Traffic and Parking Study Three Hubbard Road Wilton, Connecticut Prepared for: Three Hubbard Rd LLC Prepared by: KWH Enterprise, LLC January 2020 # Traffic and Parking Study Three Hubbard Road Wilton, Connecticut This study examines the traffic and parking impact for the addition of 17 apartments at Three Hubbard Road in Wilton, Connecticut. Levels of Service (LOS) for traffic flows under 2020 existing and 2021 no-build and build traffic conditions were analyzed to identify any deficiencies in existing and future traffic operations at area intersections. For the purpose of this traffic study, 2021 was assumed to be the year during which construction is completed and the apartments are occupied. ### I. Summary - The new apartments are estimated to generate six vehicular trips during the weekday morning peak hour, seven trips during the weekday afternoon peak hour, and seven trips during the Saturday midday peak hour. - The new apartments will produce negligible traffic impact on area intersections. After the new apartments are built, traffic will continue to operate at acceptable LOS at area intersections during peak hours. - Three Hubbard Road shares parking with the Bankwell site to the north. Parking analysis based on field parking counts and ITE data concluded that there will be adequate parking for the proposed new apartments. ### **II. Project Description** Three Hubbard Road is the site for 24 existing apartments. 17 new apartments are proposed. The number of parking spaces will remain unchanged after the construction. The site has a shared parking arrangement with the Bankwell site to the north to take advantage of different peaks of parking needs for the two land uses. ### **III. Existing Traffic Conditions** To evaluate the quality of traffic operation in the vicinity of the redevelopment, the following intersections were analyzed for the study: - Route 33 (Ridgefield Road) and Old Ridgefield Road; - Route 33 and Center Street; and - Route 106 (Wolfpit Road), Range Road, and Horseshoe Road. Traffic counts for the three intersections were collected during weekday morning, weekday afternoon, and Saturday midday peak hours in January 2020. The peak-hour volumes from the counts were seasonally adjusted to reflect traffic volumes for the busiest summer month of June. Recent-year average daily traffic volumes compiled by ConnDOT (Tables 1 and 2) show relatively little traffic growth on Route 33 and Route 106 over the long term. For this study, a conservative one percent annual growth rate was assumed between 2020 and 2021. Table 1 Average Daily Traffic (ADT) for Route 33 | Year | 1990 | 1992 | 1995 | 1996 | 1999 | 2002 | 2005 | 2008 | 2014 | |------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Route 33, east of Belden Hill Road | 12,100 | 13,100 | 11,500 | 12,600 | 13,200 | 14,000 | 12,100 | 11,000 | 12,600 | Source: ConnDOT Table 2 Average Daily Traffic (ADT) for Route 106 | Year | 2002 | 2005 | 2008 | 2014 | |------------------------------------|-------|-------|-------|-------| | Route 106, southwest of Range Road | 5,900 | 6,600 | 6,300 | 5,700 | Source: ConnDOT ### Capacity Analysis To assess the quality of traffic flow, intersection capacity analysis was conducted for the existing, future no-build and future build traffic conditions. Capacity analysis provides an indication of how well roadway facilities serve the traffic demands placed upon them. Synchro 10, a software package that includes the evaluation criteria of the 2000 Highway Capacity Manual (HCM 2000), was used to analyze the intersections. Level of service (LOS) is the term used to describe the different operating conditions that occur on a given roadway segment or intersection under various traffic conditions. It is a qualitative measure of the effects of a number of factors including roadway geometry, speed, travel delay, freedom to maneuver, and safety. Six levels of service can be defined for each type of facility. Each level of service (LOS) is given a letter designation from A to F, with LOS A representing the best operating conditions and LOS F representing the worst. LOS at intersection is measured in terms of average control delay. For signalized intersections and all-way stop-controlled intersections, the analysis considers the operation of all traffic entering the intersection, and an overall condition is reported in addition to individual movements. For two-way stop-controlled (TWSC) intersections where side street traffic has to stop for main street traffic, the analysis assumes that through traffic on the main street is not affected by traffic on side streets. Thus, LOS is calculated for the main street left-turn and side street approaches, and no overall intersection LOS is defined for TWSC intersections. Table 3 presents the LOS criteria for signalized and unsignalized intersections as defined in the HCM 2000. Table 3 LOS Criteria for Signalized and Unsignalized Intersections | Tuble 0 | Level-of-Service | Signalized Delay Range
(Average Control Delay, | Unsignalized Delay Range
(Average Control Delay | |----------------|---------------------|---|--| | | (LOS) | in sec/veh) | in sec/veh) | |) | Α | ≤ 10 | ≤ 10 | | | В | > 10 and ≤ 20 | > 10 and ≤ 15 | | | С | > 20 and ≤ 35 | > 15 and ≤ 25 | | | D | > 35 and ≤ 55 | > 25 and ≤ 35 | | | E | > 55 and ≤ 80 | > 35 and ≤ 50 | | | F | > 80 | > 50 | | Source: 2000 H | ighway Capacity Mar | nual (Exhibits 16-2 and 17-2) | | Table 4 that follows shows the capacity analysis results for the analyzed intersections under the 2020 existing traffic conditions. All traffic approaches are operating at acceptable LOS D or better during the three peak hours. Table 4 Capacity Analyses for Existing Conditions | Table 4 Capacity Allary 363 for Existi | ing Co | IGILI | J113 | | | | | |--|----------------|---------|---------------------|-----|---------------------------------|-----|--| | | | litions | | | | | | | Intersection | Week
AM P | eak | Week
PM P
Hot | eak | Saturday
Midday
Peak Hour | | | | | Delay
(sec) | LOS | Delay
(sec) | LOS | Delay
(sec) | LOS | | | Rt. 33 and Old Ridgefield Rd. (Signalized) | | | | | | | | | EB Rt. 33 | 4.2 | Α | 13.3 | В | 9.4 | Α | | | WB Rt. 33 | 3.5 | Α | 10.8 | В | 8.0 | Α | | | NB Old Ridgefield Rd. | 41.1 | D | 35.1 | D | 28.0 | С | | | Intersection | 5.6 | Α | 18.3 | В | 12.4 | В | | | Rt. 33 and Center St. (Unsignalized) | | | | | | | | | WB Rt. 33 Left Turn | 13.2 | В | 9.1 | Α | 13.8 | В | | | NB Center St. | 12.2 | В | 25.4 | D | 13.0 | В | | | Rt. 106, Horseshoe Rd., and Range Rd. | | | | | | | | | (Signalized) | | | | | | | | | EB Rt. 106 Left Turn | 43.1 | D | 17.1 | В | 13.1 | В | | | EB Rt. 106 Through and Right Turn | 15.1 | В | 15.4 | В | 13.1 | В | | | WB Rt. 106 | 9.8 | Α | 11.9 | В | 8.8 | Α | | | SB Horseshoe Rd. Left Turn | 27.9 | С | 32.8 | С | 21.8 | С | | | SB Horseshoe Rd. Through and Right Turn | 20.6 | С | 18.2 | В | 17.1 | В | | | NB Range Rd. | 20.8 | С | 22.4 | С | 17.7 | В | | | Intersection | 20.9 | С | 17.7 | В | 13.9 | В | | EB Eastbound WB Westbound NB Northbound SB Southbound LOS Level of Service ### **IV. Future Traffic Conditions** For the purpose of this study, it was assumed that the 17 new apartments will be constructed and occupied in 2021. As a comparison for demonstrating the traffic impact of the project, a 2021 no-build scenario is included in the study. The 2021 no-build traffic volumes used for traffic analysis were generated using an annual background traffic growth rate of one percent between 2020 and 2021, independent of the development. Table 5 details the capacity analysis results for the 2021 no-build traffic conditions. Under the no-build conditions, all traffic approaches will continue to operate at acceptable LOS D or better during the three peak hours. Table 5 Capacity Analyses for No-Build Conditions | Table 5 Capacity Analyses for No-Build Conditions | | | | | | | | | | | | | |--|--------------------------|-----|-------|-----|---------------------------------|-----|--|--|--|--|--|--| | | 2021 No-Build Conditions | | | | | | | | | | | | | | Week | day | Week | day | Saturday
Midday
Peak Hour | | | | | | | | | Intersection | AM P | eak | PM P | eak | | | | | | | | | | | Hot | ır | Hou | ur | | | | | | | | | | | Delay | LOS | Delay | LOS | Delay | LOS | | | | | | | | | (sec) | LUS | (sec) | LUS | (sec) | LUS | | | | | | | | Rt. 33 and Old Ridgefield Rd. (Signalized) | | | | | | | | | | | | | | EB Rt. 33 | 4.3 | Α | 13.5 | В | 9.6 | Α | | | | | | | | WB Rt. 33 | 3.5 | Α | 11.0 | В | 8.1 | Α | | | | | | | | NB Old Ridgefield Rd. | 41.2 | D | 35.0 | С | 27.9 | С | | | | | | | | Intersection | 5.7 | Α | 18.4 | В | 12.5 | В | | | | | | | | Rt. 33 and Center St. (Unsignalized) | | | | | | | | | | | | | | WB Rt. 33 Left Turn | 13.4 | В | 9.1 | Α | 14.0 | В | | | | | | | | NB Center St. | 12.3 | В | 26.2 | D | 13.1 | В | | | | | | | | Rt. 106, Horseshoe Rd., and Range Rd. (Signalized) | | | | | | | | | | | | | | EB Rt. 106 Left Turn | 44.0 | D | 17.3 | В | 13.3 | В | | | | | | | | EB Rt. 106 Through and Right Turn | 15.1 | В | 15.5 | В | 13.3 | В | | | | | | | | WB Rt. 106 | 9.9 | Α | 12.1 | В | 9.0 | Α | | | | | | | | SB Horseshoe Rd. Left Turn | 29.1 | С | 34.7 | С | 21.7 | С | | | | | | | | SB Horseshoe Rd. Through and Right Turn | 20.9 | С | 18.2 | В | 17.0 | В | | | | | | | | NB Range Rd. | 21.1 | С | 22.5 | С | 17.7 | В | | | | | | | | Intersection | 21.3 | С | 18.0 | В | 14.0 | В | EB Eastbound WB Westbound NB Northbound SB Southbound LOS Level of Service ### **Trip Generation** Land Use (LU) 221, Multifamily Housing (Mid-Rise), from *Trip Generation*, 10th Edition
published by the Institute of Transportation Engineers (ITE) was used to estimate the number of trips generated by the new apartments. The 17 new apartments will generate approximately six trips during the weekday morning peak hour, seven trips during the weekday afternoon peak hour, and seven trips during the Saturday midday peak hour. Table 6 Trip Generation (vph) | LU 221, Multifamily Housing (Mid-Rise) (17 New Units) | | | | | | | | | | | |---|---|---|---|--|--|--|--|--|--|--| | Entry Exit Entry & Exit | | | | | | | | | | | | Weekday AM Peak Hour of Adjacent Street | 2 | 4 | 6 | | | | | | | | | Weekday PM Peak Hour of Adjacent Street | 4 | 3 | 7 | | | | | | | | | Saturday Midday Peak Hour | 3 | 4 | 7 | | | | | | | | vph Vehicles per hour Table 7 depicts the distribution of the site-generated trips along area routes. The distribution takes into account the relative traffic volumes of area roadways and the development patterns in this part of Wilton. **Table 7** Trip Distribution | Route | Entry and Exit | |--|-----------------------| | North: Route 7 via Center Street | 30% | | North and West: Route 33 via Old Ridgefield Road | 10% | | South: Route 7 via Center Street | 50% | | West: Route 106 via Horseshoe Road | 10% | | Total | 100% | Traffic volumes for the analysis of the 2021 build conditions are combinations of the nobuild volumes and the site-generated trips distributed to area roadways using the information above. ### Capacity Analysis Table 8 shows the capacity analysis results for the 2021 build traffic conditions. All traffic approaches and intersections will operate at acceptable LOS D or better. Compared with the no-build conditions, there will be only limited changes in average delays at the three intersections. The traffic approach with the largest increase in average delay will be the northbound Center Street approach at Route 33 during the afternoon peak hour. The peak-hour average delay for the approach will only increase 0.3 second, from 26.2 seconds under the no-build condition to 26.5 seconds under the build condition. It is therefore concluded that the traffic impact of the 17 new apartments on area roadways will be negligible. Table 8 Capacity Analyses for Build Conditions | Table 6 Capacity Analyses for Build Conditions | | | | | | | | | | | | |--|-------|-------|-------|-----|---------------------------------|-----|--|--|--|--|--| | | | tions | | | | | | | | | | | Interportion | Week | • | Week | • | Saturday
Midday
Peak Hour | | | | | | | | Intersection | AM P | eak | PM P | eak | | | | | | | | | | Hot | ır | Hot | ır | | | | | | | | | | Delay | LOS | Delay | LOS | Delay | LOS | | | | | | | | (sec) | LOS | (sec) | LOS | (sec) | LOS | | | | | | | Rt. 33 and Old Ridgefield Rd. (Signalized) | | | | | | | | | | | | | EB Rt. 33 | 4.3 | Α | 13.5 | В | 9.6 | Α | | | | | | | WB Rt. 33 | 3.5 | Α | 11.0 | В | 8.2 | Α | | | | | | | NB Old Ridgefield Rd. | 41.1 | D | 35.0 | С | 27.9 | С | | | | | | | Intersection | 5.7 | Α | 18.4 | В | 12.6 | В | | | | | | | Rt. 33 and Center St. (Unsignalized) | | | | | | | | | | | | | WB Rt. 33 Left Turn | 13.5 | В | 9.1 | Α | 14.1 | В | | | | | | | NB Center St. | 12.3 | В | 26.5 | D | 13.1 | В | | | | | | | Rt. 106, Horseshoe Rd., and Range Rd. | | | | | | | | | | | | | (Signalized) | | | | | | | | | | | | | EB Rt. 106 Left Turn | 44.0 | D | 17.3 | В | 13.3 | В | | | | | | | EB Rt. 106 Through and Right Turn | 15.1 | В | 15.5 | В | 13.3 | В | | | | | | | WB Rt. 106 | 9.9 | Α | 12.1 | В | 9.0 | Α | | | | | | | SB Horseshoe Rd. Left Turn | 29.1 | С | 34.7 | С | 21.7 | С | | | | | | | SB Horseshoe Rd. Through and Right Turn | 20.9 | С | 18.2 | В | 17.0 | В | | | | | | | NB Range Rd. | 21.1 | С | 22.5 | С | 17.7 | В | | | | | | | Intersection | 21.3 | С | 18.0 | В | 14.0 | В | | | | | | | | | | | | | | | | | | | EB Eastbound WB Westbound NB Northbound SB Southbound LOS Level of Service ### V. Parking Analysis After the 17 apartments are constructed, the number of parking spaces on the site and an existing shared parking arrangement with the adjacent Bankwell site will remain unchanged. The Three Hubbard Road site currently provides 53 parking spaces. The Bankwell site provides 16 spaces, including a space that straddles the property line separating the two sites. Numbers of parked vehicles on the two sites were recorded at 9:15 AM on Friday, January 10, 2020; at 4:35 PM on Monday, January 6, 2020; at 11:15 PM on Wednesday, January 8, 2020; and at 1:20 PM on Saturday, January 11, 2020. Because observed Saturday parking demand is much lower than those for weekdays (15 parked vehicles at 1:20 PM on a Saturday), the following discussions will focus on parking on weekdays. Between 7:00 PM and 8:00 AM on weekdays when the bank was closed, all parked vehicles on the two sites were for the existing apartments; the hourly parking demand during these hours for the 24 existing apartments were calculated using the 11:15 PM parking count and data from a "Percent of Peak Parking Demand" table from 5th Edition of ITE *Parking Generation Manual* (see Appendices). The existing parking supply and demand for the two sites are illustrated in Table 9 and Figure 1. The highest parking demand of 44 vehicles occurred between 9:00 AM and 10:00 AM; there were 25 unused spaces during that hour. Table 9 **Existing Weekday Parking Supply and Demand** 1:00 AM1:00 AM1:00 AM1:00 AM1:00 AM3:00 AM4:00 AM6:00 AM6:00 AM6:00 AM7:00 AM7:00 AM11:00 AM11:00 AM11:00 AM12:00 PM12:00 PM-1:00 PM 1:00 P Total parking supply for existing apartments and bank Existing weekday parking demand According to the ITE table in the Appendices, the 11:00 PM-12:00 PM parking count of 24 vehicles for the 24 existing apartments represents 93% of peak parking demand. The per-unit peak parking demand for the 24 existing apartments was calculated as follows: (24/24)/93% = 1.075 spaces per unit. Based on the per-unit peak parking demand, the 17 new apartments will generate the following peak parking demand: $$1.075*17 = 18.3$$, or 19 spaces This new peak parking demand of 19 spaces was converted to hourly demand using the ITE table, and the resulting hourly parking demand for the 17 new apartments was added to the existing hourly demand for which data is available. The results are shown in Table 10 and Figure 2. The hour with the most parking demand of 54 vehicles will be between 9:00 AM and 10:00 AM; even during this busiest hour, there will be 15 unused spaces on the two sites. There will be adequate parking for the proposed 17 new apartments. Table 10 Future Weekday Parking Supply and Demand | | | | | | | -, | | | · • | | J | | | | | | | | | | | | | | |--|----|----|----|---------------------|----|----|----|----|-----|----------------------|----|-----------------------|----|---------------------|----|---------------------|----|----|----|----|----|----|-----|-----------| | | | | | 3:00 AM-
4:00 AM | | | | | | 9:00 AM-
10:00 AM | | 11:00 AM-
12:00 PM | | 1:00 PM-
2:00 PM | | 3:00 PM-
4:00 PM | | | | | | | 0 0 | 11:00 PM- | | Total parking supply for apartments and bank | 69 | | Future weekday parking
demand | 45 | 45 | 45 | 45 | 45 | 42 | 37 | 31 | | 54 | | | | | | | 48 | | | 31 | 34 | 37 | 40 | 42 | ### VI. Conclusions Area traffic operation was analyzed for 17 new apartments at Three Hubbard Road under 2020 existing and 2021 no-build and build traffic conditions. After the construction, acceptable LOS D or better will be maintained at area intersections. The development is expected to produce negligible traffic impact on area roadways. Adequate parking will be provided for the new apartments. Kermit Hua, PE, PTOE Principal KWH Enterprise, LLC (203) 606-3525 Kermit Hua kermit.hua@kwhenterprise.com ### **Technical Appendices** ### CONNECTICUT DEPARTMENT OF TRANSPORTATION BUREAU OF POLICY & PLANNING - SYSTEMS MODELING & FORECASTING TRAFFIC DATA COLLECTION & VERIFICATION SECTION ### FACTORS FOR EXPANDING 24-HOUR COUNTS TO ANNUAL AVERAGE DAILY TRAFFIC VOLUMES (BASED ON 2009 & 2010 CONTINUOUS COUNT STATION DATA | GROUP - 1 * * INTERSTATE * * | | | | | | | | | | | |------------------------------|----------------|--------------------|--|--|--|--|--|--|--|--| | STATION(S): | 7, 24, 26, 30, | 32, 45, 49, 54, 55 | | | | | | | | | | • | AVG. | WEEKDAY | | | | | | | | | | JANUARY | | 1.06 | | | | | | | | | | | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | |-----------|------|---------|--------|----------|--------| | JANUARY | | 1.06 | 0.98 | 1.17 | 1.48 | | FEBRUARY | • | 1.06 | 0.97 | 1.12 | 1.34 | | MARCH | | 1.01 | 0.90 | 1.09 | 1.24 | | APRIL | | 0.96 | 0.87 | 1.03 | 1.13 | | MAY | | 0.94 | 0.85 | 1.01 | 1.11 | | JUNE | | 0.93 | .0.85 | 1.00 | 1.08 | | JULY | | 0.93 | 0.85 | 0.97 | 1.06 | | AUGUST | | 0.92 | 0.85 | 0.97 | 1.06 | | SEPTEMBER | | 0.96 | 0.86 | 1.02 | 1.13 | | OCTOBER | | 0.98 | 0.86 | 1.03 | 1.10 | | NOVEMBER | | 0.99 | 0.91 | 1.06 | 1.19 | | DECEMBER | | 1.00 | 0.94 | 1.17 | 1.42 | ### GROUP - 2 * * RURAL * * STATION(S): 4, 10, 13, 16, 20, 50, 51 | | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | |-----------|------|---------|--------|----------|--------| | | AVO. | | | | | | JANUARY | | 1.08 | 1.01 | 1.16 | 1.61 | | FEBRUARY | | 1.08 | 1.00 | 1.12 | 1.41 | | MARCH | | 1.03 | 0.93 | 1.02 | 1.30 | | APRIL | | 0.97 | 0.90 | 1.00 | 1.23 | | MAY | | 0.94 | 0.84 | 0.93 | 1.12 | | JUNE | | 0.92 | 0.84 | 0.92 | 1.13 | | JULY | | 0.90 | 0.83 | 0.92 | 1.05 | | AUGUST | - | 0.92 | 0.84 | 0.94 | 1.11 | | SEPTEMBER | | 0.95 | 0.88 | 0.96 | 1.15 | | OCTOBER | | 0,98 | 0.91 | 1.01 | 1.16 | | NOVEMBER | • | 0.99 | 0.92 | 1.04 | 1.29 | | DECEMBER | | 1.00 | 0.92 | 1.08 | 1.47 | ### GROUP - 3 **
INTERSTATE ** (AVERAGE OF 2006-2007 & 2007-2008) STATION(S): 27 (I-84 FROM ROUTE 195 TO MASS, STATE LINE) | | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | |-----------|------|---------|--------|----------|--------| | JANUARY | | 1.47 | 1.08 | 1.22 | 1.15 | | FEBRUARY | | 1.35 | 1.04 | 1.20 | 1.12 | | MARCH | | 1.32 | 0.97 | 1.08 | 1.03 | | APRIL | | 1.13 | 0.83 | 0.93 | 0.88 | | MAY | | 1.09 | 0.78 | 0.85 | 0.82 | | JUNE | | 1.03 | 0.76 | 0.85 | 0.81 | | JULY | | 0.97 | 0.77 | 0.75 | 0.76 | | AUGUST | | 1.10 | 0.82 | 0.87 | 0.85 | | SEPTEMBER | | 1.03 | 0.74 | 0.78 | 0.76 | | OCTOBER | | 1.14 | 0.76 | 0.86 | 0.81 | | NOVEMBER | | 1.18 | 0.85 | 0.97 | 0.91 | | DECEMBER | | 1.15 | 0.99 | 1.13 | 1.06 | ### CONNECTICUT DEPARTMENT OF TRANSPORTATION BUREAU OF POLICY & PLANNING - SYSTEMS INFORMATION TRAFFIC MONITORING & DATA ANALYSIS SECTION ### FACTORS FOR EXPANDING 24-HOUR COUNTS TO ANNUAL AVERAGE DAILY TRAFFIC VOLUMES (BASED ON 2009 & 2010 CONTINUOUS COUNT STATION DATA | GROU | ĴΡ- | 4 * | * | URB. | AN | * * | |------|-----|-----|---|------|----|-----| |------|-----|-----|---|------|----|-----| | | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | |----------|------|---------|--------|----------|--------| | JANUARY | | 1.01 | 0.94 | 1.18 | 1.60 | | FEBRUARY | | 1.01 | 0.94 | 1.15 | 1,45 | | MARCH | | 0.98 | 0.90 | 1,10 | 1.38 | | APRIL | | 0.94 | 0.88 | 1.08 | 1.33 | | MAY | | 0.90 | 0.83 | 1.02 | 1.24 | | JUNE | | 0.90 | 0.84 | 1.01 | 1.24 | | JULY | | 0.91 | 0.85 | 1.04 | 1.27 | | AUGUST | | 0.92 | 0.85 | 1.05 | 1.26 | 0.86 0.85 0.89 0.90 1.03 1.04 1.08 1.11 1.27 1.24 1.32 1.48 ### GROUP - 5 * *NORTHWEST RECREATIONAL * * 0.92 0.92 0.93 0.96 STATION(S): 2, 11, 17, 19, 22, 23, 28, 47, 48, 52 STATION(S): 1, 18 SEPTEMBÉR OCTOBER **NOVEMBER** **DECEMBER** | • · · · · · · · · · · · · · · · · · · · | , | | | | | |---|------|---------|--------|----------|--------| | | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | | JANUARY | | 1.59 | 1.15 | 1.13 | 1.22 | | FEBRUARY | | 1.53 | 1.16 | 1.08 | 1.02 | | MARCH | | 1.53 | 1.08 | 1.05 | 1.08 | | APRIL | | 1.29 | 0.98 | 0.85 | 0.91 | | MAY | • | 1.19 | 0.79 | 0.83 | 0.76 | | JUNE | | 1.10 | 0.77 | 0.82 | 0.69 | | JULY | | 0.95 | 0.67 | 0.59 | 0.52 | | AUGUST | | 0.92 | 0.63 | 0.60 | 0.57 | | SEPTEMBER | | 1.17 | 0.81 | 0.73 | 0.68 | | OCTOBER | | 1.16 | 0.87 | 0.79 | 0.70 | | NOVEMBER | | 1.30 | 1.00 | 1.01 | 0.92 | | DECEMBER | | 1.49 | 1.12 | 1.27 | 1.38 | ### GROUP - 6 ** SOUTHEAST RECREATIONAL ** STATION(S): 5, 33, 44, 46 | , , , | AVG. | WEEKDAY | FRIDAY | SATURDAY | SUNDAY | |-----------|------|---------|--------|----------|--------| | JANUARY | | 1.18 | 1.04 | 1.13 | 1.37 | | FEBRUARY | | 1.15 | 0.99 | 1.04 | 1.23 | | MARCH | | 1.13 | 0.94 | 1.00 | 1.13 | | APRIL | | 1.05 | 0.91 | 0.97 | 1.08 | | MAY | | . 1.01 | 0.86 | 0.92 | 1.01 | | JUNE | | 0.98 | 0.85 | 0.91 | 0.98 | | JULY | | 0.92 | 0.78 | 0.88 | 0.97 | | AUGUST | | 0.88 | 0.77 | 0.80 | 0.90 | | SEPTEMBER | • | 1.03 | 0.88 | 0.91 | 1.00 | | OCTOBER | | 1.06 | 0.90 | 0.98 | 1.07 | | NOVEMBER | | 1.10 | 0.95 | 1.03 | 1.17 | | DECEMBER | | 1.13 | 0.98 | 1.11 | 1.39 | ## Land Use: 221 Multifamily Housing (Mid-Rise) #### Description Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have between three and 10 levels (floors). Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), off-campus student apartment (Land Use 225), and mid-rise residential with 1st-floor commercial (Land Use 231) are related land uses. #### **Additional Data** In prior editions of *Trip Generation Manual*, the mid-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of vehicle trip data found no clear differences in trip making patterns between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated. For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.46 residents per occupied dwelling unit. For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 95.7 percent of the total dwelling units were occupied. Time-of-day distribution data for this land use are presented in Appendix A. For the eight general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:00 and 8:00 a.m. and 4:45 and 5:45 p.m., respectively. For the four dense multi-use urban sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:15 and 5:15 p.m., respectively. For the three center city core sites with 24-hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 6:45 and 7:45 a.m. and 5:00 and 6:00 p.m., respectively. For the six sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.46 residents per occupied dwelling unit. For the five sites for which data were provided for both occupied dwelling units and total dwelling units, an average of 95.7 percent of the units were occupied. The average numbers of person trips per vehicle trip at the five center city core sites at which both person trip and vehicle trip data were collected were as follows: - 1.84 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m. - 1.94 during Weekday, AM Peak Hour of Generator - · 2.07 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m. - 2.59 during Weekday, PM Peak Hour of Generator The average numbers of person trips per vehicle trip at the 32 dense multi-use urban sites at which both person trip and vehicle trip data were collected were as follows: - 1.90 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m. - · 1.90 during Weekday, AM Peak Hour of Generator - · 2.00 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m. - · 2.08 during Weekday, PM Peak Hour of Generator The average numbers of person trips per vehicle trip at the 13 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows: - 1.56 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m. - · 1.88 during Weekday, AM Peak Hour of Generator - 1.70 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m. - · 2.07 during Weekday, PM Peak Hour of Generator The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), British Columbia (CAN), California, Delaware, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, Ontario, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Utah, Virginia, and Wisconsin. #### Source Numbers 168, 188, 204, 305, 306, 321, 357, 390, 436, 525, 530, 579, 638, 818, 857, 866, 901, 904, 910, 912, 918, 934, 936, 939, 944, 947, 948, 949, 959, 963, 964, 966, 967, 969, 970 ## Multifamily Housing (Mid-Rise) (221) Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. Setting/Location: General Urban/Suburban Number of Studies: 53 Avg. Num. of Dwelling Units: 207 Directional Distribution: 26% entering, 74% exiting ### Vehicle Trip Generation per Dwelling Unit | Average Rate | Range of Rates | Standard Deviation | |--------------|----------------|--------------------| | 0.36 | 0.06 - 1.61 | 0.19 | ### **Data Plot and Equation** ## Multifamily Housing (Mid-Rise) (221) Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 60 Avg. Num. of Dwelling Units: 208 Directional Distribution: 61% entering, 39% exiting ### Vehicle Trip Generation per Dwelling Unit | Average Rate | Range of Rates | Standard Deviation | |--------------|----------------|--------------------| | 0.44 | 0.15 - 1.11 | 0.19 | ### **Data Plot and Equation** ## Multifamily Housing (Mid-Rise) (221) Vehicle Trip Ends vs: Dwelling Units On a: Saturday, Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 8 Avg. Num. of Dwelling Units: 264 Directional Distribution: 49% entering, 51% exiting ### Vehicle Trip Generation per Dwelling Unit | Average Rate | Range of Rates | Standard Deviation | | |--------------|----------------|--------------------|--| | 0.44 | 0.34 - 0.73 | 0.08 | | ### **Data Plot and Equation** # Parking Generation Manual 5th Edition JANUARY 2019 INSTITUTE OF TRANSPORTATION ENGINEERS ### Land Use: 221 Multifamily Housing (Mid-Rise) ### Description Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and with between three and 10 levels (floors) of residence. Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), and affordable housing (Land Use 223) are related land uses. ### Time of Day Distribution for Parking Demand The following table presents a time-of-day distribution of parking demand on a weekday (one general urban/suburban study site), a Saturday (two general urban/suburban study sites), and a Sunday (one dense multi-use urban study site). | | Pe | rcent of Peak Parking Der | mand | |-----------------|---------|---------------------------|--------| | Hour Beginning | Weekday | Saturday | Sunday | | 12:00–4:00 a.m. | 100 | 100 | 100 | | 5:00 a.m. | 94 | 99 | _ | | 6:00 a.m. | 83 | 97 | | | 7:00 a.m. | 71 | 95
| _ | | 8:00 a.m. | 61 | 88 | _ | | 9:00 a.m. | 55 | 83 | _ | | 10:00 a.m. | 54 | 75 | _ | | 11:00 a.m. | 53 | 71 | _ | | 12:00 p.m. | 50 | 68 | _ | | 1:00 p.m. | 49 | 66 | 33 | | 2:00 p.m. | 49 | 70 | 40 | | 3:00 p.m. | 50 | 69 | 27 | | 4:00 p.m. | 58 | 72 | 13 | | 5:00 p.m. | 64 | 74 | 33 | | 6:00 p.m. | 67 | 74 | 60 | | 7:00 p.m. | 70 | 73 | 67 | | 8:00 p.m. | 76 | 75 | 47 | | 9:00 p.m. | 83 | 78 | 53 | | 10:00 p.m. | 90 | 82 | 73 | | 11:00 p.m. | 93 | 88 | 93 | | | - | • | • | • | 4 | / | | | |-------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | 1 | | | 4 | ¥ | | | | | Traffic Volume (vph) | 444 | 222 | 0 | 565 | 61 | 0 | | | | Future Volume (vph) | 444 | 222 | 0 | 565 | 61 | 0 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.96 | | | 1.00 | 1.00 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1779 | | | 1863 | 1770 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1779 | | | 1863 | 1770 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 483 | 241 | 0 | 614 | 66 | 0 | | | | RTOR Reduction (vph) | 6 | 0 | 0 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 718 | 0 | 0 | 614 | 66 | 0 | | | | Turn Type | NA | | | NA | Prot | | | | | Protected Phases | 2 | | | 2 | 4 | | | | | Permitted Phases | | | 2 | | | | | | | Actuated Green, G (s) | 72.2 | | | 72.2 | 7.7 | | | | | Effective Green, g (s) | 72.2 | | | 72.2 | 7.7 | | | | | Actuated g/C Ratio | 0.80 | | | 0.80 | 0.09 | | | | | Clearance Time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 1427 | | | 1494 | 151 | | | | | v/s Ratio Prot | c0.40 | | | 0.33 | c0.04 | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | 0.50 | | | 0.41 | 0.44 | | | | | Uniform Delay, d1 | 3.0 | | | 2.6 | 39.1 | | | | | Progression Factor | 1.00 | | | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 1.3 | | | 0.8 | 2.0 | | | | | Delay (s) | 4.2 | | | 3.5 | 41.1 | | | | | Level of Service | А | | | Α | D | | | | | Approach Delay (s) | 4.2 | | | 3.5 | 41.1 | | | | | Approach LOS | А | | | А | D | | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 5.6 | H | CM 2000 | Level of Service | Α | | | HCM 2000 Volume to Capa | acity ratio | | 0.50 | | | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | 10.1 | | | Intersection Capacity Utiliza | ation | | 51.1% | IC | U Level o | f Service | Α | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | > | → | 74 | • | • | *_ | \ | \mathbf{x} | 4 | • | × | 4 | |-------------------------------|-------------|----------|-------|-------|------------|------------|----------|--------------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR | | Lane Configurations | ሻ | ĵ» | | | 4 | | ሻ | ĵ» | | | 4 | | | Traffic Volume (vph) | 269 | 261 | 17 | 76 | 219 | 202 | 177 | 84 | 110 | 0 | 127 | 34 | | Future Volume (vph) | 269 | 261 | 17 | 76 | 219 | 202 | 177 | 84 | 110 | 0 | 127 | 34 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 5.0 | | | 3.0 | | 5.0 | 5.0 | | | 5.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | 1.00 | 0.99 | | | 0.95 | | 1.00 | 0.91 | | | 0.97 | | | Flt Protected | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1770 | 1846 | | | 1747 | | 1770 | 1704 | | | 1810 | | | Flt Permitted | 0.46 | 1.00 | | | 0.92 | | 0.64 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 861 | 1846 | | | 1626 | | 1185 | 1704 | | | 1810 | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 292 | 284 | 18 | 83 | 238 | 220 | 192 | 91 | 120 | 0 | 138 | 37 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 36 | 0 | 0 | 72 | 0 | 0 | 14 | 0 | | Lane Group Flow (vph) | 292 | 299 | 0 | 0 | 505 | 0 | 192 | 139 | 0 | 0 | 161 | 0 | | Turn Type | Perm | NA | | D.P+P | NA | | Perm | NA | | | NA | | | Protected Phases | | 2 | | 1 | 12 | | | 4 | | | 4 | | | Permitted Phases | 2 | | | 2 | | | 4 | | | 4 | | | | Actuated Green, G (s) | 24.6 | 24.6 | | | 35.8 | | 15.6 | 15.6 | | | 15.6 | | | Effective Green, g (s) | 24.6 | 24.6 | | | 35.8 | | 15.6 | 15.6 | | | 15.6 | | | Actuated g/C Ratio | 0.38 | 0.38 | | | 0.56 | | 0.24 | 0.24 | | | 0.24 | | | Clearance Time (s) | 5.0 | 5.0 | | | | | 5.0 | 5.0 | | | 5.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 328 | 705 | | | 924 | | 287 | 412 | | | 438 | | | v/s Ratio Prot | | 0.16 | | | c0.10 | | | 0.08 | | | 0.09 | | | v/s Ratio Perm | c0.34 | | | | 0.21 | | c0.16 | | | | | | | v/c Ratio | 0.89 | 0.42 | | | 0.55 | | 0.67 | 0.34 | | | 0.37 | | | Uniform Delay, d1 | 18.6 | 14.7 | | | 9.1 | | 22.1 | 20.1 | | | 20.3 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 24.5 | 0.4 | | | 0.7 | | 5.8 | 0.5 | | | 0.5 | | | Delay (s) | 43.1 | 15.1 | | | 9.8 | | 27.9 | 20.6 | | | 20.8 | | | Level of Service | D | В | | | Α | | С | С | | | С | | | Approach Delay (s) | | 28.9 | | | 9.8 | | | 24.1 | | | 20.8 | | | Approach LOS | | С | | | А | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 20.9 | Н | CM 2000 | Level of S | Service | | С | | | | | HCM 2000 Volume to Capa | acity ratio | | 0.75 | | | | | | | | | | | Actuated Cycle Length (s) | <u> </u> | | 64.4 | S | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utiliza | ation | | 80.5% | | CU Level o | | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | → | • | • | ← | • | ~ | |-------------------------------|------------|------|-------|----------|-----------|-----------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | † ‡ | | ሻ | A | ¥ | | | Traffic Volume (veh/h) | 390 | 27 | 619 | 458 | 0 | 256 | | Future Volume (Veh/h) | 390 | 27 | 619 | 458 | 0 | 256 | | Sign Control | Free | | | Free | Stop | | | Grade | 0% | | | 0% | 0% | | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly flow rate (vph) | 424 | 29 | 673 | 498 | 0 | 278 | | Pedestrians | | | | | | | | Lane Width (ft) | | | | | | | | Walking Speed (ft/s) | | | | | | | | Percent Blockage | | | | | | | | Right turn flare (veh) | | | | | | | | Median type | None | | | None | | | | Median storage veh) | | | | | | | | Upstream signal (ft) | 867 | | | | | | | pX, platoon unblocked | | | | | | | | vC, conflicting volume | | | 453 | | 2282 | 226 | | vC1, stage 1 conf vol | | | | | | | | vC2, stage 2 conf vol | | | | | | | | vCu, unblocked vol | | | 453 | | 2282 | 226 | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | tC, 2 stage (s) | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | p0 queue free % | | | 39 | | 100 | 64 | | cM capacity (veh/h) | | | 1104 | | 13 | 776 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | | | Volume Total | 283 | 170 | 673 | 498 | 278 | | | Volume Left | 0 | 0 | 673 | 0 | 0 | | | Volume Right | 0 | 29 | 0 | 0 | 278 | | | cSH | 1700 | 1700 | 1104 | 1700 | 776 | | | Volume to Capacity | 0.17 | 0.10 | 0.61 | 0.29 | 0.36 | | | Queue Length 95th (ft) | 0 | 0 | 108 | 0 | 41 | | | Control Delay (s) | 0.0 | 0.0 | 13.2 | 0.0 | 12.2 | | | Lane LOS | | | В | | В | | | Approach Delay (s) | 0.0 | | 7.6 | | 12.2 | | | Approach LOS | | | | | В | | | Intersection Summary | | | | | | | | Average Delay | | | 6.5 | | | | | Intersection Capacity Utiliza | ation | | 71.8% | IC | U Level c | f Service | | Analysis Period (min) | | | 15 | | | | | | - | • | • | • | 1 | / | | | |-------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | 4 | | | 4 | *y* | | | | | Traffic Volume (vph) | 398 | 168 | 0 | 421 | 342 | 17 | | | | Future Volume (vph) | 398 | 168 | 0 | 421 | 342 | 17 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.96 | | | 1.00 | 0.99 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1788 | | | 1863 | 1767 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1788 | | | 1863 | 1767 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 433 | 183 | 0 | 458 | 372 | 18 | | | | RTOR Reduction (vph) | 11 | 0 | 0 | 0 | 3 | 0 | | | | Lane Group Flow (vph) | 605 | 0 | 0 | 458 | 387 | 0 | | | | Turn Type | NA | | | NA | Prot | | | | | Protected Phases | 2 | | | 2 | 4 | | | | | Permitted Phases | | | 2 | | | | | | | Actuated Green, G (s) | 53.7 | | | 53.7 | 26.2 | | | | | Effective Green, g (s) | 53.7 | | | 53.7 | 26.2 | | | | | Actuated g/C Ratio | 0.60 | | | 0.60 | 0.29 | | | | | Clearance Time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 1066 | | | 1111 | 514 | | | | | v/s Ratio Prot | c0.34 | | | 0.25 | c0.22 | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | 0.57 | | | 0.41 | 0.75 | | | | | Uniform Delay, d1 | 11.1 | | | 9.7 | 29.0 | | | | | Progression Factor | 1.00 | | | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 2.2 | | | 1.1 | 6.2 | | | | | Delay (s) | 13.3 | | | 10.8 | 35.1 | | | | | Level of Service | В | | | В | D | | | | | Approach Delay (s) | 13.3 | | | 10.8 | 35.1 | | | | | Approach LOS | В | | | В | D | |
 | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 18.3 | H | CM 2000 | Level of Service | В | | | HCM 2000 Volume to Capa | acity ratio | | 0.63 | | | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | 10.1 | | | Intersection Capacity Utiliza | ation | | 59.6% | IC | CU Level c | of Service | В | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | * | → | 74 | ~ | ← | *_ | \ | \mathbf{x} | 4 | ~ | × | 4 | |-------------------------------|------------|----------|-------|-------|-------------|------------|----------|--------------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR | | Lane Configurations | * | ₽ | | | 4 | | ሻ | ₽ | | | 4 | | | Traffic Volume (vph) | 116 | 183 | 0 | 67 | 298 | 183 | 154 | 38 | 164 | 19 | 212 | 38 | | Future Volume (vph) | 116 | 183 | 0 | 67 | 298 | 183 | 154 | 38 | 164 | 19 | 212 | 38 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 5.0 | | | 3.0 | | 5.0 | 5.0 | | | 5.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.95 | | 1.00 | 0.88 | | | 0.98 | | | Flt Protected | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1770 | 1863 | | | 1768 | | 1770 | 1636 | | | 1821 | | | Flt Permitted | 0.44 | 1.00 | | | 0.95 | | 0.46 | 1.00 | | | 0.97 | | | Satd. Flow (perm) | 818 | 1863 | | | 1698 | | 853 | 1636 | | | 1767 | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 126 | 199 | 0 | 73 | 324 | 199 | 167 | 41 | 178 | 21 | 230 | 41 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 131 | 0 | 0 | 9 | 0 | | Lane Group Flow (vph) | 126 | 199 | 0 | 0 | 569 | 0 | 167 | 88 | 0 | 0 | 283 | 0 | | Turn Type | Perm | NA | | D.P+P | NA | | Perm | NA | | Perm | NA | | | Protected Phases | | 2 | | 1 | 12 | | | 4 | | | 4 | | | Permitted Phases | 2 | | | 2 | | | 4 | | | 4 | | | | Actuated Green, G (s) | 21.8 | 21.8 | | | 33.3 | | 16.8 | 16.8 | | | 16.8 | | | Effective Green, g (s) | 21.8 | 21.8 | | | 33.3 | | 16.8 | 16.8 | | | 16.8 | | | Actuated g/C Ratio | 0.35 | 0.35 | | | 0.53 | | 0.27 | 0.27 | | | 0.27 | | | Clearance Time (s) | 5.0 | 5.0 | | | | | 5.0 | 5.0 | | | 5.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 282 | 643 | | | 908 | | 227 | 435 | | | 470 | | | v/s Ratio Prot | | 0.11 | | | c0.11 | | | 0.05 | | | | | | v/s Ratio Perm | 0.15 | | | | c0.22 | | c0.20 | | | | 0.16 | | | v/c Ratio | 0.45 | 0.31 | | | 0.63 | | 0.74 | 0.20 | | | 0.60 | | | Uniform Delay, d1 | 16.0 | 15.1 | | | 10.5 | | 21.1 | 18.0 | | | 20.2 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 1.1 | 0.3 | | | 1.4 | | 11.7 | 0.2 | | | 2.2 | | | Delay (s) | 17.1 | 15.4 | | | 11.9 | | 32.8 | 18.2 | | | 22.4 | | | Level of Service | В | В | | | В | | С | В | | | С | | | Approach Delay (s) | | 16.1 | | | 11.9 | | | 24.5 | | | 22.4 | | | Approach LOS | | В | | | В | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 17.7 | Н | CM 2000 | Level of 3 | Service | | В | | | | | HCM 2000 Volume to Capa | city ratio | | 0.66 | | | | | | | | | | | Actuated Cycle Length (s) | | | 63.1 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utiliza | ition | | 89.7% | IC | CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | Analysis Period (min) c Critical Lane Group | | - | \rightarrow | • | ← | • | / | |---|----------|---------------|-------|----------|------------|------------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | † | | ሻ | <u> </u> | W | | | Traffic Volume (veh/h) | 325 | 0 | 292 | 471 | 0 | 628 | | Future Volume (Veh/h) | 325 | 0 | 292 | 471 | 0 | 628 | | Sign Control | Free | | | Free | Stop | 020 | | Grade | 0% | | | 0% | 0% | | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly flow rate (vph) | 353 | 0.72 | 317 | 512 | 0.72 | 683 | | Pedestrians | 333 | U | 317 | 512 | 0 | 003 | | Lane Width (ft) | | | | | | | | Walking Speed (ft/s) | | | | | | | | Percent Blockage | | | | | | | | Right turn flare (veh) | | | | | | | | Median type | None | | | None | | | | Median storage veh) | NOHE | | | INOLIC | | | | Upstream signal (ft) | 867 | | | | | | | pX, platoon unblocked | 007 | | | | | | | vC, conflicting volume | | | 353 | | 1499 | 176 | | vC1, stage 1 conf vol | | | 333 | | 1477 | 170 | | | | | | | | | | vC2, stage 2 conf vol
vCu, unblocked vol | | | 353 | | 1499 | 176 | | | | | 4.1 | | 6.8 | 6.9 | | tC, single (s)
tC, 2 stage (s) | | | 4.1 | | 0.0 | 0.7 | | | | | 2.2 | | 3.5 | 3.3 | | tF (s) | | | 74 | | 100 | 3.3
18 | | p0 queue free % | | | 1202 | | 83 | | | cM capacity (veh/h) | | | 1202 | | გა | 836 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | | | Volume Total | 235 | 118 | 317 | 512 | 683 | | | Volume Left | 0 | 0 | 317 | 0 | 0 | | | Volume Right | 0 | 0 | 0 | 0 | 683 | | | cSH | 1700 | 1700 | 1202 | 1700 | 836 | | | Volume to Capacity | 0.14 | 0.07 | 0.26 | 0.30 | 0.82 | | | Queue Length 95th (ft) | 0 | 0 | 27 | 0 | 227 | | | Control Delay (s) | 0.0 | 0.0 | 9.1 | 0.0 | 25.4 | | | Lane LOS | | | Α | | D | | | Approach Delay (s) | 0.0 | | 3.5 | | 25.4 | | | Approach LOS | | | | | D | | | Intersection Summary | | | | | | | | Average Delay | | | 10.8 | | | | | Intersection Capacity Utiliz | ation | | 74.0% | 10 | :U Level c | of Convice | | | allUII | | | IC | o Level C | ii Service | | Analysis Period (min) | | | 15 | | | | | | - | • | • | • | 1 | ~ | | | |------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | \$ | | | 4 | W | | | | | Traffic Volume (vph) | 442 | 133 | 0 | 470 | 245 | 0 | | | | Future Volume (vph) | 442 | 133 | 0 | 470 | 245 | 0 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.97 | | | 1.00 | 1.00 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1804 | | | 1863 | 1770 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1804 | | | 1863 | 1770 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 480 | 145 | 0 | 511 | 266 | 0 | | | | RTOR Reduction (vph) | 9 | 0 | 0 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 616 | 0 | 0 | 511 | 266 | 0 | | | | Turn Type | NA | | | NA | Prot | | | | | Protected Phases | 2 | | | 2 | 4 | | | | | Permitted Phases | | | 2 | | | | | | | Actuated Green, G (s) | 43.7 | | | 43.7 | 16.2 | | | | | Effective Green, g (s) | 43.7 | | | 43.7 | 16.2 | | | | | Actuated g/C Ratio | 0.62 | | | 0.62 | 0.23 | | | | | Clearance Time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 1126 | | | 1163 | 409 | | | | | v/s Ratio Prot | c0.34 | | | 0.27 | c0.15 | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | 0.55 | | | 0.44 | 0.65 | | | | | Uniform Delay, d1 | 7.5 | | | 6.8 | 24.3 | | | | | Progression Factor | 1.00 | | | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 1.9 | | | 1.2 | 3.7 | | | | | Delay (s) | 9.4 | | | 8.0 | 28.0 | | | | | Level of Service | А | | | Α | С | | | | | Approach Delay (s) | 9.4 | | | 8.0 | 28.0 | | | | | Approach LOS | А | | | Α | С | | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 12.4 | Н | CM 2000 | Level of Service | В | | | HCM 2000 Volume to Cap | acity ratio | | 0.57 | | | | | | | Actuated Cycle Length (s) | | | 70.0 | S | um of lost | time (s) | 10.1 | | | Intersection Capacity Utiliz | ation | | 53.3% | | CU Level c | | Α | | | Analysis Period (min) | | | 15 | | | | | | Analysis Period (min) c Critical Lane Group | | > | → | 74 | ~ | • | *_ | \ | \mathbf{x} | 4 | • | * | 4 | |-------------------------------|-------------|----------|-------|-------|------------|------------|----------|--------------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR | | Lane Configurations | ሻ | ĵ» | | | 4 | | ሻ | ĵ» | | | 4 | | | Traffic Volume (vph) | 47 | 102 | 8 | 32 | 132 | 257 | 164 | 62 | 55 | 0 | 85 | 85 | | Future Volume (vph) | 47 | 102 | 8 | 32 | 132 | 257 | 164 | 62 | 55 | 0 | 85 | 85 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 5.0 | | | 3.0 | | 5.0 | 5.0 | | | 5.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | 1.00 | 0.99 | | | 0.92 | | 1.00 | 0.93 | | | 0.93 | | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1770 | 1842 | | | 1703 | | 1770 | 1731 | | | 1737 | | | Flt Permitted | 0.50 | 1.00 | | | 0.99 | | 0.64 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 931 | 1842 | | | 1686 | | 1195 | 1731 | | | 1737 | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 51 | 111 | 9 | 35 | 143 | 279 | 178 | 67 | 60 | 0 | 92 | 92 | | RTOR Reduction (vph) | 0 | 4 | 0 | 0 | 87 | 0 | 0 | 45 | 0 | 0 | 54 | 0 | | Lane Group Flow (vph) | 51 | 116 | 0 | 0 | 370 | 0 | 178 | 82 | 0 | 0 | 130 | 0 | | Turn Type | Perm | NA | | D.P+P | NA | | Perm | NA | | | NA | | | Protected Phases | | 2 | | 1 | 12 | | | 4 | | | 4 | | | Permitted Phases | 2 | | | 2 | | | 4 | | | 4 | | | | Actuated Green, G (s) | 20.2 | 20.2 | | | 30.0 | | 14.6 | 14.6 | | | 14.6 | | |
Effective Green, g (s) | 20.2 | 20.2 | | | 30.0 | | 14.6 | 14.6 | | | 14.6 | | | Actuated g/C Ratio | 0.35 | 0.35 | | | 0.52 | | 0.25 | 0.25 | | | 0.25 | | | Clearance Time (s) | 5.0 | 5.0 | | | | | 5.0 | 5.0 | | | 5.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 326 | 645 | | | 881 | | 302 | 438 | | | 440 | | | v/s Ratio Prot | | 0.06 | | | c0.07 | | | 0.05 | | | 0.07 | | | v/s Ratio Perm | 0.05 | | | | c0.15 | | c0.15 | | | | | | | v/c Ratio | 0.16 | 0.18 | | | 0.42 | | 0.59 | 0.19 | | | 0.30 | | | Uniform Delay, d1 | 12.8 | 13.0 | | | 8.5 | | 18.9 | 16.9 | | | 17.4 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 0.2 | 0.1 | | | 0.3 | | 2.9 | 0.2 | | | 0.4 | | | Delay (s) | 13.1 | 13.1 | | | 8.8 | | 21.8 | 17.1 | | | 17.7 | | | Level of Service | В | В | | | Α | | С | В | | | В | | | Approach Delay (s) | | 13.1 | | | 8.8 | | | 19.8 | | | 17.7 | | | Approach LOS | | В | | | А | | | В | | | В | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 13.9 | Н | CM 2000 | Level of : | Service | | В | | | | | HCM 2000 Volume to Capa | acity ratio | | 0.47 | | | | | | | | | | | Actuated Cycle Length (s) | | | 57.6 | S | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utiliza | ation | | 61.6% | | CU Level | | : | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | - | • | • | ← | • | / | |-------------------------------|-------------|------|-------|----------|-----------|-----------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | ∱ 1> | | * | | ** | | | Traffic Volume (veh/h) | 434 | 7 | 624 | 413 | 0 | 287 | | Future Volume (Veh/h) | 434 | 7 | 624 | 413 | 0 | 287 | | Sign Control | Free | | | Free | Stop | | | Grade | 0% | | | 0% | 0% | | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly flow rate (vph) | 472 | 8 | 678 | 449 | 0 | 312 | | Pedestrians | | | | | | | | Lane Width (ft) | | | | | | | | Walking Speed (ft/s) | | | | | | | | Percent Blockage | | | | | | | | Right turn flare (veh) | | | | | | | | Median type | None | | | None | | | | Median storage veh) | | | | | | | | Upstream signal (ft) | 867 | | | | | | | pX, platoon unblocked | | | | | | | | vC, conflicting volume | | | 480 | | 2281 | 240 | | vC1, stage 1 conf vol | | | | | | | | vC2, stage 2 conf vol | | | | | | | | vCu, unblocked vol | | | 480 | | 2281 | 240 | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | tC, 2 stage (s) | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | p0 queue free % | | | 37 | | 100 | 59 | | cM capacity (veh/h) | | | 1079 | | 12 | 761 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | | | Volume Total | 315 | 165 | 678 | 449 | 312 | | | Volume Left | 0 | 0 | 678 | 0 | 0 | | | Volume Right | 0 | 8 | 0 | 0 | 312 | | | cSH | 1700 | 1700 | 1079 | 1700 | 761 | | | Volume to Capacity | 0.19 | 0.10 | 0.63 | 0.26 | 0.41 | | | Queue Length 95th (ft) | 0.17 | 0.10 | 116 | 0.20 | 50 | | | Control Delay (s) | 0.0 | 0.0 | 13.8 | 0.0 | 13.0 | | | Lane LOS | 0.0 | 0.0 | В | 0.0 | 13.0
B | | | Approach Delay (s) | 0.0 | | 8.3 | | 13.0 | | | Approach LOS | 0.0 | | 0.5 | | 13.0
B | | | | | | | | Б | | | Intersection Summary | | | | | | | | Average Delay | | | 7.0 | | | | | Intersection Capacity Utiliza | tion | | 74.6% | IC | U Level o | f Service | | Analysis Period (min) | | | 15 | | | | | | - | • | • | • | 4 | / | | | |-------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | 1 > | 2511 | | 4 | ¥ | 11211 | | | | Traffic Volume (vph) | 448 | 224 | 0 | 571 | 62 | 0 | | | | Future Volume (vph) | 448 | 224 | 0 | 571 | 62 | 0 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.96 | | | 1.00 | 1.00 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1779 | | | 1863 | 1770 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1779 | | | 1863 | 1770 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 487 | 243 | 0 | 621 | 67 | 0 | | | | RTOR Reduction (vph) | 6 | 0 | 0 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 724 | 0 | 0 | 621 | 67 | 0 | | | | Turn Type | NA | | | NA | Prot | | | | | Protected Phases | 2 | | | 2 | 4 | | | | | Permitted Phases | | | 2 | | | | | | | Actuated Green, G (s) | 72.2 | | | 72.2 | 7.7 | | | | | Effective Green, g (s) | 72.2 | | | 72.2 | 7.7 | | | | | Actuated g/C Ratio | 0.80 | | | 0.80 | 0.09 | | | | | Clearance Time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 1427 | | | 1494 | 151 | | | | | v/s Ratio Prot | c0.41 | | | 0.33 | c0.04 | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | 0.51 | | | 0.42 | 0.44 | | | | | Uniform Delay, d1 | 3.0 | | | 2.6 | 39.1 | | | | | Progression Factor | 1.00 | | | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 1.3 | | | 0.9 | 2.1 | | | | | Delay (s) | 4.3 | | | 3.5 | 41.2 | | | | | Level of Service | А | | | Α | D | | | | | Approach Delay (s) | 4.3 | | | 3.5 | 41.2 | | | | | Approach LOS | А | | | А | D | | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 5.7 | H | CM 2000 | Level of Service | А | | | HCM 2000 Volume to Capa | acity ratio | | 0.50 | | | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | 10.1 | | | Intersection Capacity Utiliza | ation | | 51.5% | IC | U Level o | f Service | Α | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | > | → | 74 | ~ | • | *_ | \ | \mathbf{x} | 4 | • | × | 4 | |-------------------------------|-------------|----------|-------|-------|------------|------------|----------|--------------|------|------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR | | Lane Configurations | ሻ | 1 | | | 4 | | ሻ | ₽ | | | 4 | | | Traffic Volume (vph) | 272 | 264 | 17 | 77 | 221 | 204 | 179 | 85 | 111 | 0 | 128 | 34 | | Future Volume (vph) | 272 | 264 | 17 | 77 | 221 | 204 | 179 | 85 | 111 | 0 | 128 | 34 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 5.0 | | | 3.0 | | 5.0 | 5.0 | | | 5.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | 1.00 | 0.99 | | | 0.95 | | 1.00 | 0.91 | | | 0.97 | | | Flt Protected | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1770 | 1846 | | | 1747 | | 1770 | 1704 | | | 1810 | | | Flt Permitted | 0.46 | 1.00 | | | 0.92 | | 0.63 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 857 | 1846 | | | 1623 | | 1177 | 1704 | | | 1810 | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 296 | 287 | 18 | 84 | 240 | 222 | 195 | 92 | 121 | 0 | 139 | 37 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 35 | 0 | 0 | 72 | 0 | 0 | 14 | 0 | | Lane Group Flow (vph) | 296 | 302 | 0 | 0 | 511 | 0 | 195 | 141 | 0 | 0 | 162 | 0 | | Turn Type | Perm | NA | | D.P+P | NA | | Perm | NA | | | NA | | | Protected Phases | | 2 | | 1 | 12 | | | 4 | | | 4 | | | Permitted Phases | 2 | | | 2 | | | 4 | | | 4 | | | | Actuated Green, G (s) | 25.1 | 25.1 | | | 36.3 | | 15.7 | 15.7 | | | 15.7 | | | Effective Green, g (s) | 25.1 | 25.1 | | | 36.3 | | 15.7 | 15.7 | | | 15.7 | | | Actuated g/C Ratio | 0.39 | 0.39 | | | 0.56 | | 0.24 | 0.24 | | | 0.24 | | | Clearance Time (s) | 5.0 | 5.0 | | | | | 5.0 | 5.0 | | | 5.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 330 | 712 | | | 927 | | 284 | 411 | | | 437 | | | v/s Ratio Prot | | 0.16 | | | c0.09 | | | 0.08 | | | 0.09 | | | v/s Ratio Perm | c0.35 | | | | 0.21 | | c0.17 | | | | | | | v/c Ratio | 0.90 | 0.42 | | | 0.55 | | 0.69 | 0.34 | | | 0.37 | | | Uniform Delay, d1 | 18.7 | 14.6 | | | 9.2 | | 22.4 | 20.4 | | | 20.5 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 25.3 | 0.4 | | | 0.7 | | 6.7 | 0.5 | | | 0.5 | | | Delay (s) | 44.0 | 15.1 | | | 9.9 | | 29.1 | 20.9 | | | 21.1 | | | Level of Service | D | В | | | Α | | С | С | | | С | | | Approach Delay (s) | | 29.3 | | | 9.9 | | | 24.8 | | | 21.1 | | | Approach LOS | | С | | | А | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 21.3 | Н | CM 2000 | Level of S | Service | | С | | | | | HCM 2000 Volume to Capa | city ratio | | 0.76 | | | | | | | | | | | Actuated Cycle Length (s) | | | 65.0 | S | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utiliza | ation | | 80.9% | IC | CU Level o | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | - | \rightarrow | • | • | • | / | |------------------------------|------------|---------------|-----------|----------|-----------|------------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | † } | | ሻ | ^ | W | | | Traffic Volume (veh/h) | 394 | 27 | 625 | 463 | 0 | 259 | | Future Volume (Veh/h) | 394 | 27 | 625 | 463 | 0 | 259 | | Sign Control | Free | | 020 | Free | Stop | 207 | | Grade | 0% | | | 0% | 0% | | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly flow rate (vph) | 428 | 29 | 679 | 503 | 0.72 | 282 | | Pedestrians | 420 | 29 | 0/9 | 303 | U | 202 | | | | | | | | | | Lane Width (ft) | | | | | | | | Walking Speed (ft/s) | | | | | | | | Percent Blockage | | | | | | | | Right turn flare (veh) | N. | | | N.1 | | | | Median type | None | | | None | | | | Median
storage veh) | | | | | | | | Upstream signal (ft) | 867 | | | | | | | pX, platoon unblocked | | | | | | | | vC, conflicting volume | | | 457 | | 2304 | 228 | | vC1, stage 1 conf vol | | | | | | | | vC2, stage 2 conf vol | | | | | | | | vCu, unblocked vol | | | 457 | | 2304 | 228 | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | tC, 2 stage (s) | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | p0 queue free % | | | 38 | | 100 | 64 | | cM capacity (veh/h) | | | 1100 | | 12 | 774 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | | | Volume Total | 285 | 172 | 679 | 503 | 282 | | | Volume Left | 0 | 0 | 679 | 0 | 0 | | | Volume Right | 0 | 29 | 0 | 0 | 282 | | | cSH | 1700 | 1700 | 1100 | 1700 | 774 | | | Volume to Capacity | 0.17 | 0.10 | 0.62 | 0.30 | 0.36 | | | Queue Length 95th (ft) | 0.17 | 0.10 | 111 | 0.30 | 42 | | | Control Delay (s) | 0.0 | 0.0 | 13.4 | 0.0 | 12.3 | | | Lane LOS | 0.0 | 0.0 | 13.4
B | 0.0 | 12.3
B | | | | 0.0 | | | | | | | Approach LOS | 0.0 | | 7.7 | | 12.3 | | | Approach LOS | | | | | В | | | Intersection Summary | | | | | | | | Average Delay | | | 6.5 | | | | | Intersection Capacity Utiliz | ation | | 72.4% | IC | U Level c | of Service | | Analysis Period (min) | | | 15 | | | | | | - | • | • | ← | 1 | <i>></i> | | | |-----------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | 4 | | | 4 | *y* | | | | | Traffic Volume (vph) | 402 | 170 | 0 | 425 | 345 | 17 | | | | Future Volume (vph) | 402 | 170 | 0 | 425 | 345 | 17 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.96 | | | 1.00 | 0.99 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1788 | | | 1863 | 1767 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1788 | | | 1863 | 1767 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 437 | 185 | 0 | 462 | 375 | 18 | | | | RTOR Reduction (vph) | 11 | 0 | 0 | 0 | 3 | 0 | | | | Lane Group Flow (vph) | 611 | 0 | 0 | 462 | 390 | 0 | | | | Turn Type | NA | | | NA | Prot | | | | | Protected Phases | 2 | | | 2 | 4 | | | | | Permitted Phases | | | 2 | | | | | | | Actuated Green, G (s) | 53.5 | | | 53.5 | 26.4 | | | | | Effective Green, g (s) | 53.5 | | | 53.5 | 26.4 | | | | | Actuated g/C Ratio | 0.59 | | | 0.59 | 0.29 | | | | | Clearance Time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 1062 | | | 1107 | 518 | | | | | v/s Ratio Prot | c0.34 | | | 0.25 | c0.22 | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | 0.58 | | | 0.42 | 0.75 | | | | | Uniform Delay, d1 | 11.2 | | | 9.8 | 28.8 | | | | | Progression Factor | 1.00 | | | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 2.3 | | | 1.2 | 6.1 | | | | | Delay (s) | 13.5 | | | 11.0 | 35.0 | | | | | Level of Service | В | | | В | С | | | | | Approach Delay (s) | 13.5 | | | 11.0 | 35.0 | | | | | Approach LOS | В | | | В | С | | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 18.4 | H | CM 2000 | Level of Service | В | | | HCM 2000 Volume to Capa | acity ratio | | 0.63 | | | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | 10.1 | | | Intersection Capacity Utilization | ation | | 60.1% | IC | CU Level c | of Service | В | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | > | → | 74 | ~ | ← | *_ | \ | \mathbf{x} | 4 | ~ | × | 4 | |-------------------------------|-------------|----------|-------|-------|-------------|------------|----------|--------------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR | | Lane Configurations | ሻ | 1> | | | 4 | | ሻ | 1> | | | 4 | | | Traffic Volume (vph) | 117 | 185 | 0 | 68 | 301 | 185 | 156 | 38 | 166 | 19 | 214 | 38 | | Future Volume (vph) | 117 | 185 | 0 | 68 | 301 | 185 | 156 | 38 | 166 | 19 | 214 | 38 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 5.0 | | | 3.0 | | 5.0 | 5.0 | | | 5.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.95 | | 1.00 | 0.88 | | | 0.98 | | | Flt Protected | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1770 | 1863 | | | 1768 | | 1770 | 1635 | | | 1821 | | | Flt Permitted | 0.44 | 1.00 | | | 0.95 | | 0.45 | 1.00 | | | 0.97 | | | Satd. Flow (perm) | 814 | 1863 | | | 1697 | | 846 | 1635 | | | 1767 | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 127 | 201 | 0 | 74 | 327 | 201 | 170 | 41 | 180 | 21 | 233 | 41 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 132 | 0 | 0 | 9 | 0 | | Lane Group Flow (vph) | 127 | 201 | 0 | 0 | 575 | 0 | 170 | 89 | 0 | 0 | 286 | 0 | | Turn Type | Perm | NA | | D.P+P | NA | | Perm | NA | | Perm | NA | | | Protected Phases | | 2 | | 1 | 12 | | | 4 | | | 4 | | | Permitted Phases | 2 | | | 2 | | | 4 | | | 4 | | | | Actuated Green, G (s) | 21.8 | 21.8 | | | 33.4 | | 16.9 | 16.9 | | | 16.9 | | | Effective Green, g (s) | 21.8 | 21.8 | | | 33.4 | | 16.9 | 16.9 | | | 16.9 | | | Actuated g/C Ratio | 0.34 | 0.34 | | | 0.53 | | 0.27 | 0.27 | | | 0.27 | | | Clearance Time (s) | 5.0 | 5.0 | | | | | 5.0 | 5.0 | | | 5.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 280 | 641 | | | 908 | | 225 | 436 | | | 471 | | | v/s Ratio Prot | | 0.11 | | | c0.12 | | | 0.05 | | | | | | v/s Ratio Perm | 0.16 | | | | c0.22 | | c0.20 | | | | 0.16 | | | v/c Ratio | 0.45 | 0.31 | | | 0.63 | | 0.76 | 0.20 | | | 0.61 | | | Uniform Delay, d1 | 16.1 | 15.3 | | | 10.6 | | 21.3 | 18.0 | | | 20.3 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 1.2 | 0.3 | | | 1.4 | | 13.4 | 0.2 | | | 2.2 | | | Delay (s) | 17.3 | 15.5 | | | 12.1 | | 34.7 | 18.2 | | | 22.5 | | | Level of Service | В | В | | | В | | С | В | | | С | | | Approach Delay (s) | | 16.2 | | | 12.1 | | | 25.4 | | | 22.5 | | | Approach LOS | | В | | | В | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM 2000 Control Delay | | | 18.0 | Н | CM 2000 | Level of S | Service | | В | | | | | HCM 2000 Volume to Capa | icity ratio | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 63.3 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utiliza | ation | | 90.2% | IC | CU Level of | of Service | : | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | Analysis Period (min) c Critical Lane Group | | - | • | • | • | • | / | |------------------------------|----------|------|-------|----------|------------|------------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | † | | ሻ | <u> </u> | ¥ | .,,,,,,, | | Traffic Volume (veh/h) | 328 | 0 | 295 | 476 | 0 | 634 | | Future Volume (Veh/h) | 328 | 0 | 295 | 476 | 0 | 634 | | Sign Control | Free | | | Free | Stop | | | Grade | 0% | | | 0% | 0% | | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly flow rate (vph) | 357 | 0 | 321 | 517 | 0 | 689 | | Pedestrians | | | | | | | | Lane Width (ft) | | | | | | | | Walking Speed (ft/s) | | | | | | | | Percent Blockage | | | | | | | | Right turn flare (veh) | | | | | | | | Median type | None | | | None | | | | Median storage veh) | | | | | | | | Upstream signal (ft) | 867 | | | | | | | pX, platoon unblocked | | | | | | | | vC, conflicting volume | | | 357 | | 1516 | 178 | | vC1, stage 1 conf vol | | | | | | | | vC2, stage 2 conf vol | | | | | | | | vCu, unblocked vol | | | 357 | | 1516 | 178 | | tC, single (s) | | | 4.1 | | 6.8 | 6.9 | | tC, 2 stage (s) | | | | | | | | tF (s) | | | 2.2 | | 3.5 | 3.3 | | p0 queue free % | | | 73 | | 100 | 17 | | cM capacity (veh/h) | | | 1198 | | 81 | 834 | | Direction, Lane # | EB 1 | EB 2 | WB 1 | WB 2 | NB 1 | | | Volume Total | 238 | 119 | 321 | 517 | 689 | | | Volume Left | 0 | 0 | 321 | 0 | 007 | | | Volume Right | 0 | 0 | 0 | 0 | 689 | | | cSH | 1700 | 1700 | 1198 | 1700 | 834 | | | Volume to Capacity | 0.14 | 0.07 | 0.27 | 0.30 | 0.83 | | | Queue Length 95th (ft) | 0.11 | 0.07 | 27 | 0.00 | 235 | | | Control Delay (s) | 0.0 | 0.0 | 9.1 | 0.0 | 26.2 | | | Lane LOS | 0.0 | 3.0 | A | 0.0 | D | | | Approach Delay (s) | 0.0 | | 3.5 | | 26.2 | | | Approach LOS | 0.0 | | 3.5 | | D | | | Intersection Summary | | | | | | | | Average Delay | | | 11.1 | | | | | Intersection Capacity Utiliz | ration | | 74.7% | 10 | :U Level c | of Convice | | | .auun | | 14.7% | 10 | O Level C | ii Jeivile | | Analysis Period (min) | | | IJ | | | | | | - | • | • | • | 4 | / | | | |-------------------------------|-------------|------|-------|------|------------|------------------|------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | | Lane Configurations | \$ | | | 4 | W | | | | | Traffic Volume (vph) | 446 | 134 | 0 | 475 | 247 | 0 | | | | Future Volume (vph) | 446 | 134 | 0 | 475 | 247 | 0 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | | | 6.1 | 4.0 | | | | | Lane Util. Factor | 1.00 | | | 1.00 | 1.00 | | | | | Frt | 0.97 | | | 1.00 | 1.00 | | | | | Flt Protected | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (prot) | 1805 | | | 1863 | 1770 | | | | | Flt Permitted | 1.00 | | | 1.00 | 0.95 | | | | | Satd. Flow (perm) | 1805 | | | 1863 | 1770 | | | | | Peak-hour factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Adj. Flow (vph) | 485 | 146 | 0 | 516 | 268 | 0 | | | | RTOR Reduction (vph) | 9 | 0 | 0 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 622 | 0 | 0 | 516 | 268 | 0 |
	Turn Type	NA			NA	Prot					Protected Phases	2			2	4					Permitted Phases			2							Actuated Green, G (s)	43.6			43.6	16.3					Effective Green, g (s)	43.6			43.6	16.3					Actuated g/C Ratio	0.62			0.62	0.23					Clearance Time (s)	6.1			6.1	4.0					Vehicle Extension (s)	3.0			3.0	3.0					Lane Grp Cap (vph)	1124			1160	412					v/s Ratio Prot	c0.34			0.28	c0.15					v/s Ratio Perm										v/c Ratio	0.55			0.44	0.65					Uniform Delay, d1	7.6			6.9	24.3					Progression Factor	1.00			1.00	1.00					Incremental Delay, d2	2.0			1.2	3.7					Delay (s)	9.6			8.1	27.9					Level of Service	А			Α	С					Approach Delay (s)	9.6			8.1	27.9					Approach LOS	А			А	С					Intersection Summary										HCM 2000 Control Delay			12.5	H	CM 2000	Level of Service	В			HCM 2000 Volume to Capa	acity ratio		0.58							Actuated Cycle Length (s)			70.0		um of lost		10.1			Intersection Capacity Utiliza	ation		53.7%	IC	CU Level c	of Service	Α			Analysis Period (min)			15						c Critical Lane Group		*	→	74	~	•	*_	\	\mathbf{x}	4	•	×	4		-------------------------------	------------	----------	-------	-------	------------	------------	----------	--------------	------	------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR		Lane Configurations	ሻ	ĵ»			4		ሻ	₽			4			Traffic Volume (vph)	47	103	8	32	133	260	166	63	56	0	86	86		Future Volume (vph)	47	103	8	32	133	260	166	63	56	0	86	86		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	5.0	5.0			3.0		5.0	5.0			5.0			Lane Util. Factor	1.00	1.00			1.00		1.00	1.00			1.00			Frt	1.00	0.99			0.92		1.00	0.93			0.93			Flt Protected	0.95	1.00			1.00		0.95	1.00			1.00			Satd. Flow (prot)	1770	1842			1703		1770	1731			1737			Flt Permitted	0.50	1.00			0.99		0.64	1.00			1.00			Satd. Flow (perm)	925	1842			1686		1193	1731			1737			Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Adj. Flow (vph)	51	112	9	35	145	283	180	68	61	0	93	93		RTOR Reduction (vph)	0	4	0	0	88	0	0	45	0	0	54	0		Lane Group Flow (vph)	51	117	0	0	375	0	180	84	0	0	132	0		Turn Type	Perm	NA		D.P+P	NA		Perm	NA			NA			Protected Phases		2		1	12			4			4			Permitted Phases	2			2			4			4				Actuated Green, G (s)	20.2	20.2			30.1		14.9	14.9			14.9			Effective Green, g (s)	20.2	20.2			30.1		14.9	14.9			14.9			Actuated g/C Ratio	0.35	0.35			0.52		0.26	0.26			0.26			Clearance Time (s)	5.0	5.0					5.0	5.0			5.0			Vehicle Extension (s)	3.0	3.0					3.0	3.0			3.0			Lane Grp Cap (vph)	322	641			877		306	444			446			v/s Ratio Prot		0.06			c0.07			0.05			0.08			v/s Ratio Perm	0.06				c0.15		c0.15							v/c Ratio	0.16	0.18			0.43		0.59	0.19			0.30			Uniform Delay, d1	13.0	13.2			8.6		18.9	16.8			17.3			Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00			Incremental Delay, d2	0.2	0.1			0.3		2.9	0.2			0.4			Delay (s)	13.3	13.3			9.0		21.7	17.0			17.7			Level of Service	В	В			Α		С	В			В			Approach Delay (s)		13.3			9.0			19.8			17.7			Approach LOS		В			А			В			В			Intersection Summary														HCM 2000 Control Delay			14.0	Н	CM 2000	Level of S	Service		В					HCM 2000 Volume to Capa	city ratio		0.48											Actuated Cycle Length (s)			58.0	S	um of lost	time (s)			13.0					Intersection Capacity Utiliza	ation		62.0%	IC	CU Level o	of Service			В					Analysis Period (min)			15										c Critical Lane Group		-	\rightarrow	•	•	•	/		------------------------------	----------	---------------	-------	----------	-------------	-----------		Movement	EBT	EBR	WBL	WBT	NBL	NBR		Lane Configurations	†		ሻ	<u> </u>	W			Traffic Volume (veh/h)	438	7	630	417	0	290		Future Volume (Veh/h)	438	7	630	417	0	290		Sign Control	Free	•	000	Free	Stop	2.0		Grade	0%			0%	0%			Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		Hourly flow rate (vph)	476	8	685	453	0.72	315		Pedestrians	170		000	100		010		Lane Width (ft)								Walking Speed (ft/s)								Percent Blockage								Right turn flare (veh)								Median type	None			None				Median storage veh)	NULLE			NULLE				Upstream signal (ft)	867							pX, platoon unblocked	007							vC, conflicting volume			484		2303	242		vC1, stage 1 conf vol			404		2303	242										vC2, stage 2 conf vol			484		าวกา	242		vCu, unblocked vol					2303	242		tC, single (s)			4.1		6.8	6.9		tC, 2 stage (s)			2.2		2.5	2.2		tF (s)			2.2		3.5	3.3		p0 queue free %			36		100	58		cM capacity (veh/h)			1075		12	759		Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1			Volume Total	317	167	685	453	315			Volume Left	0	0	685	0	0			Volume Right	0	8	0	0	315			cSH	1700	1700	1075	1700	759			Volume to Capacity	0.19	0.10	0.64	0.27	0.42			Queue Length 95th (ft)	0	0	120	0	51			Control Delay (s)	0.0	0.0	14.0	0.0	13.1			Lane LOS			В		В			Approach Delay (s)	0.0		8.4		13.1			Approach LOS					В			Intersection Summary								Average Delay			7.1					Intersection Capacity Utiliz	ation		75.2%	IC	:U Level c	f Service			4.1011			10	. J LOVOI C	3011100		Analysis Period (min)			15						-	•	•	←	1	<i>></i>				-----------------------------------	-------------	------	-------	------	------------	------------------	------	--		Movement	EBT	EBR	WBL	WBT	NBL	NBR				Lane Configurations	1>			4	W					Traffic Volume (vph)	448	224	0	571	63	0				Future Volume (vph)	448	224	0	571	63	0				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)	6.1			6.1	4.0					Lane Util. Factor	1.00			1.00	1.00					Frt	0.96			1.00	1.00					Flt Protected	1.00			1.00	0.95					Satd. Flow (prot)	1779			1863	1770					Flt Permitted	1.00			1.00	0.95					Satd. Flow (perm)	1779			1863	1770					Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92				Adj. Flow (vph)	487	243	0	621	68	0				RTOR Reduction (vph)	6	0	0	0	0	0				Lane Group Flow (vph)	724	0	0	621	68	0				Turn Type	NA			NA	Prot					Protected Phases	2			2	4					Permitted Phases	_		2	_						Actuated Green, G (s)	72.1			72.1	7.8					Effective Green, g (s)	72.1			72.1	7.8					Actuated g/C Ratio	0.80			0.80	0.09					Clearance Time (s)	6.1			6.1	4.0					Vehicle Extension (s)	3.0			3.0	3.0					Lane Grp Cap (vph)	1425			1492	153					v/s Ratio Prot	c0.41			0.33	c0.04					v/s Ratio Perm										v/c Ratio	0.51			0.42	0.44					Uniform Delay, d1	3.0			2.7	39.0					Progression Factor	1.00			1.00	1.00					Incremental Delay, d2	1.3			0.9	2.1					Delay (s)	4.3			3.5	41.1					Level of Service	А			Α	D					Approach Delay (s)	4.3			3.5	41.1					Approach LOS	А			А	D					Intersection Summary										HCM 2000 Control Delay			5.7	H	CM 2000	Level of Service	А			HCM 2000 Volume to Capa	acity ratio		0.50							Actuated Cycle Length (s)	·		90.0	Sı	um of lost	time (s)	10.1			Intersection Capacity Utilization	ation		51.5%	IC	CU Level c	of Service	Α			Analysis Period (min)			15						c Critical Lane Group		>	→	74	~	•	*_	\	\mathbf{x}	4	•	×	4		-------------------------------	-------------	----------	-------	-------	------------	------------	----------	--------------	------	------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR		Lane Configurations	ሻ	1			4		ሻ	₽			4			Traffic Volume (vph)	272	264	17	77	221	204	179	85	111	0	128	34		Future Volume (vph)	272	264	17	77	221	204	179	85	111	0	128	34		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	5.0	5.0			3.0		5.0	5.0			5.0			Lane Util. Factor	1.00	1.00			1.00		1.00	1.00			1.00			Frt	1.00	0.99			0.95		1.00	0.91			0.97			Flt Protected	0.95	1.00																																
0.99		0.95	1.00			1.00			Satd. Flow (prot)	1770	1846			1747		1770	1704			1810			Flt Permitted	0.46	1.00			0.92		0.63	1.00			1.00			Satd. Flow (perm)	857	1846			1623		1177	1704			1810			Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Adj. Flow (vph)	296	287	18	84	240	222	195	92	121	0	139	37		RTOR Reduction (vph)	0	3	0	0	35	0	0	72	0	0	14	0		Lane Group Flow (vph)	296	302	0	0	511	0	195	141	0	0	162	0		Turn Type	Perm	NA		D.P+P	NA		Perm	NA			NA			Protected Phases		2		1	12			4			4			Permitted Phases	2			2			4			4				Actuated Green, G (s)	25.1	25.1			36.3		15.7	15.7			15.7			Effective Green, g (s)	25.1	25.1			36.3		15.7	15.7			15.7			Actuated g/C Ratio	0.39	0.39			0.56		0.24	0.24			0.24			Clearance Time (s)	5.0	5.0					5.0	5.0			5.0			Vehicle Extension (s)	3.0	3.0					3.0	3.0			3.0			Lane Grp Cap (vph)	330	712			927		284	411			437			v/s Ratio Prot		0.16			c0.09			0.08			0.09			v/s Ratio Perm	c0.35				0.21		c0.17							v/c Ratio	0.90	0.42			0.55		0.69	0.34			0.37			Uniform Delay, d1	18.7	14.6			9.2		22.4	20.4			20.5			Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00			Incremental Delay, d2	25.3	0.4			0.7		6.7	0.5			0.5			Delay (s)	44.0	15.1			9.9		29.1	20.9			21.1			Level of Service	D	В			Α		С	С			С			Approach Delay (s)		29.3			9.9			24.8			21.1			Approach LOS		С			А			С			С			Intersection Summary														HCM 2000 Control Delay			21.3	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capa	city ratio		0.76											Actuated Cycle Length (s)			65.0	S	um of lost	time (s)			13.0					Intersection Capacity Utiliza	ation		80.9%	IC	CU Level o	of Service			D					Analysis Period (min)			15										c Critical Lane Group		-	\rightarrow	•	←	^	/		--	------------	---------------	-------	----------	------------	------------		Movement	EBT	EBR	WBL	WBT	NBL	NBR		Lane Configurations	† }		ሻ	<u> </u>	N/			Traffic Volume (veh/h)	394	27	627	463	0	262		Future Volume (Veh/h)	394	27	627	463	0	262		Sign Control	Free		02.	Free	Stop			Grade	0%			0%	0%			Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		Hourly flow rate (vph)	428	29	682	503	0.72	285		Pedestrians	120		002	000		200		Lane Width (ft)								Walking Speed (ft/s)								Percent Blockage								Right turn flare (veh)								Median type	None			None				Median storage veh)	NULLE			NOHE				Upstream signal (ft)	867							pX, platoon unblocked	007										457		2310	228		vC, conflicting volume vC1, stage 1 conf vol			407		2310	220										vC2, stage 2 conf vol			457		2210	228		vCu, unblocked vol					2310			tC, single (s)			4.1		6.8	6.9		tC, 2 stage (s)			2.2		2.5	2.2		tF (s)			2.2		3.5	3.3		p0 queue free %			38		100	63		cM capacity (veh/h)			1100		12	774		Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1			Volume Total	285	172	682	503	285			Volume Left	0	0	682	0	0			Volume Right	0	29	0	0	285			cSH	1700	1700	1100	1700	774			Volume to Capacity	0.17	0.10	0.62	0.30	0.37			Queue Length 95th (ft)	0	0	113	0	43			Control Delay (s)	0.0	0.0	13.5	0.0	12.3			Lane LOS			В		В			Approach Delay (s)	0.0		7.7		12.3			Approach LOS					В			Intersection Summary								Average Delay			6.6					Intersection Capacity Utiliz	ation		72.7%	IC	CU Level o	of Service		Analysis Period (min)	.utiOH		15	10	O LOVEI C	n Joi vice		Analysis Penou (IIIII)			10						-	•	•	•	1	/				-------------------------------	-------------	------	-------	------	------------	------------------	------	--		Movement	EBT	EBR	WBL	WBT	NBL	NBR				Lane Configurations	4			4	*y*					Traffic Volume (vph)	402	171	0	425	345	17				Future Volume (vph)	402	171	0	425	345	17				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)	6.1			6.1	4.0					Lane Util. Factor	1.00			1.00	1.00					Frt	0.96			1.00	0.99					Flt Protected	1.00			1.00	0.95					Satd. Flow (prot)	1788			1863	1767					Flt Permitted	1.00			1.00	0.95					Satd. Flow (perm)	1788			1863	1767					Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92				Adj. Flow (vph)	437	186	0	462	375	18				RTOR Reduction (vph)	11	0	0	0	3	0				Lane Group Flow (vph)	612	0	0	462	390	0				Turn Type	NA			NA	Prot					Protected Phases	2			2	4					Permitted Phases			2							Actuated Green, G (s)	53.5			53.5	26.4					Effective Green, g (s)	53.5			53.5	26.4					Actuated g/C Ratio	0.59			0.59	0.29					Clearance Time (s)	6.1			6.1	4.0					Vehicle Extension (s)	3.0			3.0	3.0					Lane Grp Cap (vph)	1062			1107	518					v/s Ratio Prot	c0.34			0.25	c0.22					v/s Ratio Perm										v/c Ratio	0.58			0.42	0.75					Uniform Delay, d1	11.3			9.8	28.8					Progression Factor	1.00			1.00	1.00					Incremental Delay, d2	2.3			1.2	6.1					Delay (s)	13.5			11.0	35.0					Level of Service	В			В	С					Approach Delay (s)	13.5			11.0	35.0					Approach LOS	В			В	С					Intersection Summary										HCM 2000 Control Delay			18.4	H	CM 2000	Level of Service	В			HCM 2000 Volume to Capa	acity ratio		0.63							Actuated Cycle Length (s)			90.0		um of lost		10.1			Intersection Capacity Utiliza	ation		60.1%	IC	CU Level c	of Service	В			Analysis Period (min)			15						c Critical Lane Group		>	→	74	~	←	*_	\	\mathbf{x}	4	•	×	4		-------------------------------	-------------	----------	-------	-------	------------	------------	----------	--------------	------	------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR		Lane Configurations	ሻ	1>			4		ሻ	₽			4			Traffic Volume (vph)	117	185	0	68	301	185	156	38	166	19	214	38		Future Volume (vph)	117	185	0	68	301	185	156	38	166	19	214	38		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	5.0	5.0			3.0		5.0	5.0			5.0			Lane Util. Factor	1.00	1.00			1.00		1.00	1.00			1.00			Frt	1.00	1.00			0.95		1.00	0.88			0.98			Flt Protected	0.95	1.00			0.99		0.95	1.00			1.00			Satd. Flow (prot)	1770	1863			1768		1770	1635			1821			Flt Permitted	0.44	1.00			0.95		0.45	1.00			0.97			Satd. Flow (perm)	814	1863			1697		846	1635			1767			Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Adj. Flow (vph)	127	201	0	74	327	201	170	41	180	21	233	41		RTOR Reduction (vph)	0	0	0	0	27	0	0	132	0	0	9	0		Lane Group Flow (vph)	127	201	0	0	575	0	170	89	0	0	286	0		Turn Type	Perm	NA		D.P+P	NA		Perm	NA		Perm	NA			Protected Phases		2		1	12			4			4			Permitted Phases	2			2			4			4				Actuated Green, G (s)	21.8	21.8			33.4		16.9	16.9			16.9			Effective Green, g (s)	21.8	21.8			33.4		16.9	16.9			16.9			Actuated g/C Ratio	0.34	0.34			0.53		0.27	0.27			0.27			Clearance Time (s)	5.0	5.0					5.0	5.0			5.0			Vehicle Extension (s)	3.0	3.0					3.0	3.0			3.0			Lane Grp Cap (vph)	280	641			908		225	436			471			v/s Ratio Prot		0.11			c0.12			0.05						v/s Ratio Perm	0.16				c0.22		c0.20				0.16			v/c Ratio	0.45	0.31			0.63		0.76	0.20			0.61			Uniform Delay, d1	16.1	15.3			10.6		21.3	18.0			20.3			Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00			Incremental Delay, d2	1.2	0.3			1.4		13.4	0.2			2.2			Delay (s)	17.3	15.5			12.1		34.7	18.2			22.5			Level of Service	В	В			В		С	В			С			Approach Delay (s)		16.2			12.1			25.4			22.5			Approach LOS		В			В			С			С			Intersection Summary														HCM 2000 Control Delay			18.0	Н	CM 2000	Level of	Service		В					HCM 2000 Volume to Capa	city ratio		0.67											Actuated Cycle Length (s)			63.3	S	um of lost	time (s)			13.0	
		Intersection Capacity Utiliza	ntion		90.2%	IC	CU Level o	of Service			Е					Analysis Period (min)			15										c Critical Lane Group		-	\rightarrow	•	•	•	/		---	----------	---------------	-------	----------	------------	------------		Movement	EBT	EBR	WBL	WBT	NBL	NBR		Lane Configurations	†		ሻ	<u> </u>	W			Traffic Volume (veh/h)	328	0	298	476	0	637		Future Volume (Veh/h)	328	0	298	476	0	637		Sign Control	Free		270	Free	Stop	007		Grade	0%			0%	0%			Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		Hourly flow rate (vph)	357	0.72	324	517	0.72	692		Pedestrians	337	U	JZT	317	U	072		Lane Width (ft)								Walking Speed (ft/s)																Percent Blockage Right turn flare (veh)									None			Mono				Median type	None			None				Median storage veh)	0/7							Upstream signal (ft)	867							pX, platoon unblocked			257		1500	170		vC, conflicting volume			357		1522	178		vC1, stage 1 conf vol								vC2, stage 2 conf vol			057		4500	470		vCu, unblocked vol			357		1522	178		tC, single (s)			4.1		6.8	6.9		tC, 2 stage (s)								tF (s)			2.2		3.5	3.3		p0 queue free %			73		100	17		cM capacity (veh/h)			1198		80	834		Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1			Volume Total	238	119	324	517	692			Volume Left	0	0	324	0	0			Volume Right	0	0	0	0	692			cSH	1700	1700	1198	1700	834			Volume to Capacity	0.14	0.07	0.27	0.30	0.83			Queue Length 95th (ft)	0	0	28	0	238			Control Delay (s)	0.0	0.0	9.1	0.0	26.5			Lane LOS			Α		D			Approach Delay (s)	0.0		3.5		26.5			Approach LOS					D			Intersection Summary								Average Delay			11.3					Intersection Capacity Utiliz	zation		75.0%	IC	:U Level c	of Sarvica			LatiOH			IC	O LEVEL C	JEI VICE		Analysis Period (min)			15						-	•	•	•	4	/				-------------------------------	-------------	------	-------	------	------------	------------------	------	--		Movement	EBT	EBR	WBL	WBT	NBL	NBR				Lane Configurations	4			4	*y*					Traffic Volume (vph)	446	134	0	475	248	0				Future Volume (vph)	446	134	0	475	248	0				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)	6.1			6.1	4.0					Lane Util. Factor	1.00			1.00	1.00					Frt	0.97			1.00	1.00					Flt Protected	1.00			1.00	0.95					Satd. Flow (prot)	1805			1863	1770					Flt Permitted	1.00			1.00	0.95					Satd. Flow (perm)	1805			1863	1770					Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92				Adj. Flow (vph)	485	146	0	516	270	0				RTOR Reduction (vph)	9	0	0	0	0	0				Lane Group Flow (vph)	622	0	0	516	270	0				Turn Type	NA			NA	Prot					Protected Phases	2			2	4					Permitted Phases			2							Actuated Green, G (s)	43.5			43.5	16.4					Effective Green, g (s)	43.5			43.5	16.4					Actuated g/C Ratio	0.62			0.62	0.23					Clearance Time (s)	6.1			6.1	4.0					Vehicle Extension (s)	3.0			3.0	3.0					Lane Grp Cap (vph)	1121			1157	414					v/s Ratio Prot	c0.34			0.28	c0.15					v/s Ratio Perm										v/c Ratio	0.55			0.45	0.65					Uniform Delay, d1	7.7			6.9	24.2					Progression Factor	1.00			1.00	1.00					Incremental Delay, d2	2.0			1.2	3.7					Delay (s)	9.6			8.2	27.9					Level of Service	A			Α	С					Approach Delay (s)	9.6			8.2	27.9					Approach LOS	А			А	С					Intersection Summary										HCM 2000 Control Delay			12.6	H	CM 2000	Level of Service	В			HCM 2000 Volume to Capa	acity ratio		0.58							Actuated Cycle Length (s)			70.0		um of lost		10.1			Intersection Capacity Utiliza	ation		53.8%	IC	CU Level c	of Service	Α			Analysis Period (min)			15						c Critical Lane Group		*	-	74	~	←	*_	\	\mathbf{x}	4	•	×	4		-------------------------------	-------------	------	-------	-------	------------	------------	----------	--------------	------	------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR		Lane Configurations	ሻ	ĵ.			4		ሻ	ĵ»			4			Traffic Volume (vph)	47	103	8	32	133	260	166	63	56	0	86	86		Future Volume (vph)	47	103	8	32	133	260	166	63	56	0	86	86		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	5.0	5.0			3.0		5.0	5.0			5.0			Lane Util. Factor	1.00	1.00			1.00		1.00	1.00			1.00			Frt	1.00	0.99			0.92		1.00	0.93			0.93			Flt Protected	0.95	1.00			1.00		0.95	1.00			1.00			Satd. Flow (prot)	1770	1842			1703		1770	1731			1737			Flt Permitted	0.50	1.00			0.99		0.64	1.00			1.00			Satd. Flow (perm)	925	1842			1686		1193	1731			1737			Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Adj. Flow (vph)	51	112	9	35	145	283	180	68	61	0	93	93		RTOR Reduction (vph)	0	4	0	0	88	0	0	45	0	0	54	0		Lane Group Flow (vph)	51	117	0	0	375	0	180	84	0	0	132	0		Turn Type	Perm	NA		D.P+P	NA		Perm	NA			NA			Protected Phases		2		1	12			4			4			Permitted Phases	2			2			4			4				Actuated Green, G (s)	20.2	20.2			30.1		14.9	14.9			14.9			Effective Green, g (s)	20.2	20.2			30.1		14.9	14.9			14.9			Actuated g/C Ratio	0.35	0.35			0.52		0.26	0.26			0.26			Clearance Time (s)	5.0	5.0					5.0	5.0			5.0			Vehicle Extension (s)	3.0	3.0					3.0	3.0			3.0			Lane Grp Cap (vph)	322	641			877		306	444			446			v/s Ratio Prot		0.06			c0.07			0.05			0.08			v/s Ratio Perm	0.06				c0.15		c0.15							v/c Ratio	0.16	0.18			0.43		0.59	0.19			0.30			Uniform Delay, d1	13.0	13.2			8.6		18.9	16.8			17.3			Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00			Incremental Delay, d2	0.2	0.1			0.3		2.9	0.2			0.4			Delay (s)	13.3	13.3			9.0		21.7	17.0			17.7			Level of Service	В	В			Α		С	В			В			Approach Delay (s)		13.3			9.0			19.8			17.7			Approach LOS		В			А			В			В			Intersection Summary														HCM 2000 Control Delay			14.0	Н	CM 2000	Level of S	Service		В					HCM 2000 Volume to Capa	icity ratio		0.48											Actuated Cycle Length (s)			58.0	S	um of lost	time (s)			13.0					Intersection Capacity Utiliza	ation		62.0%		CU Level o				В					Analysis Period (min)			15										c Critical Lane Group		-	\rightarrow	•	•	•	/		----------------------------------	----------	---------------	--------	----------	------------	------------		Movement	EBT	EBR	WBL	WBT	NBL	NBR		Lane Configurations	†		ሻ	<u> </u>	W			Traffic Volume (veh/h)	438	7	633	417	0	293		Future Volume (Veh/h)	438	7	633	417	0	293		Sign Control	Free	,	000	Free	Stop	270		Grade	0%			0%	0%			Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		Hourly flow rate (vph)	476	8	688	453	0.72	318		Pedestrians	770	U	000	700	U	310		Lane Width (ft)								Walking Speed (ft/s)								Percent Blockage								Right turn flare (veh)								Median type	None			None				Median type Median storage veh)	None			None					867							Upstream signal (ft)	807							pX, platoon unblocked			40.4		2200	242		vC, conflicting volume			484		2309	242		vC1, stage 1 conf vol								vC2, stage 2 conf vol			40.4		0000	0.40		vCu, unblocked vol			484		2309	242		tC, single (s)			4.1		6.8	6.9		tC, 2 stage (s)			0.0		0.5	0.0		tF (s)			2.2		3.5	3.3		p0 queue free %			36		100	58		cM capacity (veh/h)			1075		12	759		Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1			Volume Total	317	167	688	453	318			Volume Left	0	0	688	0	0			Volume Right	0	8	0	0	318			cSH	1700	1700	1075	1700	759			Volume to Capacity	0.19	0.10	0.64	0.27	0.42			Queue Length 95th (ft)	0	0	121	0	52			Control Delay (s)	0.0	0.0	14.1	0.0	13.1			Lane LOS			В		В			Approach Delay (s)	0.0		8.5		13.1			Approach LOS					В			Intersection Summary								Average Delay			7.1					Intersection Capacity Utiliz	ration		75.5%	IC	:U Level c	of Service		Analysis Period (min)	-utiOII		15.576																																																
IC. | O LOVEI C | n JOIVICE | | Analysis Penlou (IIIIII) | | | 10 | | | |