173-002** Date: 07/09/21

141 Danbury Road Wilton, CT Prepared By: TAS **Proposed C & Tc Worksheet**

RF-03 Name:

Location: Proposed Building - Northwest

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.120	0.95	0.114
Landscaped and Lawns	0.000	0.30	0.000
			0.114

Total Area: 0.120 0.95

Time of Concentration:

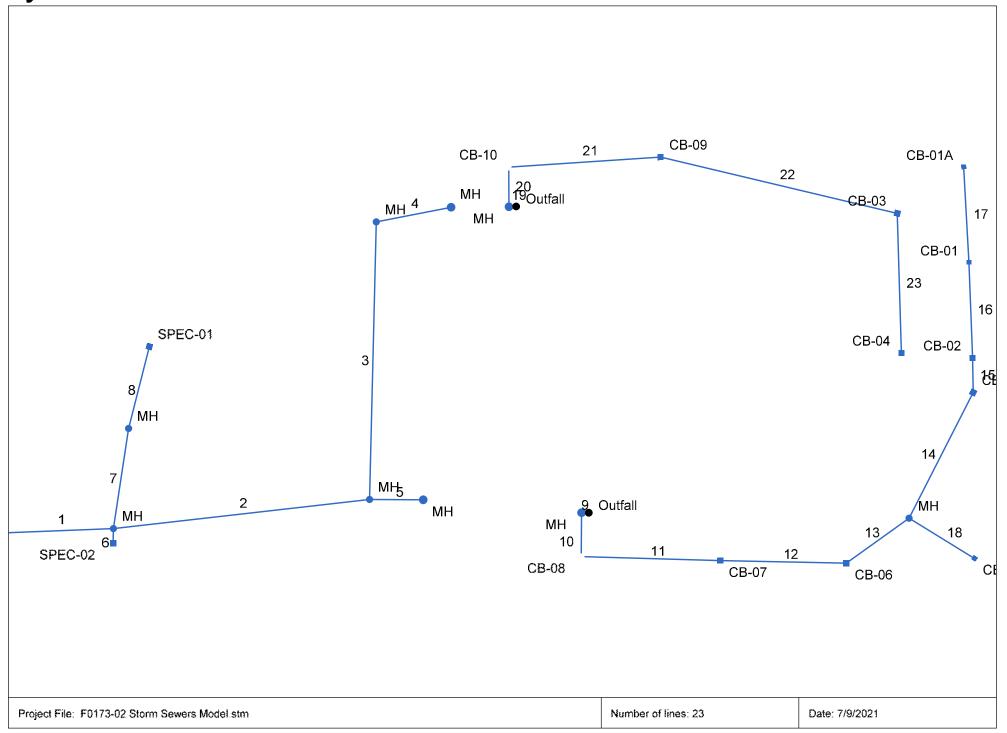
Sheet-Flow Travel Time							
Segment ID	"n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)						
A-B	0.015	3.54	50	0.015	1.0		

Total Tc (min) = 1.0 Minimum Tc = 5.0

Name: **RF-04**

Location: Proposed Building - Southwest

Cover Type	Area (ac)	С	AxC
Pavement / Impervious	0.115	0.95	0.109
Landscaped and Lawns	0.000	0.30	0.000
			0.109


Total Area: 0.115 0.95

Time of Concentration:

	Sheet-Flow Travel Time						
Segment ID	"n" P ₂ (in) Flow Length (ft) Slope (ft/ft) Time (min)						
A-B	0.015	3.54	50	0.015	1.0		

Total Tc (min) = ____ 1.0 Minimum Tc = 5.0

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Tabulation

Station	Len	Drn	ng Are		Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
ine To		Inc	r 1	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
Line	e (ft)	(ac) ((ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 Enc 2 1 3 2 4 3 5 2 6 1 7 1 8 9 Enc 10 9 11 10 12 11 13 12 14 13 15 14 13 15 17 16 18 13 19 Enc 20 19 21 20 21 20 22 21 23 22	178.0 192.0 52.60 37.00 10.00 70.00 58.50 d 5.00 30.44 96.00 87.00 53.30 97.60 23.90 66.30 66.00 53.00 d 50.00 27.44	00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1 00 0.1	000 1000 1000 1000 110	0.24 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.97 0.86 0.70 0.47 0.36 0.30 0.19 0.23 0.40 0.26 0.13 0.05	0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.85 0.83 0.80 0.00 0.73 0.82 0.45 0.33 0.80 0.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.22 0.00 0.00 0.00 0.00 0.00 0.54 0.54 0.45 0.32 0.24 0.16 0.11 0.06 0.07 0.33 0.32 0.24 0.10 0.00	0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 5.0 5.0	27.9 1.2 0.2 0.0 0.0 0.0 25.5 0.0 16.6 15.9 15.3 14.7 14.2 7.8 10.9 7.6 7.5 7.0 5.8 5.0	3.5 0.0 0.0 0.0 0.0 3.7 0.0 4.7 4.7 4.8 4.9 5.0 5.1 5.2 7.0 6.0 7.1 7.2 7.4 8.6	9.14 8.30 4.40 3.90 0.04 0.85 0.03 2.56 2.57 2.17 1.79 0.58 0.45 2.34 2.36 1.64 0.83 0.38	8.04 11.05 9.85 7.00 14.07 8.04 2.72 0.00 2.80 3.32 3.33 3.34 3.87 2.38 2.39 1.69 0.00 3.38 6.36 6.09 4.71	5.17 4.70 3.15 4.34 5.28 0.05 0.48 0.04 3.26 3.28 2.97 4.10 3.54 2.60 2.10 2.42 1.79 2.98 3.69 3.38 2.47 1.90	18 18 18 15 15 12 12 12 12 12 12 12 12 12 12 12 12 12	0.50 0.94 0.75 1.90 1.00 13.30 0.50 0.50 0.05 0.74 0.75 0.75 0.99 1.00 1.01 1.02 0.51 0.00 0.77 2.72 2.50 1.49	138.50 138.88 140.56 142.00 142.63 138.88 139.23 142.00 143.16 144.38 145.03 146.39 147.36 148.03 145.43 145.03	138.88 140.56 142.00 143.00 143.00 140.21 139.23 139.52 142.00 143.16 143.87 145.03 147.60 148.03 147.60 148.03 147.60 148.07 150.26 151.70	140.44 141.35 142.63 143.15 143.30 141.35 141.35 141.35 143.84 144.03 144.41 144.90 145.60 145.78 147.97 148.36 145.96 143.79 143.87 146.61 150.64	140.93 142.29 142.93 143.85 143.80 141.35 141.35 143.86 144.16 144.68 145.60 147.97 148.36 148.99 146.02 143.81 143.87 146.61 150.64 151.95	141.50 142.82 145.79 145.97 145.79 142.82 142.82 143.80 146.33 146.10 148.30 151.60 153.50 0.00 152.50 146.50 146.50 146.30 149.70 154.70	142.82 145.79 145.97 146.50 146.33 144.30 143.80 143.90 146.33 146.10 153.50 0.00 152.50 150.70 147.70 146.50 149.70 154.70	

Number of lines: 23

NOTES:Intensity = 38.51 / (Inlet time + 3.60) ^ 0.70; Return period =Yrs. 25; c = cir e = ellip b = box

Project File: F0173-02 Storm Sewers Model.stm

Run Date: 7/9/2021

APPENDIX G

141 Danbury Road Residential Development Wilton, Connecticut

Maintenance and Inspection Plan

July 2021

The initial inspection will be made during an intense rainfall to check the adequacy of the catch basins, roof leaders, piping, hydrodynamic separators, underground infiltration systems, and system outlet.

The following is a checklist of items that will be checked and maintained during scheduled maintenance operations.

<u>Drainage Structures:</u> The Owner will be responsible for cleaning the catch basins, yard drains, manholes, piping, and outlet protection on their property. A Connecticut licensed hauler shall clean the sumps, and legally dispose of removed sand at an off-site location. The road sand may not be reused or stored on-site. As part of the hauling contract, the hauler shall notify the Owner in writing where the material is being disposed.

Each catch basin and yard drain shall be inspected every four months, with one inspection occurring during the month of April. Any debris occurring within one foot from the bottom of each sump shall be removed by Vacuum "Vactor" type of maintenance equipment. Maintain a log of inspections. Remove organic matter, sand, and debris from catch basins as necessary and dispose of legally.

<u>Hydrodynamic Separator:</u> The Contech CDS units (hydrodynamic separator) will be skimmed and oil and scum removed. In a separate operation, silt, sand, and sediment will be removed. Once the structure is cleaned of debris, the chamber will be refilled with clean water to prevent wash through of debris and oil during next storm event.

<u>Underground Infiltration:</u> The underground infiltration system will be cleaned of all silt, debris and sediment from the inlet structure, outlet structure and the chamber lengths. The outlet control structure will be inspected and cleaned to make sure nothing is clogging the discharge pipe.

<u>Level Spreader:</u> The level spreader shall be inspected two times annually. Regular maintenance includes removing accumulated debris and sediment, checking for erosion, vegetative bare spots, and removing invasive plan species or tree saplings.

<u>Pavement:</u> Paved areas shall be swept periodically by the Owner to clean trash and other debris. The Owner will sweep paved areas on its property in the spring to remove winter accumulations of road sand.

Perform a visual inspection of paved areas four times per year with one inspection after the last snowfall, but no later than April 1. Sweep accumulated sediment and debris from the paved areas. Clean paved areas as necessary during the remainder of the year.

Drainage Structures Inspection

Each catch basin and yard drain shall be inspected every four months, with one inspection occurring during the month of April. Any debris occurring within one foot from the bottom of each sump shall be removed by Vacuum "Vactor" type of maintenance equipment. Maintain a log of inspections. Remove organic matter, sand, and debris from catch basins as necessary and dispose of legally.

Date (MM/DD/YY)	Company/Person	Supervising Team Member	Comments

Underground Infiltration

The underground infiltration system shall be inspected annually and will be cleaned of all silt, debris and sediment from the inlet structure, outlet structure and the chamber lengths. The outlet control structure will be inspected and cleaned to make sure nothing is clogging the discharge pipe.

Date (MM/DD/YY)	Company/Person	Supervising Team Member	Comments

Pavement Inspection

Perform a visual inspection of paved areas four times per year with one inspection after the last snowfall, but no later than April 1. Sweep accumulated sediment and debris from the paved areas. Clean paved areas as necessary during the remainder of the year.

Date (MM/DD/YY)	Company/Person	Supervising Team Member	Comments

APPENDIX H

Questions concerning the VERTCON process may be mailed to $\underline{\mbox{NGS}}$

Latitude: 41.179

Longitude: 073.417

NGVD 29 height:

Datum shift(NAVD 88 minus NGVD 29): -0.329 meter = -1.07 feet

 $\underline{\textbf{TABLE 5-SUMMARY OF DISCHARGES}} \text{-} \text{continued}$

		10		CHARGES (cfs)	0.2
FLOODING SOURCE AND LOCATION	DRAINAGE AREA (sq. miles)	10- PERCENT- ANNUAL- <u>CHANCE</u>	2- PERCENT- ANNUAL- <u>CHANCE</u>	1- PERCENT- ANNUAL- <u>CHANCE</u>	0.2- PERCENT- ANNUAL- <u>CHANCE</u>
NOROTON RIVER -					
continued					
At Jelliff Mill Road	4.38	520	890	1,080	1,900
Upstream of Mead Park	1.90	220	390	460	820
Upstream of Wahackne	0.70	00	1.00	200	240
Road	0.79	90	160	200	340
Upstream of Greenley Road	0.42	50	00	110	100
Koau	0.43	50	90	110	190
NORTH FARRAR					
BROOK					
At the confluence with					
the Pequonnock River					
(Upper Reach)	0.46	100	245	350	780
At the Trumbull-Monroe					
corporate limits	0.03	10	25	35	80
NORWALK RIVER					
Upstream of confluence					
of Betts Pond Brook	57.6	4,100	9,500	14,000	16,250
Upstream of confluence		,	- ,	,	-,
of Silvermine River	32.8	2,600	6,300	9,100	20,000
At Kent Road	30.0	2,980	5,840	7,455	12,505
Downstream of					
confluence of					
Comstock Brook	25.7	2,680	5,280	6,735	11,295
Upstream of confluence					
of Comstock Brook	18.4	1,845	3,660	4,675	7,840
Downstream of					
confluence of Gilbert					
and Bennett Brooks	13.8	1,425	2,865	3,655	6,135
Upstream of confluence					
of Gilbert and Bennett	10.0	1.005	2.445	0.105	5.040
Brooks	12.3	1,205	2,445	3,125	5,240
Downstream of the					
confluence of Cooper	11 12	1.010	2.005	0.665	4 477
Pond Brook	11.13	1,010	2,085	2,665	4,475
Upstream of the					
confluence of Cooper	0 72	66 5	1.250	1 505	2 600
Pond Brook	8.73	665	1,250	1,595	2,680

Norwalk River Calibrated (Duplicate Effective) Model Output Table

HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Decel 4	29920	10%	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	0.75
Reach-1	29920	2%	2980.00 5840.00	147.00 147.00	152.32 153.56	152.32 153.56	153.29 154.60	0.004454 0.004481	9.23 10.83	671.47 1400.71	438.66 673.09	0.75
Reach-1	29920	1%	7455.00	147.00	153.56	153.56	154.60	0.004481	11.86	1676.50	693.44	0.79
Reach-1	29920	0.2%	12505.00	147.00	154.99	154.99	156.40	0.004919	14.14	2414.85	738.35	0.03
TCCCCIT-1	29920	0.270	12303.00	147.00	154.99	134.99	130.40	0.003722	14.14	2414.03	730.33	0.32
Reach-1	29760	10%	2980.00	142.20	148.53		149.01	0.001498	5.62	583.13	179.68	0.44
Reach-1	29760	2%	5840.00	142.20	151.31		151.93	0.001165	6.63	1125.96	211.79	0.42
Reach-1	29760	1%	7455.00	142.20	152.19		152.97	0.001276	7.45	1317.25	222.00	0.44
Reach-1	29760	0.2%	12505.00	142.20	154.28		155.51	0.001589	9.59	1814.00	255.42	0.51
Reach-1	28240	10%	2980.00	138.00	145.34		146.30	0.002090	7.99	445.85	151.41	0.55
Reach-1	28240	2%	5840.00	138.00	146.52	146.52	148.75	0.004139	12.55	696.60	258.98	0.79
Reach-1	28240	1%	7455.00	138.00	147.71	147.71	149.80	0.003506	12.69	1059.97	366.77	0.75
Reach-1	28240	0.2%	12505.00	138.00	149.76	149.76	151.98	0.003397	14.32	1979.91	552.23	0.76
Reach-1	27468	10%	2980.00	132.10	145.99		145.99	0.000005	0.60	9140.64	793.45	0.03
Reach-1	27468	2%	5840.00	132.10	146.99		146.99	0.000017	1.11	9943.03	813.12	0.05
Reach-1	27468	1%	7455.00	132.10	147.53		147.54	0.000024	1.37	10389.13	832.33 890.79	0.06
Reach-1	27468	0.2%	12505.00	132.10	148.85		148.88	0.000052	2.13	11529.28	890.79	0.10
Peach-1	27110	10%	2980.00	136.60	145.97		145.99	0.000064	1.74	4765.52	962.48	0.10
Reach-1	27110	2%	5840.00	136.60	145.97		145.99	0.000064	2.83	5707.19	962.48	0.10
Reach-1	27110	1%	7455.00	136.60	147.46		147.51	0.000148	3.29	6234.70	1005.58	0.18
Reach-1	27110	0.2%	12505.00	136.60	148.74		148.82	0.000304	4.52	7518.38	1009.50	0.10
			12000.00	.00.00			1.13.32	2.000004	52	. 0.10.50		5.20
Reach-1	27025	10%	2980.00	135.50	145.63	141.84	145.90	0.000562	5.28	1759.35	880.05	0.30
Reach-1	27025	2%	5840.00	135.50	145.74	145.59	146.68	0.001965	9.96	1855.68	883.55	0.56
Reach-1	27025	1%	7455.00	135.50	146.24	146.03	147.20	0.002112	10.68	2304.78	899.67	0.59
Reach-1	27025	0.2%	12505.00	135.50	147.33	147.10	148.46	0.002654	12.81	3304.65	934.56	0.67
Reach-1	27020		Bridge									
Reach-1	27015	10%	2980.00	135.50	141.85	141.85	144.38	0.006857	13.22	278.63	62.97	0.97
Reach-1	27015	2%	5840.00	135.50	145.62	145.62	146.66	0.002172	10.38	1752.24	879.80	0.59
Reach-1	27015	1%	7455.00	135.50	146.08	146.08	147.18	0.002399	11.26	2163.67	894.64	0.63
Reach-1	27015	0.2%	12505.00	135.50	147.11	147.11	148.43	0.003090	13.64	3099.86	927.52	0.72
Reach-1	26680	10%	2980.00	134.00	140.31	140.08	141.21	0.004091	9.97	762.74	365.85	0.74
Reach-1	26680	2%	5840.00	134.00	142.16		142.88	0.003007	10.34	1642.26	560.63	0.67
Reach-1	26680	1%	7455.00	134.00	142.90		143.58	0.002777	10.58	2066.21	590.20	0.65
Reach-1	26680	0.2%	12505.00	134.00	145.35		145.79	0.001646	9.70	3857.15	759.13	0.52
Reach-1	26209	10%	2980.00	133.40	140.62		140.66	0.000240	1.93	2591.95	867.42	0.17
Reach-1	26209	2%	5840.00	133.40	142.35		142.41	0.000240	2.43	4170.98	944.15	0.17
Reach-1	26209	1%	7455.00	133.40	143.05		143.12	0.000251	2.70	4830.47	949.47	0.19
Reach-1	26209	0.2%	12505.00	133.40	145.37		145.47	0.000223	3.12	7059.39	967.22	0.19
							-					
Reach-1	26136	10%	2980.00	130.20	139.77	136.89	140.44	0.001214	7.36	865.42	504.59	0.44
Reach-1	26136	2%	5840.00	130.20	141.38	140.68	142.16	0.001499	9.14	1847.21	666.49	0.50
Reach-1	26136	1%	7455.00	130.20	142.12	141.28	142.88	0.001499	9.56	2353.38	704.50	0.50
Reach-1	26136	0.2%	12505.00	130.20	144.86	142.59	145.33	0.000938	8.76	4394.50	760.00	0.41
Reach-1	26127.5		Bridge									
Reach-1	26119	10%	2980.00	131.30	138.62	136.96	138.86	0.001012	5.17	1356.28	541.45	0.36
Reach-1	26119	2%	5840.00	131.30	141.25	138.61	141.42	0.000572	4.88	3054.77	719.80	0.28
Reach-1	26119	1%	7455.00	131.30	142.26	138.86 140.05	142.42	0.000529	5.03	3791.17	742.95	0.28
Reach-1	26119	0.2%	12505.00	131.30	144.97	140.05	145.13	0.000437	5.35	5865.51	778.00	0.26
Reach-1	26058	10%	2980.00	131.30	138.53		138.79	0.001092	5.33	1309.05	531.38	0.37
Reach-1	26058	2%	5840.00	131.30	141.22		141.38	0.001092	4.92	3026.55	717.66	0.37
Reach-1	26058	1%	7455.00	131.30	141.22		142.38	0.000539	5.06	3764.56	742.33	0.28
Reach-1	26058	0.2%	12505.00	131.30	144.94		145.10	0.000333	5.37	5843.13	778.00	0.26
									2.37			1.20
Reach-1	25358	10%	2980.00	131.00	137.99		138.13	0.000739	4.81	1594.08	436.94	0.33
Reach-1	25358	2%	5840.00	131.00	140.85		140.99	0.000527	5.13	2885.35	468.88	0.29
Reach-1	25358	1%	7455.00	131.00	141.84		142.00	0.000548	5.59	3368.25	501.77	0.30
Reach-1	25358	0.2%	12505.00	131.00	144.56		144.76	0.000543	6.48	5013.74	635.86	0.31
Reach-1	24597	10%	2980.00	127.90	137.54		137.72	0.000415	3.74	908.33	167.21	0.22
Reach-1	24597	2%	5840.00	127.90	140.33		140.60	0.000462	4.72	1477.03	282.08	0.24
Reach-1	24597	1%	7455.00	127.90	141.26		141.58	0.000532	5.33	1784.39	487.39	0.26
Reach-1	24597	0.2%	12505.00	127.90	143.91		144.30	0.000614	6.50	3259.65	576.34	0.29
Reach-1	24560	10%	2980.00	127.90	137.15	132.79	137.67	0.001052	5.78	515.90	160.44	0.35
Reach-1	24560	2%	5840.00	127.90	140.28	135.20	140.58	0.000520	4.99	1376.45	274.15	0.26

HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1 (Continued)

			each: Reach-1 (C		W.C. Flav	Crist VALC	F.C. Flav	F.C. Clana	Val Chal	Flour Area	Tan Midth	Frauda # Chl
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
D 1.4	0.4500	10/	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	2.00
Reach-1	24560	1%	7455.00	127.90	141.24	136.38	141.56	0.000537	5.35	1773.46	485.12	0.26
Reach-1	24560	0.2%	12505.00	127.90	143.88	139.30	144.28	0.000619	6.52	3245.22	576.17	0.29
												-
Reach-1	24542.5	-	Bridge									
Reach-1	24525	10%	2980.00	127.20	135.27	133.49	136.46	0.003361	9.08	507.48	212.95	0.60
Reach-1	24525	2%	5840.00	127.20	138.57	136.74	139.62	0.002188	9.45	1358.71	342.03	0.52
Reach-1	24525	1%	7455.00	127.20	139.76	137.71	140.91	0.002189	10.16	1844.44	449.44	0.53
Reach-1	24525	0.2%	12505.00	127.20	142.35	139.79	143.79	0.002461	12.32	3395.84	811.45	0.58
Reach-1	24457	10%	2980.00	127.20	133.42	133.42	136.00	0.007504	12.96	249.76	64.13	1.00
Reach-1	24457	2%	5840.00	127.20	136.74	136.74	139.26	0.004358	13.68	858.70	241.86	0.82
Reach-1	24457	1%	7455.00	127.20	137.78	137.78	140.54	0.004328	14.71	1121.20	262.63	0.84
Reach-1	24457	0.2%	12505.00	127.20	140.59	140.59	143.45	0.003743	16.22	2228.03	492.18	0.81
Reach-1	24105	10%	2980.00	124.80	132.65	130.63	133.44	0.002381	7.13	417.66	78.83	0.55
Reach-1	24105	2%	5840.00	124.80	134.63	132.93	136.19	0.003492	10.03	582.32	262.38	0.69
Reach-1	24105	1%	7455.00	124.80	135.37	134.00	137.42	0.004065	11.49	665.70	391.75	0.75
Reach-1	24105	0.2%	12505.00	124.80	138.50	137.57	139.49	0.004003	9.47	3845.46	1520.09	0.73
Reacti-1	24103	0.276	12303.00	124.00	130.30	137.37	139.49	0.001714	9.47	3043.40	1320.09	0.52
Deech 4	22025	100/	2002.25	404.00	400.00		400.0=	0.001177	2.1-	007.00	001.00	
Reach-1	23805	10%	2980.00	124.00	132.38		132.87	0.001170	6.13	997.32	331.23	0.41
Reach-1	23805	2%	5840.00	124.00	134.65		135.32	0.001300	7.78	1933.43	474.68	0.45
Reach-1	23805	1%	7455.00	124.00	135.65		136.39	0.001316	8.38	2427.76	508.37	0.46
Reach-1	23805	0.2%	12505.00	124.00	138.18		138.99	0.001278	9.55	4409.49	1582.59	0.47
Reach-1	23415	10%	2980.00	123.00	129.81	129.81	131.82	0.006096	11.90	404.45	161.55	0.89
Reach-1	23415	2%	5840.00	123.00	132.27	132.27	134.30	0.004596	13.19	1159.47	343.43	0.82
Reach-1	23415	1%	7455.00	123.00	133.11	133.11	135.33	0.004719	14.27	1451.84	358.59	0.84
Reach-1	23415	0.2%	12505.00	123.00	135.13	135.13	137.89	0.005069	16.96	2245.13	422.31	0.91
Reach-1	23171	10%	2980.00	120.30	128.75		129.48	0.002604	6.87	455.76	121.38	0.57
Reach-1	23171	2%	5840.00	120.30	129.79	129.12	131.57	0.005575	10.79	599.24	177.93	0.81
Reach-1	23171	1%	7455.00	120.30	131.12	130.85	132.49	0.003967	9.91	913.48	264.15	0.67
Reach-1	23171	0.2%	12505.00	120.30	134.35	100.00	135.16	0.001732	7.84	1880.08	333.29	0.44
TCGCII-1	23171	0.270	12303.00	120.50	104.00		133.10	0.001732	7.04	1000.00	333.23	0.44
Reach-1	23036	10%	2980.00	121.70	128.65		129.15	0.001483	5.59	564.12	284.35	0.43
	23036	2%								1111.41	319.70	
Reach-1			5840.00	121.70	130.47		130.96	0.000752	4.61			0.31
Reach-1	23036	1%	7455.00	121.70	131.62		132.07	0.000479	3.98	1491.73	341.41	0.25
Reach-1	23036	0.2%	12505.00	121.70	134.55		134.98	0.000237	3.32	2572.37	391.51	0.18
Reach-1	22916	10%	2980.00	121.00	128.01	126.93	128.88	0.002603	8.01	570.82	302.03	0.57
Reach-1	22916	2%	5840.00	121.00	130.41		130.84	0.000999	6.20	1483.60	430.42	0.38
Reach-1	22916	1%	7455.00	121.00	131.63		131.97	0.000628	5.38	2037.14	480.80	0.31
Reach-1	22916	0.2%	12505.00	121.00	134.63		134.90	0.000281	4.31	3712.15	632.31	0.21
Reach-1	22765	10%	2980.00	114.20	128.49		128.58	0.000149	2.53	1428.22	234.62	0.13
Reach-1	22765	2%	5840.00	114.20	130.48		130.70	0.000299	3.96	2020.14	395.39	0.19
Reach-1	22765	1%	7455.00	114.20	131.64		131.87	0.000301	4.19	2548.37	511.91	0.19
Reach-1	22765	0.2%	12505.00	114.20	134.64		134.84	0.000240	4.22	4324.67	669.64	0.17
Reach-1	22450	10%	2980.00	116.90	127.63	124.78	128.38	0.006142	7.39	605.20	384.22	0.48
Reach-1	22450	2%	5840.00	116.90	130.27	0	130.51	0.000142	4.56	1791.09	483.52	0.26
Reach-1	22450	1%	7455.00	116.90	131.48		131.70	0.001079	4.04	2388.82	500.92	0.21
Reach-1	22450	0.2%	12505.00	116.90	134.54		134.71	0.000615	3.62	4362.75	1054.32	0.17
	22700	J.270	12303.00	110.30	134.34		134.71	0.000013	3.02	7302.73	1004.32	0.17
Reach-1	22140	10%	2980.00	117.00	124.05	124.05	126.26	0.006734	12.84	391.36	132.65	0.95
Reach-1	22140	2%	5840.00	117.00	124.05	124.05	120.20	0.006734	14.96	889.23	205.48	
Reach-1												
	22140	1%	7455.00	117.00	127.84	127.84	130.78	0.005382	16.12	1119.61	224.02	0.92
Reach-1	22140	0.2%	12505.00	117.00	131.26	131.26	134.04	0.003953	16.95	2349.42	658.06	0.83
												-
Reach-1	21825	10%	2980.00	115.90	121.80	121.75	123.65	0.007981	11.17	314.54	84.21	0.97
Reach-1	21825	2%	5840.00	115.90	124.12	124.12	126.73	0.006551	13.42	604.08	179.14	0.94
Reach-1	21825	1%	7455.00	115.90	125.26	125.26	128.03	0.005781	14.07	847.23	239.90	0.91
Reach-1	21825	0.2%	12505.00	115.90	131.24	127.79	132.45	0.001436	10.39	3430.35	1045.30	0.50
Reach-1	21770	10%	2980.00	115.40	122.06	120.08	122.97	0.002174	7.62	390.83	103.38	0.55
Reach-1	21770	2%	5840.00	115.40	124.17	122.36	126.07	0.003067	11.07	527.79	119.93	0.68
Reach-1	21770	1%	7455.00	115.40	125.08	123.47	127.59	0.003503	12.70	587.15	127.10	
Reach-1	21770	0.2%	12505.00	115.40	130.39	126.53	132.19	0.001574	11.58	2432.53	932.61	0.54
						:=::30						2.01
Reach-1	21757.5		Bridge								1	
. 104011-1	207.0		Driage									
Reach-1	21745	10%	2980.00	115.40	121.95	120.08	122.89	0.002314	7.77	383.57	102.50	0.56
Reach-1	21745	2%	5840.00	115.40	123.88	122.36	125.93	0.003470	11.48	508.60	117.61	0.72
Reach-1	21745	1%	7455.00	115.40	124.48	123.47	127.36	0.004410	13.60	547.97	122.37	0.83
Reach-1	21745	0.2%	12505.00	115.40	126.94	126.53	131.79	0.005288	17.67	707.72	141.67	0.94

HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1 (Continued)

	Iall. DE Rivel.			,								
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	21695	10%	2980.00	114.20	121.74	120.15	122.74	0.003025	8.01	371.94	69.60	0.61
Reach-1	21695	2%	5840.00	114.20	123.69	122.46	125.72	0.004430	11.42	511.32	74.77	0.76
Reach-1	21695	1%	7455.00	114.20	124.27	123.52	127.08	0.005624	13.46	557.56	87.09	0.87
Reach-1	21695	0.2%	12505.00	114.20	127.45	127.45	130.78	0.004531	14.98	1124.07	292.57	0.82
Reach-1	21285	10%	2980.00	114.30	119.50	119.17	120.92	0.006772	9.55	312.25	87.08	0.88
Reach-1	21285	2%	5840.00	114.30	121.70	121.16	123.70	0.005436	11.42	567.01	229.63	0.85
Reach-1	21285	1%	7455.00	114.30	122.75	122.75	124.74	0.004638	11.68	907.52	396.78	0.80
Reach-1	21285	0.2%	12505.00	114.30	124.70	124.69	126.86	0.004103	13.05	1782.33	518.61	0.79

Norwalk River Existing Conditions (Corrected Effective) Model Output Table

1150 540	DI EVIOT	D: D: /ED 4	
			Reach: Reach-1

	Ian. Exist Riv											
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	29920	10%	2980.00	147.00	152.32	152.32	153.29	0.004454	9.23	671.47	438.66	0.75
Reach-1	29920	2%	5840.00	147.00	153.56	153.56	154.60	0.004481	10.83	1400.71	673.09	0.79
Reach-1	29920	1%	7455.00	147.00	153.96	153.96	155.12	0.004919	11.86	1676.50	693.44	0.83
Reach-1	29920	0.2%	12505.00	147.00	154.99	154.99	156.40	0.005722	14.14	2414.85	738.35	0.92
												ĺ
Reach-1	29760	10%	2980.00	142.20	148.53		149.01	0.001498	5.62	583.07	179.68	0.44
Reach-1	29760	2%	5840.00	142.20	151.31		151.93	0.001165	6.63	1125.96	211.79	0.42
	-											
Reach-1	29760	1%	7455.00	142.20	152.19		152.97	0.001276	7.45	1317.25	222.00	0.44
Reach-1	29760	0.2%	12505.00	142.20	154.28		155.51	0.001589	9.59	1814.00	255.42	0.51
												ĺ
Reach-1	28240	10%	2980.00	138.00	145.39		146.32	0.002036	7.92	452.97	156.57	0.54
Reach-1	28240	2%	5840.00	138.00	146.52	146.52	148.75	0.004139	12.55	696.60	258.98	0.79
Reach-1	28240	1%	7455.00	138.00	147.71	147.71	149.80	0.003506	12.69	1059.97	366.77	0.75
Reach-1	28240	0.2%	12505.00	138.00	149.76	149.76	151.98	0.003397	14.32	1979.91	552.23	0.76
Reach-1	28020	10%	2980.00	136.33	146.00		146.01	0.000055	1.53	4394.50	676.05	0.09
Reach-1	28020	2%	5840.00	136.33	147.00		147.03	0.000131	2.54	5105.56	745.73	0.14
Reach-1	28020	1%	7455.00	136.33	147.55		147.59	0.000166	2.97	5519.40	766.71	0.16
Reach-1	28020	0.2%	12505.00	136.33	148.88		148.97	0.000263	4.06	6569.85	803.73	0.21
Reach-1	27930	10%	2980.00	135.65	146.00		146.01	0.000046	1.46	4590.19	721.01	0.08
Reach-1			5840.00									
	27930	2%		135.65	146.99		147.02	0.000106	2.38	5340.23	774.68	0.13
Reach-1	27930	1%	7455.00	135.65	147.54		147.58	0.000132	2.76	5765.37	785.36	0.15
Reach-1	27930	0.2%	12505.00	135.65	148.86		148.95	0.000207	3.72	6803.94	788.32	0.19
Popol 1	27830	10%	2980.00	104.60	145.00		146.00	0.000027	1.37	1000.04	705.00	0.08
Reach-1				134.60	145.99		146.00	0.000037		4836.61	785.83	
Reach-1	27830	2%	5840.00	134.60	146.98		147.01	0.000084	2.20	5662.42	869.13	0.12
Reach-1	27830	1%	7455.00	134.60	147.53		147.57	0.000104	2.52	6148.13	920.10	0.13
Reach-1	27830	0.2%	12505.00	134.60	148.85		148.92	0.000153	3.29	7437.92	1023.96	0.16
									0.20			-
D 1.4	07700	100/	2000.00	404.00	115.00		110.00	0.000005	4.00	4000.00	202.00	0.00
Reach-1	27790	10%	2980.00	134.60	145.99		146.00	0.000035	1.33	4920.80	803.92	0.08
Reach-1	27790	2%	5840.00	134.60	146.98		147.01	0.000079	2.13	5783.83	928.44	0.11
Reach-1	27790	1%	7455.00	134.60	147.53		147.56	0.000097	2.43	6299.40	970.45	0.13
Reach-1	27790	0.2%	12505.00	134.60	148.85		148.92	0.000139	3.14	7665.44	1110.26	0.16
T COUCHT	21130	0.270	12000.00	104.00	140.00		140.02	0.000100	0.14	7000.44	1110.20	0.10
Reach-1	27468	10%	2980.00	132.10	145.99		145.99	0.000005	0.60	9140.64	793.45	0.03
Reach-1	27468	2%	5840.00	132.10	146.99		146.99	0.000017	1.11	9943.03	813.12	0.05
Reach-1	27468	1%	7455.00	132.10	147.53		147.54	0.000024	1.37	10389.13	832.33	0.06
Reach-1	27468	0.2%	12505.00	132.10	148.85		148.88	0.000052	2.13	11529.28	890.79	0.10
Reacii-1	21400	0.276	12303.00	132.10	140.00		140.00	0.000032	2.13	11329.20	090.79	0.10
Reach-1	27110	10%	2980.00	136.60	145.97		145.99	0.000064	1.74	4765.52	962.48	0.10
Reach-1	27110	2%	5840.00	136.60	146.94		146.97	0.000148	2.83	5707.19	991.44	0.16
Reach-1	27110	1%	7455.00	136.60	147.46		147.51	0.000187	3.29	6234.70	1005.58	0.18
									4.52			0.23
Reach-1	27110	0.2%	12505.00	136.60	148.74		148.82	0.000304	4.52	7518.38	1009.50	0.23
Reach-1	27025	10%	2980.00	135.50	145.63	141.84	145.90	0.000562	5.28	1759.35	880.05	0.30
Reach-1	27025	2%	5840.00	135.50	145.74	145.59	146.68	0.001965	9.96	1855.68	883.55	0.56
Reach-1	27025	1%	7455.00	135.50	146.24	146.03	147.20	0.002112	10.68	2304.78	899.67	0.59
Reach-1	27025	0.2%	12505.00	135.50	147.33	147.10	148.46	0.002654	12.81	3304.65	934.56	0.67
Reach-1	27020		Bridge				-			-		1
Reach-1	27015	10%	2980.00	135.50	141.85	141.85	144.38	0.006857	13.22	278.63	62.97	0.97
Reach-1	27015	2%	5840.00	135.50	145.62	145.62	146.66	0.002172	10.38	1752.24	879.80	0.59
Reach-1	27015	1%	7455.00	135.50	146.08	146.08	147.18	0.002399	11.26	2163.67	894.64	0.63
Reach-1	27015	0.2%	12505.00	135.50	147.11	147.11	148.43	0.003090	13.64	3099.86	927.52	0.72
Popol 1	26690	10%	2000.00	124.00	140.05	140.00	141.00	0.004340	10.47	740.50	350.00	0.70
Reach-1	26680	10%	2980.00	134.00	140.25	140.08	141.20	0.004316	10.17	742.52	359.88	
Reach-1	26680	2%	5840.00	134.00	142.16		142.88	0.003007	10.34	1642.30	560.63	0.67
Reach-1	26680	1%	7455.00	134.00	142.89		143.57	0.002787	10.60	2063.23	590.00	0.65
Reach-1	26680	0.2%	12505.00	134.00	145.43		145.86	0.001574	9.53	3920.70	759.51	0.51
			1,555						2.20		22.31	5.5.
Desek 4	26200	100/	2000.00	400.40	440.50		440.00	0.000047	1.01	0500.00	005.01	0.17
Reach-1	26209	10%	2980.00	133.40	140.59		140.63	0.000247	1.94	2566.09	865.64	0.17
Reach-1	26209	2%	5840.00	133.40	142.35		142.41	0.000238	2.43	4171.02	944.15	0.18
Reach-1	26209	1%	7455.00	133.40	143.04		143.12	0.000252	2.70	4826.43	949.44	0.19
Reach-1	26209	0.2%	12505.00	133.40	145.45		145.54	0.000216	3.09	7137.65	967.83	0.18
			.2000.00	. 30.40	. 10.40		. 70.04	3.330210	0.00	57.00	237.00	0.10
									_			-
Reach-1	26136	10%	2980.00	130.20	139.70	136.89	140.40	0.001266	7.48	832.78	483.49	0.44
Reach-1	26136	2%	5840.00	130.20	141.38	140.68	142.16	0.001499	9.14	1847.30	666.49	0.50
Reach-1	26136	1%	7455.00	130.20	142.10	141.28	142.87	0.001511	9.59	2344.50	703.85	0.51
Reach-1	26136	0.2%	12505.00	130.20	144.97	142.59	145.41	0.000893	8.59	4476.35	760.00	0.40
	20.00		12000.00	130.20	1-171.07	1-72.05	170.41	0.000000	0.08	7-70.00	, 30.00	0.40
												1
Reach-1	26127.5		Bridge									1
										<u></u>		<u> </u>
Reach-1	26119	10%	2980.00	131.30	137.79	136.96	139.43	0.004828	10.33	305.18	444.27	0.76
	26119	2%	5840.00	131.30	141.23	138.61	141.40		4.90	3038.66	718.58	
Reach-1								. 0.000000				

Reach	River Sta	Profile	Reach: Reach-	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	26119	1%	7455.00	131.30	142.25	138.86	142.41	0.000532	5.04	3781.94	742.73	0.28
Reach-1	26119	0.2%	12505.00	131.30	145.07	140.05	145.23	0.000420	5.27	5944.93	778.00	0.26
Reach-1	26058	10%	2980.00	131.30	138.31		138.63	0.001328	5.74	1195.20	506.31	0.41
Reach-1	26058 26058	2% 1%	5840.00 7455.00	131.30 131.30	141.19 142.21		141.36 142.37	0.000594 0.000543	4.95 5.08	3010.05 3755.15	716.41 742.11	0.29
Reach-1	26058	0.2%	12505.00	131.30	145.04		145.20	0.000343	5.29	5923.49	778.00	0.26
1100011 1	20000	0.270	12000.00	101.00	1 10.0 1		110.20	0.000120	0.20	0020:10	110.00	0.20
Reach-1	25358	10%	2980.00	131.00	137.60		137.79	0.000999	5.37	1424.10	432.76	0.38
Reach-1	25358	2%	5840.00	131.00	140.82		140.96	0.000534	5.16	2872.39	468.02	0.29
Reach-1	25358	1%	7455.00	131.00	141.83		141.99	0.000552	5.61	3360.84	499.89	0.30
Reach-1	25358	0.2%	12505.00	131.00	144.68		144.87	0.000522	6.39	5088.72	636.70	0.31
Reach-1	25340	10%	2980.00	128.10	137.58		137.77	0.000473	4.58	1994.04	375.83	0.27
Reach-1	25340	2%	5840.00	128.10	140.68		140.94	0.000504	5.76	3250.24	506.40	0.29
Reach-1	25340 25340	0.2%	7455.00 12505.00	128.10 128.10	141.64 144.36		141.96 144.83	0.000587 0.000718	6.55 8.22	3740.65 5237.84	512.66 696.11	0.32
Reach-1	25340	0.2%	12505.00	120.10	144.30		144.03	0.000718	0.22	5237.04	090.11	0.37
Reach-1	25334	10%	2980.00	130.31	137.63		137.75	0.000522	3.87	1572.58	347.27	0.27
Reach-1	25334	2%	5840.00	130.31	140.75		140.90	0.000405	4.43	2715.70	411.08	0.25
Reach-1	25334	1%	7455.00	130.31	141.74		141.92	0.000444	4.96	3149.10	457.22	0.27
Reach-1	25334	0.2%	12505.00	130.31	144.51		144.76	0.000483	6.04	4441.00	475.13	0.29
Reach-1	24975	10%	2980.00	129.20	135.57	135.57	137.16	0.005532	10.62	402.65	172.24	0.83
Reach-1	24975	2%	5840.00	129.20	139.83		140.59	0.001521	8.36	1283.40	362.15	0.48
Reach-1	24975	1%	7455.00	129.20	140.90		141.61	0.001359	8.49	1683.39	414.42	0.46
Reach-1	24975	0.2%	12505.00	129.20	144.14		144.54	0.000656	7.07	3094.75	445.51	0.34
Reach-1	24922	10%	2980.00	127.89	135.50		136.32	0.002194	7.76	556.72	155.93	0.55
Reach-1	24922	2%	5840.00	127.89	139.90		140.47	0.002194	7.14	1431.97	374.77	0.38
Reach-1	24922	1%	7455.00	127.89	140.97		141.50	0.000817	7.14	1850.23	441.04	0.37
Reach-1	24922	0.2%	12505.00	127.89	144.18		144.49	0.000415	6.01	3438.02	506.44	0.27
Reach-1	24677	10%	2980.00	127.87	135.59		135.88	0.000688	4.52	855.68	167.98	0.31
Reach-1	24677	2%	5840.00	127.87	139.95		140.24	0.000405	4.83	1817.72	331.75	0.25
Reach-1	24677	1%	7455.00	127.87	140.94		141.30	0.000460	5.44	2180.83	396.78	0.28
Reach-1	24677	0.2%	12505.00	127.87	143.91		144.36	0.000485	6.46	3377.85	405.00	0.29
		1001										
Reach-1	24620	10%	2980.00 5840.00	128.90	134.41	133.97	135.69	0.005035	9.23	402.42	166.53	0.77
Reach-1	24620 24620	1%	7455.00	128.90 128.90	139.56 140.48		140.17 141.22	0.001035 0.001143	6.96 7.78	1443.21 1737.87	273.89 369.05	0.40
Reach-1	24620	0.2%	12505.00	128.90	143.60		144.30	0.0001143	8.22	3001.58	410.00	0.42
1100011 1	12.020	0.270	12000.00	120.00	1 10.00			0.000001	0.22	0001.00		0.00
Reach-1	24597	10%	2980.00	127.30	134.90		135.41	0.001279	5.88	709.79	201.22	0.40
Reach-1	24597	2%	5840.00	127.30	139.69		140.09	0.000572	5.66	1863.48	322.73	0.30
Reach-1	24597	1%	7455.00	127.30	140.63		141.12	0.000653	6.38	2207.50	395.10	0.32
Reach-1	24597	0.2%	12505.00	127.30	143.74		144.22	0.000567	6.91	3499.24	421.00	0.31
Reach-1	24570	10%	2980.00	127.60	134.33	132.31	135.31	0.002228	7.94	375.39	104.89	0.56
Reach-1	24570	2%	5840.00	127.60	138.87	134.73	140.00	0.001290	8.69	958.27	316.33	0.47
Reach-1	24570 24570	0.2%	7455.00 12505.00	127.60 127.60	139.43 142.91	135.90 140.91	140.99 144.13	0.001698 0.001176	10.31 10.26	1145.22 3114.93	348.43 807.05	0.54 0.47
Neacii-1	24370	0.270	12303.00	127.00	142.91	140.91	144.13	0.001170	10.20	3114.93	807.03	0.47
Reach-1	24542.5		Bridge									
			S.i.age									
Reach-1	24540	10%	2980.00	127.60	134.18		135.21	0.002423	8.14	366.09	101.22	0.58
Reach-1	24540	2%	5840.00	127.60	137.37	134.72	139.01	0.002223	10.32	679.47	187.99	0.60
Reach-1	24540	1%	7455.00	127.60	138.19	135.88	140.32	0.002630	11.88	844.91	232.45	0.66
Reach-1	24540	0.2%	12505.00	127.60	142.97	140.68	144.09	0.001107	9.98	3240.15	809.73	0.46
Reach-1	24485	10%	2980.00	126.30	133.05	,	134.80	0.004960	10.97	339.74	65.99	0.79
Reach-1	24485	2%	5840.00	126.30	135.42	135.42	138.41	0.006522	14.55	576.27	136.90	0.94
Reach-1	24485 24485	1%	7455.00	126.30	136.91	136.91	139.86	0.005771	14.75 17.09	837.67	207.98	0.90
Reach-1	24400	0.2%	12505.00	126.30	139.57	139.57	143.21	0.005456	17.09	1473.62	250.14	0.92
Reach-1	24430	10%	2980.00	126.60	133.65		134.19	0.004131	5.91	504.51	89.39	0.44
Reach-1	24430	2%	5840.00	126.60	136.49		137.13	0.004131	6.76	1121.38	251.35	0.44
Reach-1	24430	1%	7455.00	126.60	137.85		138.46	0.003307	6.88	1464.10	254.64	0.39
Reach-1	24430	0.2%	12505.00	126.60	140.49		141.28	0.002984	8.11	2145.07	261.05	0.41
							0				,	2
Darah 1	24401	10%	2980.00	124.66	133.66		134.04	0.003118	4.88	610.18	102.03	0.35
Reach-1		2%	5840.00	124.66	136.40		137.02	0.003389	6.39	985.38	198.56	0.39
Reach-1 Reach-1	24401											
	24401	1%	7455.00	124.66	137.67		138.37	0.003234	6.86	1278.84	257.49	0.39
Reach-1			7455.00 12505.00	124.66 124.66	137.67 140.31		138.37 141.18	0.003234 0.003245	6.86 8.07	1278.84 2049.16	257.49 332.83	0.39 0.41

Reach	Plan: EXIST Ri	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	24381	2%	5840.00	124.66	135.78		136.91	0.002413	9.59	770.10	118.58	0.59
Reach-1	24381	1%	7455.00	124.66	136.85		138.24	0.002563	10.71	931.57	185.57	0.62
Reach-1	24381	0.2%	12505.00	124.66	139.22	137.46	141.03	0.002745	12.89	1531.13	330.29	0.66
Reach-1	24180	10%	2980.00	124.70	133.06		133.61	0.001495	5.98	502.38	92.91	0.44
Reach-1	24180	2%	5840.00	124.70	135.48		136.44	0.001803	7.95	844.89	259.49	0.51
Reach-1	24180	1%	7455.00	124.70	136.78	133.49	137.70	0.001560	8.02	1209.32	290.98	0.48
Reach-1	24180	0.2%	12505.00	124.70	139.53	136.93	140.38	0.001281	8.35	2316.16	451.50	0.45
Reach-1	24105	10%	2980.00	124.80	132.53		133.42	0.003018	7.59	392.78	80.10	0.60
Reach-1	24105	2%	5840.00	124.80	134.54		136.18	0.004147	10.27	570.55	100.04	0.73
Reach-1	24105	1%	7455.00	124.80	135.32	134.24	137.40	0.004605	11.57	660.02	164.97	0.79
Reach-1	24105	0.2%	12505.00	124.80	137.64	137.25	140.07	0.003869	12.93	1098.93	201.62	0.76
Reach-1	23805	10%	2980.00	124.00	132.40		132.79	0.001004	5.69	1165.28	312.50	0.38
Reach-1	23805	2%	5840.00	124.00	134.69		135.27	0.001156	7.36	2038.14	469.70	0.42
Reach-1	23805	1%	7455.00	124.00	135.70		136.34	0.001191	7.99	2548.56	544.98	0.44
Reach-1	23805	0.2%	12505.00	124.00	138.21		138.97	0.001211	9.31	4063.59	641.58	0.46
Reach-1	23415	10%	2980.00	123.00	129.81	129.81	131.82	0.006096	11.90	404.45	161.55	0.89
Reach-1	23415	2%	5840.00	123.00	132.27	132.27	134.30	0.004596	13.19	1159.47	343.43	0.82
Reach-1	23415	1%	7455.00	123.00	133.11	133.11	135.33	0.004719	14.27	1451.84	358.59	0.84
Reach-1	23415	0.2%	12505.00	123.00	135.13	135.13	137.89	0.005069	16.96	2245.13	422.31	0.91
Reach-1	23171	10%	2980.00	120.30	128.75		129.48	0.002604	6.87	455.76	121.38	0.57
Reach-1	23171	2%	5840.00	120.30	129.79	129.12	131.57	0.002504	10.79	599.24	177.93	0.81
Reach-1	23171	1%	7455.00	120.30	131.12	130.85	132.49	0.003967	9.91	913.48	264.15	0.67
Reach-1	23171	0.2%	12505.00	120.30	134.35		135.16	0.001732	7.84	1880.08	333.29	0.44
Reach-1	23036	10%	2980.00	121.70	128.65		129.15	0.001483	5.59	564.12	284.35	0.43
Reach-1	23036	2%	5840.00	121.70	130.47		130.96	0.000752	4.61	1111.41	319.70	0.31
Reach-1	23036	1%	7455.00	121.70	131.62		132.07	0.000479	3.98	1491.73	341.41	0.25
Reach-1	23036	0.2%	12505.00	121.70	134.55		134.98	0.000237	3.32	2572.37	391.51	0.18
Reach-1	22916	10%	2980.00	121.00	128.01	126.93	128.88	0.002603	8.01	570.82	302.03	0.57
Reach-1	22916	2%	5840.00	121.00	130.41	120.00	130.84	0.000999	6.20	1483.60	430.42	0.38
Reach-1	22916	1%	7455.00	121.00	131.63		131.97	0.000628	5.38	2037.14	480.80	0.31
Reach-1	22916	0.2%	12505.00	121.00	134.63		134.90	0.000281	4.31	3712.15	632.31	0.21
Reach-1	22765	10%	2980.00	114.20	128.49		128.58	0.000149	2.53	1428.22	234.62	0.13
Reach-1	22765	2%	5840.00	114.20	130.48		130.70	0.000299	3.96	2020.14	395.39	0.19
Reach-1	22765	1%	7455.00	114.20	131.64		131.87	0.000301	4.19	2548.37	511.91	0.19
Reach-1	22765	0.2%	12505.00	114.20	134.64		134.84	0.000240	4.22	4324.67	669.64	0.17
Reach-1	22450	10%	2980.00	116.90	127.63	124.78	128.38	0.006142	7.39	605.20	384.22	0.48
Reach-1	22450	2%	5840.00	116.90	130.27		130.51	0.001575	4.56	1791.09	483.52	0.26
Reach-1	22450	1%	7455.00	116.90	131.48		131.70	0.001059	4.04	2388.82	500.92	0.21
Reach-1	22450	0.2%	12505.00	116.90	134.54		134.71	0.000615	3.62	4362.75	1054.32	0.17
Reach-1	22140	10%	2980.00	117.00	124.05	124.05	126.26	0.006734	12.84	391.36	132.65	0.95
Reach-1	22140	2%	5840.00	117.00	126.77	126.77	129.42	0.005440	14.96	889.23	205.48	0.91
Reach-1	22140	1%	7455.00	117.00	127.84	127.84	130.78	0.005382	16.12	1119.61	224.02	0.92
Reach-1	22140	0.2%	12505.00	117.00	131.26	131.26	134.04	0.003953	16.95	2349.42	658.06	0.83
Reach-1	21825	10%	2980.00	115.90	121.80	121.75	123.65	0.007981	11.17	314.54	84.21	0.97
Reach-1	21825	2%	5840.00	115.90	124.12	124.12	126.73	0.006551	13.42	604.08	179.14	0.94
Reach-1	21825	1%	7455.00	115.90	125.26	125.26	128.03	0.005781	14.07	847.23	239.90	0.91
Reach-1	21825	0.2%	12505.00	115.90	131.24	127.79	132.45	0.001436	10.39	3430.35	1045.30	0.50
Reach-1	21770	10%	2980.00	115.40	122.06	120.08	122.97	0.002174	7.62	390.83	103.38	0.55
Reach-1	21770	2%	5840.00	115.40	124.17	122.36	126.07	0.003067	11.07	527.79	119.93	0.68
Reach-1	21770	1%	7455.00	115.40	125.08	123.47	127.59	0.003503	12.70	587.15	127.10	0.74
Reach-1	21770	0.2%	12505.00	115.40	130.39	126.53	132.19	0.001574	11.58	2432.53	932.61	0.54
Reach-1	21757.5		Bridge									
Decet 4	24745	100/	2000.00	445.40	404.05	400.00	400.00	0.00004.1	7 77	202.57	400.50	0.50
Reach-1	21745 21745	10%	2980.00 5840.00	115.40 115.40	121.95 123.88	120.08 122.36	122.89 125.93	0.002314 0.003470	7.77 11.48	383.57 508.60	102.50 117.61	0.56
Reach-1	21745	1%	7455.00	115.40	123.66	123.47	125.93	0.003470	13.60	547.97	122.37	0.72
Reach-1	21745	0.2%	12505.00	115.40	126.94	126.53	131.79	0.005288	17.67	707.72	141.67	0.94
Decet 4	24605	100/	2000.00	444.00	404.74	400.45	400.74	0.000005	0.01	074.04	00.00	0.00
Reach-1	21695 21695	10%	2980.00 5840.00	114.20 114.20	121.74 123.69	120.15 122.46	122.74 125.72	0.003025 0.004430	8.01 11.42	371.94 511.32	69.60 74.77	0.61
Reach-1	21695	1%	7455.00	114.20	123.09	123.52	127.08	0.005624	13.46	557.56	87.09	0.70
Reach-1	21695	0.2%	12505.00	114.20	127.45	127.45	130.78	0.004531	14.98	1124.07	292.57	0.82

HEC-RAS Plan: EXIST River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	21285	10%	2980.00	114.30	119.50	119.17	120.92	0.006772	9.55	312.25	87.08	0.88
Reach-1	21285	2%	5840.00	114.30	121.70	121.16	123.70	0.005436	11.42	567.01	229.63	0.85
Reach-1	21285	1%	7455.00	114.30	122.75	122.75	124.74	0.004638	11.68	907.52	396.78	0.80
Reach-1	21285	0.2%	12505.00	114.30	124.70	124.69	126.86	0.004103	13.05	1782.33	518.61	0.79

Norwalk River Proposed Conditions Model Output Table

HEC-RAS Plan: PROPOSED River: RIVER-1 Reach: Reach-1

Beach 900		Diver Ot-				M/O Flori	0-:+14/.0	F 0 Fl	F 0 01	\/-I ObI	ГI А	T 14/: -14/-	F1- # Obl
Reachest 59003	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					. ,			. ,					
Reach 19800 18. 745.00 18. 17.20 15.99 15.90 15.00 15.00 15.00 17.00 17.00 18.00													0.75
Seach 19800 25% 12500.00 147.00 159.00 154.00 159.00 154.00 159.00 154.00 159.00 154.00 159.	Reach-1	29920	2%	5840.00	147.00	153.56	153.56	154.60	0.004481	10.83	1400.71	673.09	0.79
Respirat 20780 19% 2800.00 142.20 146.55 146.01 0.001489 5.62 553.07 179.69	Reach-1	29920	1%	7455.00	147.00	153.96	153.96	155.12	0.004919	11.86	1676.50	693.44	0.83
Respirat 20780 19% 2800.00 142.20 146.55 146.01 0.001489 5.62 553.07 179.69		29920	0.2%										0.92
Regel-1 20796													
Regel-1 20796	Peach-1	20760	10%	2080 00	1/12/20	1/9 53		1/0 01	0.001408	5.62	583.07	170.68	0.44
Regel-1 20700 15													
Reserved 2000													0.42
Reach	Reach-1	29760	1%	7455.00	142.20	152.19		152.97	0.001276	7.45	1317.25	222.00	0.44
Resent 20240	Reach-1	29760	0.2%	12505.00	142.20	154.28		155.51	0.001589	9.59	1814.00	255.42	0.51
Resent 20240													
Resent 20240	Reach-1	28240	10%	2980.00	138.00	145.39		146.33	0.002035	7.92	453.14	156.69	0.54
Reacht 2800		28240		5840.00			146 52			12 55			0.79
Reach													
Reach-1 2000 10% 398.000 158.33 146.00 146.01 0.000055 1.53 4419.9 705.50 186.00 11.													0.75
Reach+1 2020 2% 8640 0 136.33 147.05 147.06 0.000130 2.53 518.172 88.84 88.64 148.67 147.05 0.000140 2.94 6.001141 88.84 148.67 148.	Reach-1	28240	0.2%	12505.00	138.00	149.76	149.76	151.98	0.003397	14.32	1979.91	552.23	0.76
Reach+1 2020 2% 8640 0 136.33 147.05 147.06 0.000130 2.53 518.172 88.84 88.64 148.67 147.05 0.000140 2.94 6.001141 88.84 148.67 148.													
Reach+1 20200 91% 7455.00 196.33 147.55 147.56 0.000160 2.94 5650.11 808.08 Reach+1 27500 0.27% 1205.00 135.65 146.00 146.01 0.000049 1.51 4.000.67 734.00 1.51 734.00 1.51	Reach-1	28020	10%	2980.00	136.33	146.00		146.01	0.000055	1.53	4419.69	705.50	0.09
Reach 2020 0.7% 1205.00 136.33 148.89 148.07 0.000246 3.52 6.777.17 60.07	Reach-1	28020	2%	5840.00	136.33	147.00		147.04	0.000130	2.53	5181.72	802.47	0.14
Reach 2020 0.7% 1205.00 136.33 148.89 148.07 0.000246 3.52 6.777.17 60.07	Reach-1	28020	1%	7455.00	136.33	147.55		147.59	0.000163	2.94	5632.11	838.83	0.16
Reach-1 27830 10% 2980.00 138.66 146.00 146.01 0.000048 1.51 4.000.67 734.08 Reach-1 27830 2% 5840.00 138.66 146.00 147.02 0.000148 2.50 5386.72 881.88 881.88 1.75 1.75 0.000149 2.50 5.386.72 881.88 1.75 1.75 0.000149 2.50 5.386.72 881.88 1.75 1.75 0.000149 2.50 5.386.72 881.88 1.75 0.000149 2.50 5.386.72 881.88 1.75 0.000149 2.50 5.386.72 881.88 1.75 0.000149 2.50 5.386.72 881.88 1.75 0.000149 2.50 5.386.72 881.88 1.75 0.000149 2.75 0.00													0.20
Reach+1 27930 2% 5840 00 135.65 146.99 147.75 0.000146 2.0 5388.72 818.88 147.76 82.80 147.78 0.000146 2.0 5388.72 818.88 147.76 82.80 147.78 0.000146 2.0 5388.72 818.88 147.78 0.000146 2.0 5388.72 148.80 147.78 0.000146 2.0 5388.72 148.80 148.80 147.78 0.000146 2.0 5388.72 148.80 148.80 147.78 0.000146 2.0 5388.72 148.80 148.80 147.78 0.000046 2.0 148.80 147.71 10.000066 2.4 147.80 148.80	TCGOII-1	20020	0.270	12000.00	100.00	140.00		140.07	0.000240	0.02	0/0/.1/	002.01	0.20
Reach-1 27930 2% 5840 00 135 65 146 99 147 739 0.000146 2.0 5386 72 818.88 8860-1 27930 0.2% 12050 00 135 65 146 87 146 94 0.000221 3.85 770 0.16 1055 04 1205 00 135 65 146 87 146 94 0.000221 3.85 770 0.16 1055 04 1205 00 135 65 146 87 146 94 0.000221 3.85 770 0.16 1055 04 1205 00 135 65 146 87 146 94 0.000221 3.85 770 0.16 1055 04 1205 00 135 65 146 87 146 94 0.000221 3.85 770 0.16 1055 04 1205 00 135 65 146 87 146 99 146 00 0.000006 2.34 444 446 59 176 10 145 99 146 00 0.00006 2.34 446 59 146 95													
Reach-1 27900 1% 745.00 135.65 147.54 147.59 0.000148 2.90 5847.77 883.80 188.86ch-1 27830 0.2% 12505.00 134.60 145.90 146.00 0.000041 1.44 4445.93 789.10 188.86ch-1 278.80 1% 584.00 134.60 146.90 146.00 0.000041 1.44 4445.93 789.10 188.86ch-1 278.00 2% 584.00 134.60 146.90 147.01 0.000096 2.34 5876.92 876.39 876.39 178.86ch-1 278.00 178.86ch-1 278.00 134.60 147.53 147.57 0.000096 2.34 5876.92 876.39 876.39 178.86ch-1 278.00 178.86ch-1 278.00 134.60 145.90 146.00 146.90													0.09
Reach-1 27930 0.2% 12950,00 135.65 148.87 148.94 0.000221 3.85 7700.18 1950.06	Reach-1	27930	2%	5840.00	135.65	146.99		147.02	0.000116	2.50	5386.72	818.88	0.14
Reach-1 27830 0.2% 12555 00 13565 148 67 148 94 0.000221 3.85 7700.16 1055.04	Reach-1	27930	1%	7455.00	135.65	147.54		147.58	0.000146	2.90	5847.71	863.80	0.16
Reach-1 27830 10% 2880.00 134.800 145.99 146.00 0.000041 1.44 484.53 788.10 1.46.80 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.47.01 0.000062 2.34 5676.32 576.30 1.49.01	Reach-1		0.2%	12505.00	135.65				0.000221	3.85	7100.18	1055.04	0.20
Reach-1 27830 29% \$840.00 134.60 146.99 147.01 0.000006 2.34 \$676.30 762.30 149.94 147.53 147.53 0.000120 2.75 168.604 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 1					.55.50	5.57			2.000221	0.00	. 100.10	.000.04	5.20
Reach-1 27830 29% \$840.00 134.60 146.99 147.01 0.000006 2.34 \$676.30 762.30 149.94 147.53 147.53 0.000120 2.75 168.604 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 149.50 149.94 1	- I I	07000	100/	2000 00	404.00	115.00		110.00	0.000044		40.45.00	700.40	
Reach-1 27830 1% 7455.00 134.60 147.55 147.57 0.000120 2.70 6166.04 914.94 147.68ch-1 278.00 21% 1205.00 134.60 145.69 146.80 0.000039 1.40 4.994.34 1102.15 147.65 147.65 147.65 0.000039 1.40 4.994.34 818.72 147.65 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 818.72 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 147.65 0.000039 1.40 4.994.34 4.994.34 4.994.3													0.08
Reach													0.13
Reach-1 27790 10% 298.0.0 134.60 145.99 146.00 0.00039 1.40 4394.34 818.72 Reach-1 27790 2% 5840.00 134.60 146.88 147.01 0.000089 2.25 5799.61 976.21 177700 1% 77	Reach-1	27830	1%	7455.00	134.60	147.53		147.57	0.000120	2.70	6166.04	914.94	0.14
Reach-1 27790 2% 5840.00 134.60 146.98 147.01 0.000090 2.25 579.61 916.21	Reach-1	27830	0.2%	12505.00	134.60	148.86		148.92	0.000180	3.57	7478.45	1102.15	0.18
Reach-1 27790 2% 5840.00 134.60 146.98 147.01 0.000090 2.25 579.61 916.21													
Reach-1 27790 2% 5840.00 134.60 146.98 147.01 0.000090 2.25 579.61 916.21	Reach-1	27790	10%	2980 00	134 60	145 99		146 00	0.000039	1.40	4934 34	818 72	0.08
Reach-1 27790 0.2% 12505.00 134.60 147.53 147.56 0.000149 2.58 6306.18 946.33													
Reach-1 27790 22% 12505.00 134.60 148.85 148.92 0.000161 3.38 7600.04 999.96													0.12
Reach-1 27468 10% 5840.00 132.10 145.99 145.99 0.000005 0.60 9140.64 783.45 Reach-1 27468 2% 5840.00 132.10 146.99 146.99 0.000017 1.11 9943.03 813.12 Reach-1 27468 12% 5840.00 132.10 147.53 147.54 0.000024 1.37 10389.13 832.33 182.23 148.88 0.000052 2.13 11529.28 890.79 146.89 146.99 0.000017 1.11 9943.03 813.12 146.99 1.000014 1.37 10389.13 832.33 147.54 0.000024 1.27 137 10389.13 832.33 147.54 0.000024 1.27 137 10389.13 145.92 14	Reach-1												0.14
Reach	Reach-1	27790	0.2%	12505.00	134.60	148.85		148.92	0.000161	3.38	7600.04	999.96	0.17
Reach													
Reach	Reach-1	27468	10%	2980.00	132.10	145.99		145.99	0.000005	0.60	9140.64	793.45	0.03
Reach-1 27468 1% 7455 00 132 10 147 53 147 54 0.000024 1.37 10380 13 832 33 Reach-1 27468 0.2% 12505 00 132 10 148 85 148 85 0.000052 2.13 11529 28 890 79 Reach-1 27110 10% 2980.00 136.60 148 97 145 99 0.000064 1.74 4765.52 962.48 Reach-1 27110 2% 5840.00 136.60 147.46 147.51 0.000148 2.83 5707.19 991.44 Reach-1 27110 1% 7455.00 136.60 148.74 147.51 0.000148 2.83 5707.19 991.44 Reach-1 27110 1% 7455.00 136.60 148.74 145.90 0.00034 4.52 7518.38 1009.50 Reach-1 27010 298 5840.00 135.50 148.74 145.90 0.000362 5.28 1759.38 880.55 Reach-1 27025 1										1 11			0.05
Reach-1 27468 0.2% 12505 00 132 10 148.85 148.88 0.000552 2.13 11529 28 890.79 Reach-1 27110 10% 2980.00 136.60 145.97 145.99 0.00064 1.74 4765.52 962.48 Reach-1 27110 2% 5840.00 136.60 147.46 147.51 0.000187 3.29 6234.70 1005.58 Reach-1 27110 0.2% 12505.00 136.60 147.76 147.51 0.000187 3.29 6234.70 1005.58 Reach-1 27110 0.2% 12505.00 136.60 148.74 148.82 0.000304 4.52 7518.38 1009.50 Reach-1 27025 10% 2980.00 135.50 145.63 141.84 145.90 0.000562 5.28 1759.35 880.05 Reach-1 27025 2% 5840.00 135.50 145.63 141.84 145.90 0.001965 9.98 155.68 885.55													0.06
Reach-1 27110 10% 2980.00 138.60 145.97 145.99 0.000064 1.74 4765.52 962.48													
Reach-1 27110 2% 5840.00 136.60 146.94 146.97 0.000148 2.83 5707.19 991.44	Reach-1	27468	0.2%	12505.00	132.10	148.85		148.88	0.000052	2.13	11529.28	890.79	0.10
Reach-1 27110 2% 5840.00 136.60 146.94 146.97 0.000148 2.83 5707.19 991.44													
Reach-1 27110 1% 7455 00 136 60 147.46 147.51 0.000187 3.29 6234.70 1005.58	Reach-1	27110	10%	2980.00	136.60	145.97		145.99	0.000064	1.74	4765.52	962.48	0.10
Reach-1 27110 0.2% 12505.00 136.60 148.74 148.82 0.000304 4.52 7518.38 1009.50	Reach-1	27110	2%	5840.00	136.60	146.94		146.97	0.000148	2.83	5707.19	991.44	0.16
Reach-1 27110 0.2% 12505.00 136.60 148.74 148.82 0.000304 4.52 7518.38 1009.50	Reach-1	27110	1%	7455.00	136.60	147.46		147.51	0.000187	3.29	6234.70	1005.58	0.18
Reach-1 27025 10% 2980.00 135.50 145.63 141.84 145.90 0.000562 5.28 1759.35 880.05 Reach-1 27025 2% 5840.00 135.50 145.74 145.59 146.68 0.001965 9.66 1855.68 883.55 Reach-1 27025 1% 7455.00 135.50 147.10 148.03 147.20 0.002112 10.68 2304.78 899.67 Reach-1 27025 0.2% 12505.00 135.50 147.33 147.10 148.46 0.002654 12.81 3304.65 934.56 Reach-1 27020 Bridge 80.00 147.33 147.10 148.46 0.002654 12.81 3304.65 934.56 Reach-1 27015 10% 2980.00 135.50 141.85 144.83 0.006857 13.22 278.63 62.97 Reach-1 27015 1% 7455.00 135.50 145.62 146.66 0.002172 10.38 1752.24													0.23
Reach-1 27025 2% 5840.00 135.50 145.74 145.59 146.68 0.001965 9.96 1855.68 883.55 Reach-1 27025 1% 7455.00 135.50 146.24 146.03 147.20 0.002112 10.68 2304.78 899.67 Reach-1 27020 Bridge 147.33 147.10 148.46 0.002664 12.81 3304.66 934.56 Reach-1 27020 Bridge 141.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 10% 2980.00 135.50 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.11 147.81 0.002399 11.26 2163.67 884.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.00399 13.64 3099.86 927.52 Reach-1	1100011 1	27.110	0.270	12000.00	100.00	1 10.7 1		110.02	0.000001	1.02	7010.00	1000.00	0.20
Reach-1 27025 2% 5840.00 135.50 145.74 145.59 146.68 0.001965 9.96 1855.68 883.55 Reach-1 27025 1% 7455.00 135.50 146.24 146.03 147.20 0.002112 10.68 2304.78 899.67 Reach-1 27025 0.2% 12505.00 135.50 147.33 147.10 148.46 0.002664 12.81 3304.66 9934.56 Reach-1 27020 Bridge													
Reach-1 27025 1% 7455.00 135.50 146.24 146.03 147.20 0.002112 10.68 2304.78 899.67 Reach-1 27025 0.2% 12505.00 135.50 147.33 147.10 148.46 0.002654 12.81 3304.65 934.56 Reach-1 27020 Bridge 280.00 135.50 141.85 144.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 10% 2980.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 140.08 147.11 147.11 148.43 0.003990 113.64 309.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08													0.30
Reach-1 27025 0.2% 12505.00 135.50 147.33 147.10 148.46 0.002654 12.81 3304.65 934.56 Reach-1 27020 Bridge													0.56
Reach-1 27020 Bridge Reach-1 27015 10% 2980.00 135.50 141.85 141.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 2% 5840.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 147.11 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003990 11.26 2163.67 894.64 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 1% 7455.00 134.00 142.89 1	Reach-1	27025	1%	7455.00	135.50	146.24	146.03	147.20	0.002112	10.68	2304.78	899.67	0.59
Reach-1 27015 10% 2980.00 135.50 141.85 144.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 2% 5840.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 1% 7455.00 134.00 142.86 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 263.23 590.00 <td>Reach-1</td> <td>27025</td> <td>0.2%</td> <td>12505.00</td> <td>135.50</td> <td>147.33</td> <td>147.10</td> <td>148.46</td> <td>0.002654</td> <td>12.81</td> <td>3304.65</td> <td>934.56</td> <td>0.67</td>	Reach-1	27025	0.2%	12505.00	135.50	147.33	147.10	148.46	0.002654	12.81	3304.65	934.56	0.67
Reach-1 27015 10% 2980.00 135.50 141.85 144.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 2% 5840.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 1% 7455.00 134.00 142.86 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 263.23 590.00 <td></td>													
Reach-1 27015 10% 2980.00 135.50 141.85 144.85 144.38 0.006857 13.22 278.63 62.97 Reach-1 27015 2% 5840.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 1% 7455.00 134.00 142.86 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 263.23 590.00	Reach-1	27020		Bridge									
Reach-1 27015 2% 5840.00 135.50 145.62 145.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.16 142.88 0.00307 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 133.40 145.43 145.86 0.001574 9.53 3920.70 759.51		2,020		Dridge									
Reach-1 27015 2% 5840.00 135.50 145.62 146.62 146.66 0.002172 10.38 1752.24 879.80 Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.16 142.88 0.00307 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 133.40 140.53 0.000274 1.94 2566.09 865.64 <	D 1	07045	400/	2000	10		44		0.00===		0== ==		
Reach-1 27015 1% 7455.00 135.50 146.08 147.18 0.002399 11.26 2163.67 894.64 Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 10% 7455.00 134.00 145.43 145.86 0.001574 9.53 392.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.00247 1.94 2566.09 865.64													0.97
Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.86 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000238 2.43 4171.02 944.15 Reach-1	Reach-1	27015	2%	5840.00	135.50	145.62	145.62	146.66	0.002172	10.38	1752.24	879.80	0.59
Reach-1 27015 0.2% 12505.00 135.50 147.11 147.11 148.43 0.003090 13.64 3099.86 927.52 Reach-1 26680 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.86 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000238 2.43 4171.02 944.15 Reach-1	Reach-1	27015	1%	7455.00	135.50	146.08	146.08	147.18	0.002399	11.26	2163.67	894.64	0.63
Reach-1 26800 10% 2980.00 134.00 140.25 140.08 141.20 0.004316 10.17 742.52 359.88 Reach-1 26680 2% 5840.00 134.00 142.16 142.88 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 203.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 1% 7455.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 145.45 145.54 0.000252 2.70 4826.43 949.44 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40													0.72
Reach-1 26680 2% 5840.00 134.00 142.16 142.88 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26680 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 10% 2980.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 2% 5840.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Reach-1 26680 2% 5840.00 134.00 142.16 142.88 0.003007 10.34 1642.30 560.63 Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26680 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 10% 2980.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 2% 5840.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 <t< td=""><td>Peach 1</td><td>26690</td><td>10%</td><td>2000.00</td><td>124.00</td><td>140.05</td><td>140.00</td><td>1//1 00</td><td>0.004340</td><td>10.17</td><td>7/0 50</td><td>250.00</td><td>0.76</td></t<>	Peach 1	26690	10%	2000.00	124.00	140.05	140.00	1//1 00	0.004340	10.17	7/0 50	250.00	0.76
Reach-1 26680 1% 7455.00 134.00 142.89 143.57 0.002787 10.60 2063.23 590.00 Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>140.08</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							140.08						
Reach-1 26680 0.2% 12505.00 134.00 145.43 145.86 0.001574 9.53 3920.70 759.51 Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 1% 7455.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 R													0.67
Reach-1 26209 10% 2980.00 133.40 140.59 140.63 0.000247 1.94 2566.09 865.64 Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97													0.65
Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 <t< td=""><td>Reach-1</td><td>26680</td><td>0.2%</td><td>12505.00</td><td>134.00</td><td>145.43</td><td></td><td>145.86</td><td>0.001574</td><td>9.53</td><td>3920.70</td><td>759.51</td><td>0.51</td></t<>	Reach-1	26680	0.2%	12505.00	134.00	145.43		145.86	0.001574	9.53	3920.70	759.51	0.51
Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Reach-1 26209 2% 5840.00 133.40 142.35 142.41 0.000238 2.43 4171.02 944.15 Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 <t< td=""><td>Reach-1</td><td>26209</td><td>10%</td><td>2980 00</td><td>133.40</td><td>140 50</td><td></td><td>140 63</td><td>0 000247</td><td>1 04</td><td>2566 00</td><td>865.64</td><td>0.17</td></t<>	Reach-1	26209	10%	2980 00	133.40	140 50		140 63	0 000247	1 04	2566 00	865.64	0.17
Reach-1 26209 1% 7455.00 133.40 143.04 143.12 0.000252 2.70 4826.43 949.44 Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27													0.17
Reach-1 26209 0.2% 12505.00 133.40 145.45 145.54 0.000216 3.09 7137.65 967.83 Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27													
Reach-1 26136 10% 2980.00 130.20 139.70 136.89 140.40 0.001266 7.48 832.78 483.49 Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge 87.00 139.43 0.004828 10.33 305.18 444.27													0.19
Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Bridge 139.43 0.004828 10.33 305.18 444.27	Reach-1	26209	0.2%	12505.00	133.40	145.45		145.54	0.000216	3.09	7137.65	967.83	0.18
Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Bridge 139.43 0.004828 10.33 305.18 444.27													
Reach-1 26136 2% 5840.00 130.20 141.38 140.68 142.16 0.001499 9.14 1847.30 666.49 Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Bridge 139.43 0.004828 10.33 305.18 444.27	Reach-1	26136	10%	2980.00	130.20	139.70	136.89	140.40	0.001266	7.48	832.78	483.49	0.44
Reach-1 26136 1% 7455.00 130.20 142.10 141.28 142.87 0.001511 9.59 2344.50 703.85 Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27													0.50
Reach-1 26136 0.2% 12505.00 130.20 144.97 142.59 145.41 0.000893 8.59 4476.35 760.00 Reach-1 26127.5 Bridge Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27													0.51
Reach-1 26127.5 Bridge													
Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27	Reacn-1	26136	0.2%	12505.00	130.20	144.97	142.59	145.41	0.000893	8.59	4476.35	760.00	0.40
Reach-1 26119 10% 2980.00 131.30 137.79 136.96 139.43 0.004828 10.33 305.18 444.27													
	Reach-1	26127.5		Bridge									
	Reach-1	26119	10%	2980.00	131.30	137.79	136.96	139.43	0.004828	10.33	305.18	444.27	0.76
	Reach-1	26119	2%	5840.00	131.30	141.23	138.61	141.40		4.90	3038.66	718.58	

HEC-RAS Plan: PROPOSED River: RIVER-1 Reach: Reach-1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	26119	1%	7455.00	131.30	142.25	138.86	142.41	0.000532	5.04	3781.94	742.73	0.28
Reach-1	26119	0.2%	12505.00	131.30	145.07	140.05	145.23	0.000420	5.27	5944.93	778.00	0.26
	20110	0.270	12000.00	101.00	1.10.01	1.10.00	1.10.20	0.000120	0.2.	0011.00	7.70.00	0.20
Reach-1	26058	10%	2980.00	131.30	138.31		138.63	0.001328	5.74	1195.20	506.31	0.41
										3010.05		
Reach-1	26058	2%	5840.00	131.30	141.19		141.36	0.000594	4.95		716.41	0.29
Reach-1	26058	1%	7455.00	131.30	142.21		142.37	0.000543	5.08	3755.15	742.11	0.28
Reach-1	26058	0.2%	12505.00	131.30	145.04		145.20	0.000425	5.29	5923.49	778.00	0.26
Reach-1	25358	10%	2980.00	131.00	137.60		137.79	0.000999	5.37	1424.10	432.76	0.38
Reach-1	25358	2%	5840.00	131.00	140.82		140.96	0.000534	5.16	2872.39	468.02	0.29
Reach-1	25358	1%	7455.00	131.00	141.83		141.99	0.000552	5.61	3360.84	499.89	0.30
Reach-1	25358	0.2%	12505.00	131.00	144.68		144.87	0.000522	6.39	5088.72	636.70	0.31
Reach-1	25340	10%	2980.00	128.10	137.58		137.77	0.000473	4.58	1994.04	375.83	0.27
Reach-1	25340	2%	5840.00	128.10	140.68		140.94	0.000504	5.76	3250.24	506.40	0.29
Reach-1	25340	1%	7455.00	128.10	141.64		141.96	0.000587	6.55	3740.65	512.66	0.32
Reach-1	25340	0.2%	12505.00	128.10	144.36		144.83	0.000718	8.22	5237.84	696.11	0.37
Neach-1	25540	0.276	12303.00	120.10	144.30		144.03	0.000718	0.22	3237.04	090.11	0.37
Darah 4	05004	400/	2000.00	400.04	407.00		407.75	0.000500	0.07	4570.50	0.47.07	0.07
Reach-1	25334	10%	2980.00	130.31	137.63		137.75	0.000522	3.87	1572.58	347.27	0.27
Reach-1	25334	2%	5840.00	130.31	140.75		140.90	0.000405	4.43	2715.70	411.08	0.25
Reach-1	25334	1%	7455.00	130.31	141.74		141.92	0.000444	4.96	3149.10	457.22	0.27
Reach-1	25334	0.2%	12505.00	130.31	144.51		144.76	0.000483	6.04	4441.00	475.13	0.29
Reach-1	24975	10%	2980.00	129.20	135.57	135.57	137.16	0.005532	10.62	402.65	172.24	0.83
Reach-1	24975	2%	5840.00	129.20	139.83		140.59	0.001521	8.36	1283.40	362.15	0.48
Reach-1	24975	1%	7455.00	129.20	140.90		141.61	0.001359	8.49	1683.39	414.42	0.46
Reach-1	24975	0.2%	12505.00	129.20	144.14		144.54	0.000656	7.07	3094.75	445.51	0.34
	1			00				2.220000			1.0.01	0.54
Reach-1	24922	10%	2980.00	127.89	135.50		136.32	0.002194	7.76	556.72	155.93	0.55
Reach-1	24922	2%	5840.00	127.89	139.90		140.47	0.000917	7.14	1431.97	374.77	0.38
Reach-1	24922	1%	7455.00	127.89	140.97		141.50	0.000829	7.23	1850.23	441.04	0.37
Reach-1	24922	0.2%	12505.00	127.89	144.18		144.49	0.000415	6.01	3438.02	506.44	0.27
Reach-1	24677	10%	2980.00	127.87	135.59		135.88	0.000688	4.52	855.68	167.98	0.31
Reach-1	24677	2%	5840.00	127.87	139.95		140.24	0.000405	4.83	1817.72	331.75	0.25
Reach-1	24677	1%	7455.00	127.87	140.94		141.30	0.000460	5.44	2180.83	396.78	0.28
Reach-1	24677	0.2%	12505.00	127.87	143.91		144.36	0.000485	6.46	3377.85	405.00	0.29
Reach-1	24620	10%	2980.00	128.90	134.41	133.97	135.69	0.005035	9.23	402.42	166.53	0.77
Reach-1	24620	2%	5840.00	128.90	139.56	100.01	140.17	0.001035	6.96	1443.21	273.89	0.40
Reach-1	24620	1%	7455.00	128.90	140.48		141.22	0.001033	7.78	1737.87	369.05	0.42
	_	1										
Reach-1	24620	0.2%	12505.00	128.90	143.60		144.30	0.000901	8.22	3001.58	410.00	0.39
Reach-1	24597	10%	2980.00	127.30	134.90		135.41	0.001279	5.88	709.79	201.22	0.40
Reach-1	24597	2%	5840.00	127.30	139.69		140.09	0.000572	5.66	1863.48	322.73	0.30
Reach-1	24597	1%	7455.00	127.30	140.63		141.12	0.000653	6.38	2207.50	395.10	0.32
Reach-1	24597	0.2%	12505.00	127.30	143.74		144.22	0.000567	6.91	3499.24	421.00	0.31
Reach-1	24570	10%	2980.00	127.60	134.33	132.31	135.31	0.002228	7.94	375.39	104.89	0.56
Reach-1	24570	2%	5840.00	127.60	138.87	134.73	140.00	0.001290	8.69	958.27	316.33	0.47
Reach-1	24570	1%	7455.00	127.60	139.43	135.90	140.99	0.001698	10.31	1145.22	348.43	0.54
Reach-1	24570	0.2%	12505.00	127.60	142.91	140.91	144.13	0.001176	10.26	3114.93	807.05	0.47
											221130	2
Reach-1	24542.5		Bridge									
. (04011-1	2-10-12.0		Diluge									
Reach-1	24540	10%	2980.00	107.60	404.40		125.04	0.002423	0.14	266.00	101.00	0.50
				127.60	134.18	404	135.21		8.14	366.09	101.22	0.58
Reach-1	24540	2%	5840.00	127.60	137.37	134.72	139.01	0.002223	10.32	679.47	187.99	0.60
Reach-1	24540	1%	7455.00	127.60	138.19	135.88	140.32	0.002630	11.88	844.91	232.45	0.66
Reach-1	24540	0.2%	12505.00	127.60	142.97	140.68	144.09	0.001107	9.98	3240.15	809.73	0.46
Reach-1	24485	10%	2980.00	126.30	133.05		134.80	0.004960	10.97	339.74	65.99	0.79
Reach-1	24485	2%	5840.00	126.30	135.42	135.42	138.41	0.006522	14.55	576.27	136.90	0.94
Reach-1	24485	1%	7455.00	126.30	136.91	136.91	139.86	0.005771	14.75	837.67	207.98	0.90
Reach-1	24485	0.2%	12505.00	126.30	139.57	139.57	143.21	0.005456	17.09	1473.62	250.14	0.92
			133.20									
Reach-1	24430	10%	2980.00	126.60	133.65		134.19	0.004131	5.91	504.51	89.39	0.44
Reach-1	24430	2%	5840.00	126.60	136.49			0.004131	6.76		251.35	0.44
							137.13			1121.38		
Reach-1	24430	1%	7455.00	126.60	137.85		138.46	0.002969	6.88	1464.10	254.64	0.39
Reach-1	24430	0.2%	12505.00	126.60	140.49		141.28	0.002984	8.11	2145.07	261.05	0.41
												1
Reach-1	24401	10%	2980.00	124.66	133.66		134.04	0.003118	4.88	610.18	102.03	0.35
Reach-1	24401	2%	5840.00	124.66	136.40		137.02	0.003389	6.39	985.38	198.56	0.39
Reach-1	24401	1%	7455.00	124.66	137.67		138.37	0.003234	6.86	1278.84	257.49	0.39
Reach-1	24401	0.2%	12505.00	124.66	140.31		141.18	0.003245	8.07	2049.16	332.83	0.41
Reach-1	24381	10%	2980.00	124.66	133.34		133.96	0.001781	7.05	527.73	91.46	0.49
	124001	1.070	2000.00	124.00	100.04		100.00	0.001701	1.00	321.13	31.40	0.49

HEC-RAS Plan: PROPOSED River: RIVER-1 Reach: Reach-1 (Continued)

HEC-RAS P Reach	Plan: PROPOSE River Sta	D River: RI\	/ER-1 Reach: F	Reach-1 (Contir Min Ch El	w.S. Elev	Crit W.S.	E.G. Elev	F.C. Slana	Vel Chnl	Flow Area	Tan Midth	Froude # Chl
Reacii	River Sta	Profile	(cfs)	(ft)	(ft)	(ft)	(ft)	E.G. Slope (ft/ft)	(ft/s)	(sq ft)	Top Width (ft)	Froude # Cili
Reach-1	24381	2%	5840.00	124.66	135.78	(11)	136.91	0.002413	9.59	770.10	118.58	0.59
Reach-1	24381	1%	7455.00	124.66	136.85		138.24	0.002563	10.71	931.57	185.57	0.62
Reach-1	24381	0.2%	12505.00	124.66	139.22	137.46	141.03	0.002745	12.89	1531.13	330.29	0.66
Reach-1	24180	10%	2980.00	124.70	133.06		133.61	0.001495	5.98	502.38	92.91	0.44
Reach-1	24180	2%	5840.00	124.70	135.48		136.44	0.001803	7.95	844.89	259.49	0.51
Reach-1	24180	1%	7455.00	124.70	136.78	133.49	137.70	0.001560	8.02	1209.32	290.98	0.48
Reach-1	24180	0.2%	12505.00	124.70	139.53	136.93	140.38	0.001281	8.35	2316.16	451.50	0.45
Reach-1	24105	10%	2980.00	124.80	132.53		133.42	0.003018	7.59	392.78	80.10	0.60
Reach-1	24105	2%	5840.00	124.80	134.54		136.18	0.004147	10.27	570.55	100.04	0.73
Reach-1	24105	1%	7455.00	124.80	135.32	134.24	137.40	0.004605	11.57	660.02	164.97	0.79
Reach-1	24105	0.2%	12505.00	124.80	137.64	137.25	140.07	0.003869	12.93	1098.93	201.62	0.76
Reach-1	23805	10%	2980.00	124.00	132.40		132.79	0.001004	5.69	1165.28	312.50	0.38
Reach-1	23805	2%	5840.00	124.00	134.69		135.27	0.001156	7.36	2038.14	469.70	0.42
Reach-1	23805	1%	7455.00	124.00	135.70		136.34	0.001191	7.99	2548.56	544.98	0.44
Reach-1	23805	0.2%	12505.00	124.00	138.21		138.97	0.001211	9.31	4063.59	641.58	0.46
												———
Reach-1	23415	10%	2980.00	123.00	129.81	129.81	131.82	0.006096	11.90	404.45	161.55	0.89
Reach-1	23415	2%	5840.00	123.00	132.27	132.27	134.30	0.004596	13.19	1159.47	343.43	0.82
Reach-1	23415	1%	7455.00	123.00	133.11	133.11	135.33	0.004719	14.27	1451.84	358.59	0.84
Reach-1	23415	0.2%	12505.00	123.00	135.13	135.13	137.89	0.005069	16.96	2245.13	422.31	0.91
Peach 1	23171	10%	2000.00	120.20	100 75		120.40	0.002604	6 07	AFE 70	104.00	0.57
Reach-1	23171	2%	2980.00 5840.00	120.30 120.30	128.75 129.79	129.12	129.48 131.57	0.002604	6.87 10.79	455.76 599.24	121.38 177.93	0.57
Reach-1	23171	1%	7455.00	120.30	131.12	130.85	131.57	0.003967	9.91	913.48	264.15	0.67
Reach-1	23171	0.2%	12505.00	120.30	134.35	130.63	135.16	0.003907	7.84	1880.08	333.29	0.07
Tteach-1	20171	0.270	12303.00	120.50	134.33		133.10	0.001732	7.04	1000.00	333.29	0.44
Reach-1	23036	10%	2980.00	121.70	128.65		129.15	0.001483	5.59	564.12	284.35	0.43
Reach-1	23036	2%	5840.00	121.70	130.47		130.96	0.000752	4.61	1111.41	319.70	0.31
Reach-1	23036	1%	7455.00	121.70	131.62		132.07	0.000479	3.98	1491.73	341.41	0.25
Reach-1	23036	0.2%	12505.00	121.70	134.55		134.98	0.000237	3.32	2572.37	391.51	0.18
rtouoii i	20000	0.270	12000.00	121.10	101.00		101.00	0.000201	0.02	20.2.0.	551.51	1
Reach-1	22916	10%	2980.00	121.00	128.01	126.93	128.88	0.002603	8.01	570.82	302.03	0.57
Reach-1	22916	2%	5840.00	121.00	130.41		130.84	0.000999	6.20	1483.60	430.42	0.38
Reach-1	22916	1%	7455.00	121.00	131.63		131.97	0.000628	5.38	2037.14	480.80	0.31
Reach-1	22916	0.2%	12505.00	121.00	134.63		134.90	0.000281	4.31	3712.15	632.31	0.21
Reach-1	22765	10%	2980.00	114.20	128.49		128.58	0.000149	2.53	1428.22	234.62	0.13
Reach-1	22765	2%	5840.00	114.20	130.48		130.70	0.000299	3.96	2020.14	395.39	0.19
Reach-1	22765	1%	7455.00	114.20	131.64		131.87	0.000301	4.19	2548.37	511.91	0.19
Reach-1	22765	0.2%	12505.00	114.20	134.64		134.84	0.000240	4.22	4324.67	669.64	0.17
Reach-1	22450	10%	2980.00	116.90	127.63	124.78	128.38	0.006142	7.39	605.20	384.22	0.48
Reach-1	22450	2%	5840.00	116.90	130.27		130.51	0.001575	4.56	1791.09	483.52	0.26
Reach-1	22450	1%	7455.00	116.90	131.48		131.70	0.001059	4.04	2388.82	500.92	0.21
Reach-1	22450	0.2%	12505.00	116.90	134.54		134.71	0.000615	3.62	4362.75	1054.32	0.17
Reach-1	22140	10%	2980.00	117.00	124.05	124.05	126.26	0.006734	12.84	391.36	132.65	0.95
Reach-1	22140	2%	5840.00	117.00	126.77	126.77	129.42	0.005440	14.96	889.23	205.48	0.91
Reach-1	22140	1%	7455.00	117.00	127.84	127.84	130.78	0.005382	16.12	1119.61	224.02	0.92
Reach-1	22140	0.2%	12505.00	117.00	131.26	131.26	134.04	0.003953	16.95	2349.42	658.06	0.83
Dec 1 1	04005	400′	2022.2		101.5	10:	100.0-	0.00====		044-		
Reach-1	21825	10%	2980.00	115.90	121.80	121.75	123.65	0.007981	11.17	314.54	84.21	0.97
Reach-1	21825	2%	5840.00	115.90	124.12	124.12	126.73	0.006551	13.42	604.08	179.14	0.94
Reach-1	21825	1%	7455.00	115.90	125.26	125.26	128.03	0.005781 0.001436	14.07	847.23	239.90	0.91
Reach-1	21825	0.2%	12505.00	115.90	131.24	127.79	132.45	0.001436	10.39	3430.35	1045.30	0.50
Reach-1	21770	10%	2980.00	115.40	122.06	120.08	122.97	0.002174	7.62	390.83	103.38	0.55
Reach-1	21770	2%	5840.00	115.40	122.06	120.08	122.97	0.002174	11.07	390.83 527.79	103.38	0.55
Reach-1	21770	1%	7455.00	115.40	124.17	122.36	126.07	0.003067	12.70	527.79	127.10	0.68
Reach-1	21770	0.2%	12505.00	115.40	130.39	126.53	132.19	0.003503	11.58	2432.53	932.61	0.74
. 104011-1	21110	U.Z.70	12303.00	1 10.40	130.39	120.03	132.19	0.001374	11.00	2732.03	33Z.U1	0.34
Reach-1	21757.5		Bridge									
	2		Driage									
Reach-1	21745	10%	2980.00	115.40	121.95	120.08	122.89	0.002314	7.77	383.57	102.50	0.56
Reach-1	21745	2%	5840.00	115.40	123.88	122.36	125.93	0.002314	11.48	508.60	117.61	0.72
Reach-1	21745	1%	7455.00	115.40	124.48	123.47	127.36	0.003470	13.60	547.97	122.37	0.83
Reach-1	21745	0.2%	12505.00	115.40	126.94	126.53	131.79	0.005288	17.67	707.72	141.67	0.94
			12000.00		120.04	.20.00	101.70	2.000200		707.72		5.54
Reach-1	21695	10%	2980.00	114.20	121.74	120.15	122.74	0.003025	8.01	371.94	69.60	0.61
Reach-1	21695	2%	5840.00	114.20	123.69	122.46	125.72	0.004430	11.42	511.32	74.77	0.76
Reach-1	21695	1%	7455.00	114.20	124.27	123.52	127.08	0.005624	13.46	557.56	87.09	0.87
Reach-1	21695	0.2%	12505.00	114.20	127.45	127.45	130.78	0.004531	14.98	1124.07	292.57	0.82
									30			1.02

HEC-RAS Plan: PROPOSED River: RIVER-1 Reach: Reach-1 (Continued)

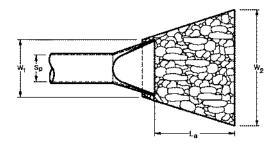
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	21285	10%	2980.00	114.30	119.50	119.17	120.92	0.006772	9.55	312.25	87.08	0.88
Reach-1	21285	2%	5840.00	114.30	121.70	121.16	123.70	0.005436	11.42	567.01	229.63	0.85
Reach-1	21285	1%	7455.00	114.30	122.75	122.75	124.74	0.004638	11.68	907.52	396.78	0.80
Reach-1	21285	0.2%	12505.00	114.30	124.70	124.69	126.86	0.004103	13.05	1782.33	518.61	0.79

APPENDIX I

Project Name: 141 Danbury Road

Project Number: **F0173-02**Project Location: **Wilton, CT**

Description: Riprap Apron Calculation
Prepared By: TAS Date: July 9, 2021


Riprap Apron

 $Invert \ Elevation = 138.50 \ ft$ $Tailwater \ Elevation = 140.44 \ ft$ $Tailwater \ Depth \ (TW) = 1.94 \ ft$ $Inside \ Pipe \ Diameter \ (S_p) = 1.50 \ ft$ $Pipe \ Discharge \ (Q) = 9.14 \ cfs$ $Outlet \ Velocity \ (V) = 5.17 \ ft/s$

Apron Type

Type A Riprap Apron (Minimum Tailwater Condition) TW < $0.5R_p$ Type B Riprap Apron (Maximum Tailwater Condition) TW $\geq 0.5R_p$ TW = $1.94 > 0.5R_p$

Use Type B Apron

Apron Length

Type B Riprap Apron (Maximum Tailwater Condition) TW ≥ 0.5R_p

$$L_a = (3.0(Q-5)/Sp^{1.5})+10.0$$

Apron Width

Type B Riprap Apron (Maximum Tailwater Condition) TW ≥ 0.5R_p

$$W_1 = 3*S_p$$

$$W_2 = 3*S_p + 0.4L_a$$

$W_1 =$	4.50	ft	
$W_2 =$	11.20	ft	

Riprap Specification

Outlet Velocity (V)=	0-8 ft/s	Modified
Outlet Velocity (V)=	8-10 ft/s	Intermediate
Outlet Velocity (V)=	10-14 ft/s	Standard

Outlet Velocity (V)=	5.170	ft/s	Use Modified Riprap
----------------------	-------	------	---------------------

Outlet protection has been designed in accordance with the Section 11.13 of the ConnDOT Drainage Manual

Project Name: 141 Danbury Road

Project Number: **F0173-02**Project Location: **Wilton, CT**

Description: Temporary Sediment Trap Sizing Calculation

Prepared By: **TAS** Date: **May 20, 2021**

Temporary Sediment Trap 01

Sediment Storage Volume

Drainage Area	=	2.4	acres
Initial Storage Volume	=	134	cy/ac
Required Storage	=	322	су
	=	8,683	cf
Min Wet Storage (1/2 Required Storage)	=	4,342	cf

Wet Storage Volume

$$V_{w} = 0.85*A_{w}*D_{w}$$

V _w , Wet Storage Volume	=	7064	cf
D _w , Maximum Depth (Low Point in Trap to Base of Outlet)	=	3	ft
$A_{\mbox{\tiny W}}$, Surface Area of the Flooded Area at	_	2770	sf
the Base of the Outlet		2//0	31

Dry Storage Volume

$$V_d = [(A_w + A_d) / 2] * D_d$$

t
ı
f
f
_

Provided Storage Volume

Wet Storage Dry Storage	= = =	7064 262 3004 111	cf cy cf cy
Total Provided Storage	=	10067 373	cf cy

Calculated in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control Section 5-11

APPENDIX J

Project Name: 141 Danbury Road

Project Number: **F0173-02**Project Location: **Wilton, CT**

Description: Sanitary Sewer Flow Calculation
Prepared By: TAS Date: July 14, 2021

141 Danbury Road

Total Bedrooms

			Bedrooms
1 Bedroom Units =	37	x 1	37
2 Bedroom Units =	122	x 2	244
3 Bedroom Units =	14	x 3	42

Total Residential Units = 173

323 Total Bedrooms

Average Daily & Peak Flow

323 Units150 GPD per Bedroom

Average Flow =
$$323 \times 150$$

Average Flow = $48,450$ GPD

Peak Flow Factor = 4

Sanitary Sewer Lateral Capactity

6" PVC Gravity Lateral

Capacity = 668,400 GPD

ENTRANCE

MONUMENT

SIGN

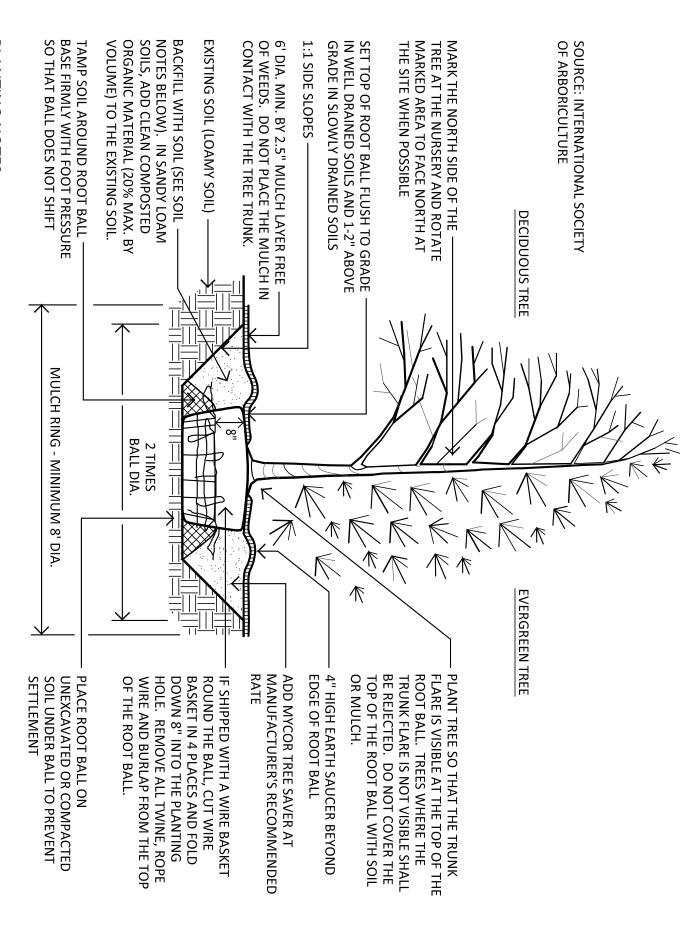
3'-0"

00

METAL LETTERS MOUNTED ON STONE WALL BLACK FINISH

DANBURY

ROAD


00

RIVER

BANK LOFTS

3" THICK PRECAST CONTRETE CAP (SUBMIT SAMPLE FOR APPROVAL)

TWO SCARAB FLOOD LIGHTS FROM KIM LIGHTING (3000K) FIXTURE COLOR BLACK

- PLANTING NOTES:

 1. DO NOT HEAVILY PRUNE THE TREE AT PLANTING. PRUNE ONLY CROSSOVER LIMBS, CO-DOMINANT LEADERS, AND BROKEN OR DEAD BRANCHES. SOME INTERIOR TWIGS AND LATERAL BRANCHES MAY BE PRUNED; HOWEVER, DO NOT REMOVE THE TERMINAL BUDS OF BRANCHES THAT EXTEND TO THE EDGE OF THE CROWN.

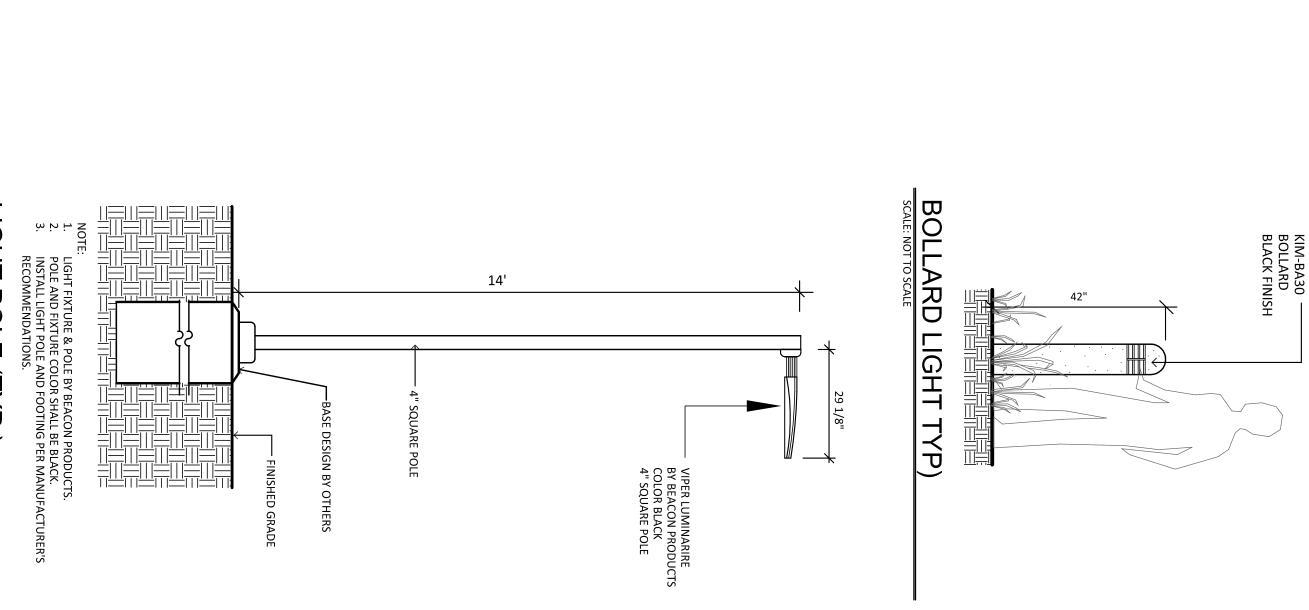
 2. WRAP TREE TRUNKS ONLY UPON THE APPROVAL OF THE LANDSCAPE ARCHITECT.
- SOIL NOTES:

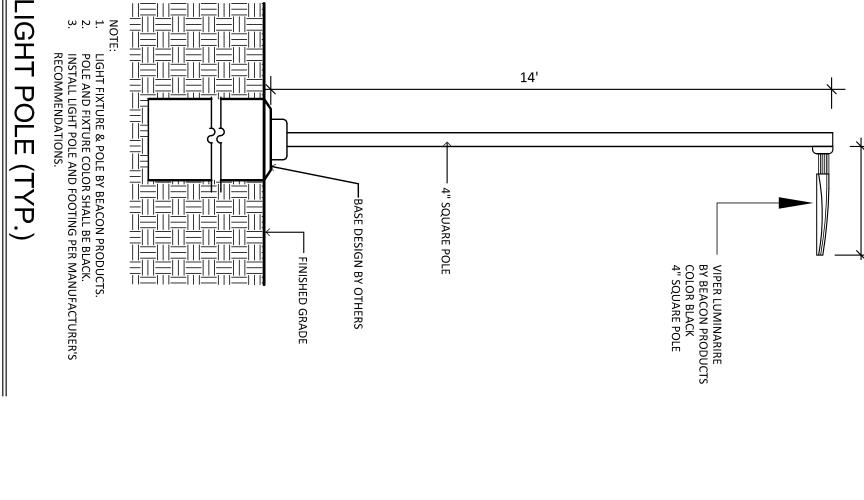
 1. CLEAN FILL MATERIAL SHALL BE A LOAMY SOIL. LOAMY SOILS INCLUDE THE FOLLOWING USDA TEXTURAL CLASSIFICATIONS AND HAVE A CLAY CONTENT BETWEEN 7% TO 27%: LOAM, SANDY LOAM AND SILT LOAM. NOTE THAT SOILS AT THE OUTER LIMITS OF THE LOAM CLASSIFICATION MAY PRESENT SPECIAL PLANTINGS PROBLEMS NOT ANTICIPATED BY THE DETAIL. THE SOIL STRUCTURE SHALL NOT BE PLATY OR MASSIVE. A SUITABLE PLANTING SOIL IS 65% SAND, 20% COMPOST, AND 15% CLAY LOAM.

 2. LOAMY SOILS ARE DEFINED AS A GRANULAR OR BLOCKY FRIABLE SOILS, A MIXTURE OF SAND, SILT AND CLAY PARTICLES WITH A WITH A MINIMUM OF 1.5% BY DRY WEIGHT OF ORGANIC MATTER. THE SOIL MUST NOT BE SO COMPACTED AS TO IMPEDED ROOT GROWTH OR DRAINAGE.

STAKING NOTES:

1. STAKE TREES ONLY IF IT IS EXPECTED THAT THE TREE WILL NOT BE ABLE TO SUPPORT FOR THE FOLLOWING REASONS:

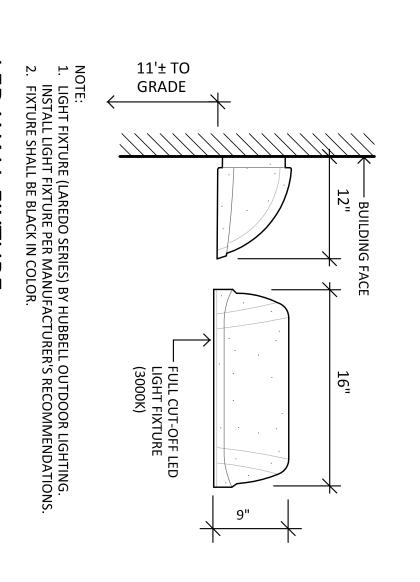

A. THE TREE IS INSTALLED WITHIN VERY SANDY SOIL OR VERY WET CLAY SOIL.

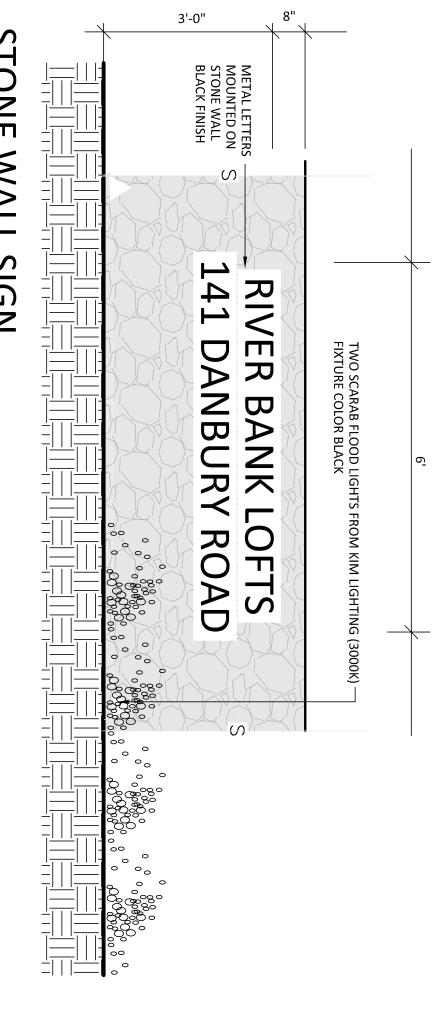

B. THE TREE IS LOCATED IN A PLACE OF EXTREMELY WINDY CONDITIONS.

2. CONTACT THE PROJECT LANDSCAPE ARCHITECT FOR STAKING DETAIL IF NEEDED.

TREE PLANTING DETAIL

NOT TO SCALE




LED WALL

FIXTURE

SCALE: NOT TO SCALE

STONE WALL SIGN

ı				
	3	-	_ &	
		-	E.	X
	5	ST. St. Brit.	S 600	73
	21	*	No.	Aro.
ı	3	4	. "	THE CO.

				,	-
	-	A SAN	STHE	The state of the s	à
- 1	A STATE OF	4		A	200
	B	Je C	E		MIN
	4	No.	CIL C	100	9
	-		-		_00

ENVIRONMENTAL LAND SOLUTIONS, LLC Landscape Architecture and Environmental Planning

SCAPE A SCOHILECTURE \$

Tel: (203) 855-7879 Fax: (203) 855-7836 info@elsllc.net www.elsllc.net

8 KNIGHT STREET, SUITE 203 NORWALK, CONNECTICUT 06851

a	4
5	$\dot{\mathbf{P}}$
5	
~	
7	
Ro	
a	

TOWN SUBMISSION

PROJECT NORTH

	Ļ
<u> </u>	4
3	
Ď	
5	
7	
_	
Ro	
a	
5	

Da	14
da	_
7	
₽ P	
Roa	

Q	4
5	\vdash
5	
7	
•	
Roa	
O	
\overline{a}	

FDSPIN 141 DR, L	Danbury
C	Roa

Wilton, Connecticut

4)SGNV	APPROVED:	CHECKED:	DRAWN BY:	FILE:	DATE:	PROJECT NO:
LANDSCAPE AND LIGHTING DETAILS	KET	МЈР	KET	F0173-02-G-TITL.dwg	JUNE 7, 2021	F0173-002

LP	SCALE:	
٥-2	1"=30'	