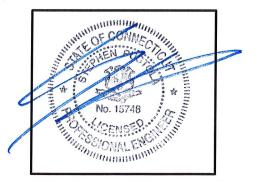


5 ULTING ENGINEERS, LLC (203) 729-6675 • Fax (203) 720-2816

Licensed Professional Engineers New York & Connecticut

185 Meadow Street Naugatuck, Connecticut 06770


DRAINAGE REPORT: 1 Cannondale Way

Prepared For

iPark Norwalk, LLC 485 West Putnam Ave. Greenwich, CT, 06830

Summary & Sign Off:

Based on the calculations and results of this report, the stormwater drainage design is in substantial compliance with the 2004 Connecticut Stormwater Quality Manual.

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

TABLE OF CONTENTS:

REPORT SUMMARY	3
SOILS MAP	6
PRE-DEVELOPMENT WATERSHED MAP	10
POST DEVELOPMENT WATERSHED MAP	12
DESIGN STORMS	14
WQV CALCULATIONS	20
DISCHARGE SUMMARY	22
PRE END POINT DISCHARGES	26
POST END POINT DISCHARGES	32
PROPOSED VORTECH SYSTEM FLOW	38
CONTECH INFILTRATION PERFORMANCE	44
CONTECH SYSTEM SPECIFICATIONS	55
PERCOLATION TESTING	59

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

REPORT SUMMARY

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

Updated May 15, 2023

Job No. 19020.00

Client: iPark Norwalk, LLC Individual: Mrs. Lynne Ward Address: 485 West Putnam Ave. City/State/Zip: Greenwich, CT, 06830 Phone/Fax: (203)-661-0055 Email: lward@nationalresources.com

Project Summary:

The proposed development seeks to install a 28,000 square foot footprint hotel in the existing parking lot located at the iPark Facility, located at 1 Cannondale Way, Wilton, CT. The proposed building is located in the AE flood zone adjacent to the Norwalk River. The floodwater displacement caused by this installation is compensated through cuts in the existing grade at the surrounding areas of the building (see sheet SV-1). The proposed development is also adjacent to the 100' setback from the Norwalk River. The proposed design has taken care to keep excavation to a minimum in this area, with work within the setback area being limited to the installation of a biofiltration stormwater island (rain garden) and re-configuration and re-paving of the existing parking lot.

In addition to maintaining the pervious area and existing infiltration capacity of the site, The goals of the stormwater design were as follows:

- 1. Reduce the flooding occurring on site Flooding of the existing parking lot has been noted on-site during storms. This observation is reflected in the stormwater calculations, which show system backups at storm intensities of 10 years and greater.
- 2. Infiltrate the runoff from the proposed roof We were initially directed to infiltrate the full volume of runoff from the roof for a 1 year storm event. The current design exceeds this objective, and can infiltrate approximately 70% of the volume of a 10 year storm from the rooftop. An overflow outlet is provided at this new infiltration system, which is routed to the proposed vortech system for treatment before being discharged.

Stormwater Site Improvements:

The stormwater management system was designed using the 2004 Connecticut Stormwater Quality Manual, with rainfall values based on NOAA PPFE (point precipitation frequency estimates) from Wilton, CT.

The proposed layout reduces the impervious area of the site by approximately 0.09 acres. The proposed stormwater system will replace several existing biofiltration trenches with two new systems and add a new stormwater infiltration system to infiltrate runoff from the roof. The total area available for stormwater infiltration has been increased from 0.16 acres to 0.227 acres. The hydraulic conductivity of 1.1 in/hr was determined via percolation tests in and around the area proposed for the infiltration system.

A new Vortech chamber is proposed to treat runoff from the parking lot, as well as the overflow discharge from the proposed infiltration chamber. As designed, the proposed stormwater system will route all stormwater discharge through either a biofiltration trench and / or a vortech chamber. The proposed stormwater system will make use of the existing discharge points along the Norwalk River, limiting the site excavation and disturbance within the 100' setback around the Norwalk River.

Stormwater Discharge Summary

Due to the increase in infiltration capacity and re-configuration of the existing stormwater system, the volume of stormwater runoff is decreased for each design storm event (1, 10, 25, 100 year storms and 90% design storm). Total runoff volume reductions are listed in the attached report's DISCHARGE SUMMARY.

According to calculations based on the existing system as well as field observations, the existing site experiences stormwater system backups and on-site flooding with storms of 10 year intensity and greater. The proposed system will reduce these backups to storms with a greater than 25 year intensity. As a result of this greater efficiency, the flow rates for the 10, 25, and 100 year storms are increased as the site is able to drain more effectively, while reducing overall stormwater volume discharge for these events by 31%, 29 %, and 21% respectively.

Thank you

Kyle Pustola

Kyle Pustola, P.E.

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

SOIL MAPS

4/4/2023 Page 1 of 3

Conservation Service

Web Soil Survey National Cooperative Soil Survey Soil Map—State of Connecticut

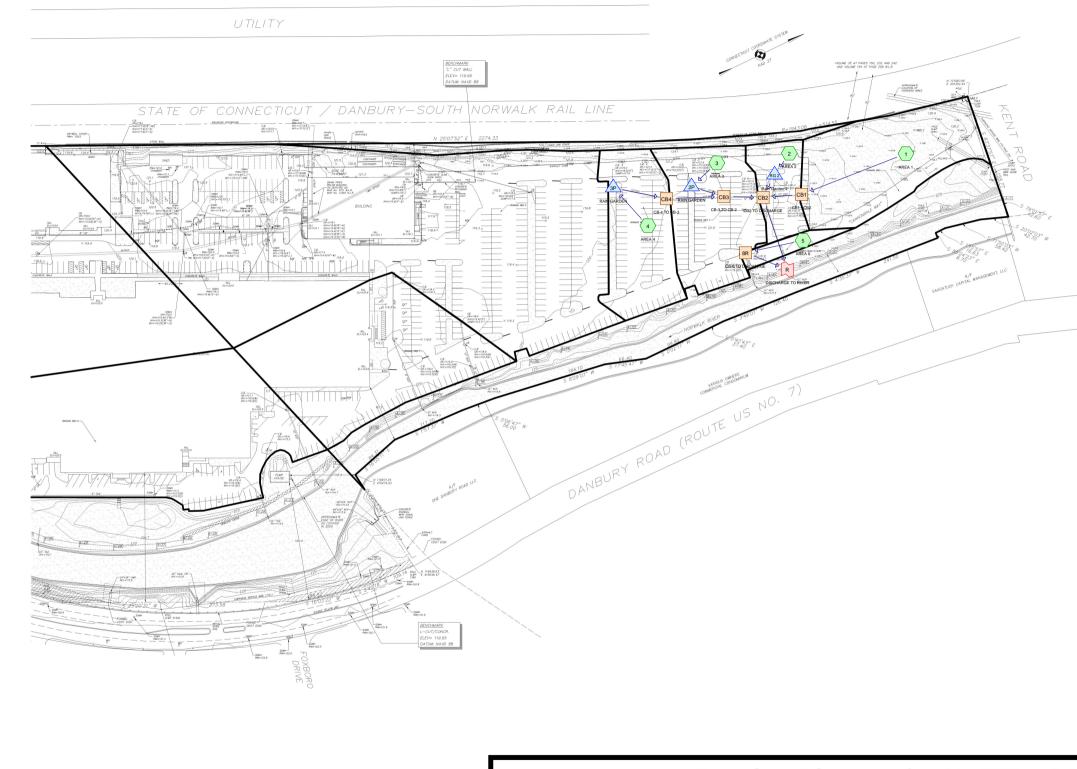
est (ACI) est (ACI)	The soil surveys that comprise your AOI were mapped at 1:12,000.
st (AOI) Stony Spot Polygons Very Stony Spot Polygons Very Stony Spot Lines Vert Spot Points Vert Spot Points Vert Spot Vert Spot Vert Spot Points Vert Spot Vert Spot Vert Spot Points Vert Spot Value Special Line Features Vater Features Vert Spot Vater Features Vert Spot Vater Features Vert Spot Vater Vert Spot Mp Vert Spot Mp Vert Spot Vater Vert Spot	
Polygons Seint Carlos Spot Lines Wet Spot Points Other Points Other Points Other Points Other Secial Line Features Conter Conter Secial Line Features Conter Conter Secial Line Features Conter Conte	
Transportation Solutions Mater Features Water Features Mater Features Solution Transportation Transportation Transportation Major Roads Major Roads Major Roads Major Roads Major Roads Water Major Roads Water Major Roads Water Major Roads Water Major Roads Major Roads Water Major Roads Major Roads Major Roads Water Major Roads Major Roads Mater Mater Mater Major Roads Mater Major Roads Major Roads Mater Major Roads Mater Mater Mater Major Roads Mater Major Roads Mater Major Roads Mater Major Roads Major Roads Major Roads Mater Major Roads Major Roads Mater Major Roads Major Roads Maj	Warning: Soil Map may not be valid at this scale.
Points Other Points Other Water Features Water Features Transportation Ssion Mater Features Mater Rails Ssion Major Roads Major Roads Local Roads Background Water Kails Major Roads Local Roads Major Roads Major Roads Local Roads Mater Mater Mater Features	Enlargement of maps beyond the scale of mapping can cause
water Features Water Features Transportation Transportation Ssion Transportation Eackground Mp Mp Major Roads Local Roads Background Water V	line placement. The maps do not show the small areas of
Water Features Transportation Transportation Ssion Transportation Background Water Water Steams and Canals Interstate Highways Major Roads Local Roads Background Water Steams and Canals Lange All All All All All All All All All Al	contrasting soils that could have been shown at a more detailed scale.
Alter Streams and Canals Alter Transportation Alter Rails Depression Interstate Highways If US Routes Spot Major Roads W Background Swamp Major Roads W Background Subury Aerial Photography Duarry Major Bot	
ot Transportation Depression Transportation Depression Lucs Rails Depression Lucs Routes / Spot Najor Roads Major Roads Major Roads Dow Background or Spot Aerial Photography duarry aneous Water al Water utcrop	Please rely on the bar scale on each map sheet for map measurements.
Depression Pit US Routes / Spot Major Roads ow Background or swamp Aerial Photography Quarry neous Water al Water utcrop	Map: Natural Resources Conservation Service
Pit US Routes / Spot Major Roads ow Background or swamp Aerial Photography Quarry ineous Water al Water utcrop bot	Web Soil Survey URL: Coordinate System: Web Mercator (FPSG:3857)
 Spot Major Roads bw Background or swamp Aerial Photography Quarry al Water di Water 	Mans from the Web Soil Survey are based on the Web Mercator
ow Background or swamp Aerial Photography Quarry Ineous Water al Water utcrop	projection, which preserves direction and shape but distorts
amp Background amp Aerial Photography urry us Water ater p	alstance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
amp Merial Photography ury us Water ater	accurate calculations of distance or area are required.
rry us Water ater p	This product is generated from the USDA-NRCS certified data as of the version details listed below.
us Water ater pp	ion date(s) instead below.
ater po	y Area. State of Confidenciat sa Data: Version 22, Sep 12, 2022
6	Soil map units are labeled (as space allows) for map scales
	ır larger.
	Date(s) aerial images were photographed: Oct 21, 2022—Oct
Sanay spot	The orthomhoto or other hase man on which the soil lines were
Severely Eroded Spot	compiled and digitized probably differs from the background
imagery displaye Sinkhole shifting of map u	imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Slide or Slip	
Sodic Spot	

4/4/2023 Page 2 of 3

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

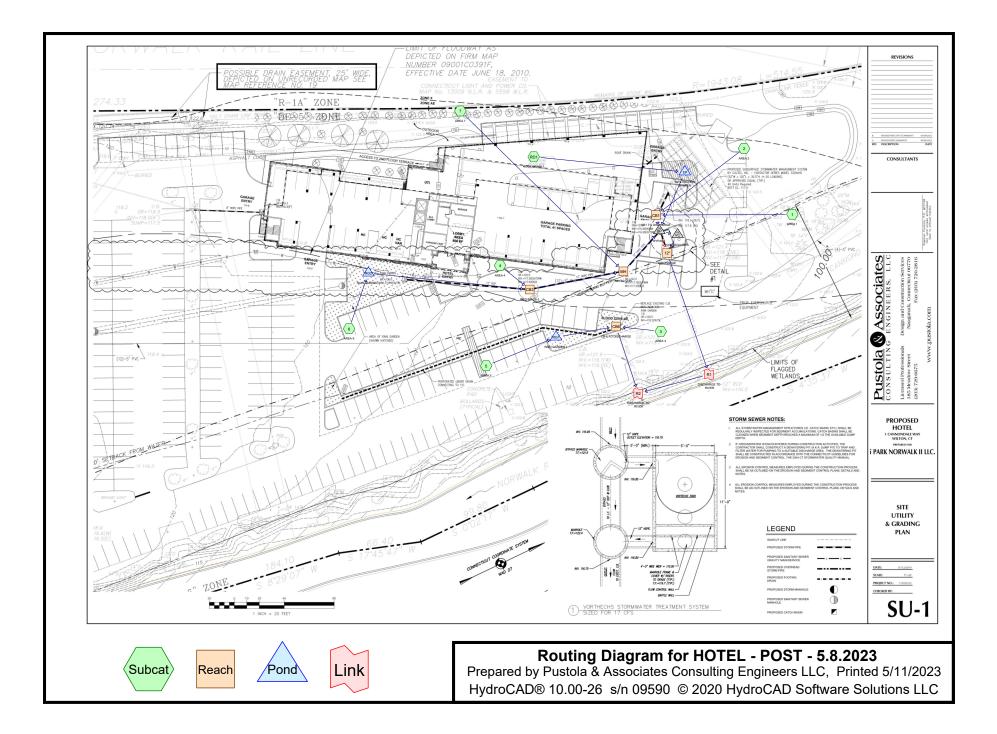

Г

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
62C	Canton and Charlton fine sandy loams, 3 to 15 percent slopes, extremely stony	1.0	4.2%
103	Rippowam fine sandy loam	0.0	0.0%
307	Urban land	12.0	52.4%
703B	Haven silt loam, 3 to 8 percent slopes	8.8	38.3%
W	Water	1.2	5.1%
Totals for Area of Interest		22.9	100.0%

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

PRE-DEVELOPMENT WATERSHED MAPS

Link Reach /Pond


Subcat

Routing Diagram for HOTEL - PRE Prepared by Pustola & Associates Consulting Engineers, LLC, Printed 2/2/2020 HydroCAD® 10.00-25 s/n 09590 © 2019 HydroCAD Software Solutions LLC

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

POST DEVELOPMENT WATERSHED MAPS

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

DESIGN STORMS

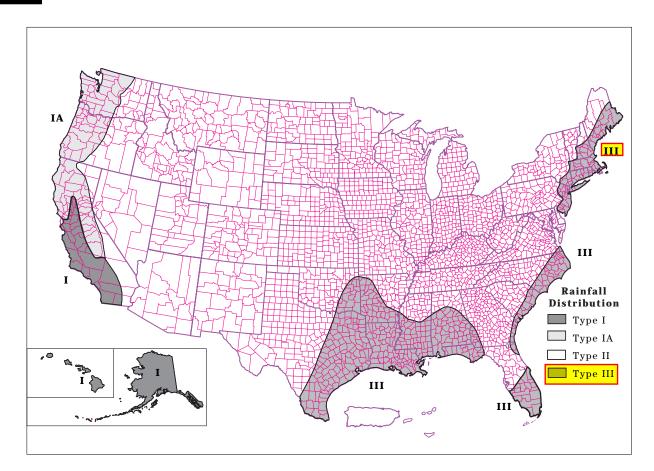


Figure B-2 Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Rainfall data sources

This section lists the most current 24-hour rainfall data published by the National Weather Service (NWS) for various parts of the country. Because NWS Technical Paper 40 (TP-40) is out of print, the 24-hour rainfall maps for areas east of the 105th meridian are included here as figures B-3 through B-8. For the area generally west of the 105th meridian, TP-40 has been superseded by NOAA Atlas 2, the Precipitation-Frequency Atlas of the Western United States, published by the National Ocean and Atmospheric Administration.

East of 105th meridian

Hershfield, D.M. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 40. Washington, DC. 155 p.

West of 105th meridian

Miller, J.F., R.H. Frederick, and R.J. Tracey. 1973. Precipitation-frequency atlas of the Western United States. Vol. I Montana; Vol. II, Wyoming; Vol III, Colorado; Vol. IV, New Mexico; Vol V, Idaho; Vol. VI, Utah; Vol. VII, Nevada; Vol. VIII, Arizona; Vol. IX, Washington; Vol. X, Oregon; Vol. XI, California. U.S. Dept. of Commerce, National Weather Service, NOAA Atlas 2. Silver Spring, MD.

Alaska

Miller, John F. 1963. Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. of Commerce, Weather Bur. Tech. Pap. No. 47. Washington, DC. 69 p.

Hawaii

Weather Bureau. 1962. Rainfall-frequency atlas of the Hawaiian Islands for areas to 200 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 43. Washington, DC. 60 p.

Puerto Rico and Virgin Islands

Weather Bureau. 1961. Generalized estimates of probable maximum precipitation and rainfall-frequency data for Puerto Rico and Virgin Islands for areas to 400 square miles, durations to 24 hours, and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 42. Washington, DC. 94 P.

NOAA Atlas 14, Volume 10, Version 3 Location name: Wilton, Connecticut, USA* Latitude: 41.1616°, Longitude: -73.4205° Elevation: m/ft** * source: ESRI Maps ** source: USGS

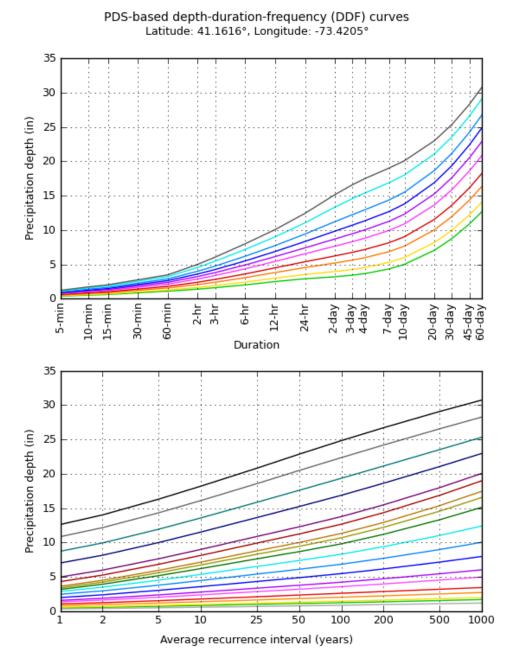
POINT PRECIPITATION FREQUENCY ESTIMATES

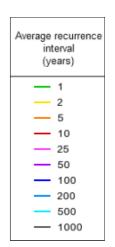
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


	OS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration							1000			
	-		-							
5-min	0.366 (0.288-0.461)	0.426 (0.334-0.537)	0.524 (0.411-0.663)	0.605 (0.470-0.769)	0.716 (0.538-0.945)	0.801 (0.588-1.08)	0.888 (0.630-1.23)	0.981 (0.663-1.40)	1.11 (0.720-1.63)	1.21 (0.766-1.82
10-min	0.518 (0.407-0.653)	0.603 (0.473-0.760)	0.741 (0.580-0.939)	0.856 (0.666-1.09)	1.01 (0.762-1.34)	1.14 (0.833-1.53)	1.26 (0.893-1.75)	1.39 (0.939-1.98)	1.57 (1.02-2.32)	1.71 (1.08-2.58)
15-min	0.610 (0.479-0.768)	0.709 (0.557-0.894)	0.872 (0.683-1.10)	1.01 (0.784-1.28)	1.19 (0.896-1.58)	1.34 (0.979-1.79)	1.48 (1.05-2.05)	1.64 (1.11-2.33)	1.85 (1.20-2.72)	2.02 (1.28-3.03)
30-min	0.849 (0.668-1.07)	0.987 (0.775-1.25)	1.21 (0.949-1.53)	1.40 (1.09-1.78)	1.66 (1.24-2.18)	1.86 (1.36-2.49)	2.05 (1.45-2.84)	2.26 (1.53-3.22)	2.53 (1.65-3.73)	2.74 (1.74-4.12)
60-min	1.09 (0.856-1.37)	1.26 (0.994-1.60)	1.55 (1.22-1.97)	1.79 (1.39-2.28)	2.12 (1.59-2.79)	2.38 (1.74-3.18)	2.63 (1.86-3.62)	2.88 (1.95-4.11)	3.22 (2.09-4.74)	3.47 (2.19-5.21)
2-hr	1.39 (1.10-1.74)	1.64 (1.30-2.06)	2.05 (1.62-2.58)	2.40 (1.88-3.03)	2.87 (2.16-3.76)	3.22 (2.38-4.31)	3.59 (2.57-4.96)	3.99 (2.71-5.66)	4.55 (2.96-6.66)	5.00 (3.17-7.46)
3-hr	1.60 (1.27-1.99)	1.90 (1.51-2.37)	2.39 (1.89-3.00)	2.81 (2.20-3.53)	3.37 (2.56-4.42)	3.80 (2.82-5.08)	4.24 (3.05-5.87)	4.74 (3.22-6.70)	5.46 (3.56-7.97)	6.05 (3.85-8.99)
6-hr	2.01 (1.61-2.49)	2.41 (1.92-2.98)	3.06 (2.43-3.80)	3.60 (2.85-4.50)	4.34 (3.32-5.66)	4.90 (3.66-6.52)	5.49 (3.98-7.58)	6.17 (4.21-8.66)	7.16 (4.69-10.4)	7.99 (5.10-11.8)
12-hr	2.48 (2.00-3.06)	2.99 (2.40-3.68)	3.80 (3.05-4.70)	4.48 (3.57-5.57)	5.42 (4.16-7.02)	6.12 (4.60-8.10)	6.86 (5.00-9.42)	7.72 (5.29-10.8)	8.99 (5.90-12.9)	10.0 (6.43-14.7)
24-hr	2.90 (2.35-3.54)	3.52 (2.85-4.30)	4.53 (3.65-5.56)	5.38 (4.30-6.63)	6.53 (5.05-8.42)	7.40 (5.60-9.74)	8.32 (6.11-11.4)	9.41 (6.47-13.0)	11.0 (7.27-15.8)	12.4 (7.97-18.1)
2-day	3.19 (2.60-3.87)	3.95 (3.21-4.80)	5.19 (4.21-6.33)	6.22 (5.01-7.62)	7.64 (5.95-9.81)	8.69 (6.62-11.4)	9.82 (7.28-13.4)	11.2 (7.72-15.4)	13.3 (8.80-19.0)	15.1 (9.75-21.9)
3-day	3.42 (2.80-4.13)	4.25 (3.47-5.14)	5.62 (4.57-6.82)	6.75 (5.45-8.23)	8.30 (6.49-10.6)	9.45 (7.23-12.4)	10.7 (7.96-14.6)	12.2 (8.45-16.8)	14.6 (9.64-20.6)	16.6 (10.7-23.9)
4-day	3.65 (2.99-4.39)	4.53 (3.71-5.46)	5.96 (4.87-7.22)	7.16 (5.80-8.71)	8.80 (6.89-11.2)	10.0 (7.68-13.1)	11.3 (8.43-15.4)	12.9 (8.95-17.7)	15.4 (10.2-21.7)	17.5 (11.3-25.1)
7-day	4.32 (3.56-5.18)	5.28 (4.35-6.33)	6.84 (5.61-8.24)	8.14 (6.63-9.85)	9.93 (7.80-12.6)	11.3 (8.64-14.5)	12.7 (9.43-17.0)	14.4 (9.98-19.5)	16.9 (11.2-23.7)	19.0 (12.3-27.2)
10-day	5.00 (4.13-5.96)	6.00 (4.96-7.17)	7.65 (6.29-9.17)	9.01 (7.37-10.9)	10.9 (8.57-13.7)	12.3 (9.45-15.8)	13.8 (10.2-18.3)	15.5 (10.8-21.0)	18.0 (12.0-25.2)	20.1 (13.0-28.6)
20-day	7.04 (5.86-8.35)	8.16 (6.79-9.69)	10.0 (8.29-11.9)	11.5 (9.49-13.8)	13.6 (10.8-17.0)	15.2 (11.7-19.3)	16.9 (12.5-22.1)	18.6 (13.1-25.0)	21.1 (14.1-29.2)	23.0 (14.9-32.5)
30-day	8.74 (7.31-10.3)	9.96 (8.31-11.8)	11.9 (9.93-14.2)	13.6 (11.2-16.2)	15.9 (12.6-19.6)	17.6 (13.6-22.1)	19.4 (14.3-25.1)	21.2 (14.9-28.3)	23.5 (15.8-32.5)	25.3 (16.5-35.7)
45-day	10.9 (9.12-12.8)	12.2 (10.2-14.3)	14.3 (12.0-16.9)	16.1 (13.4-19.1)	18.6 (14.8-22.8)	20.5 (15.8-25.6)	22.4 (16.6-28.7)	24.2 (17.1-32.2)	26.6 (17.9-36.5)	28.3 (18.5-39.7)
60-day	12.6 (10.6-14.8)	14.0 (11.8-16.5)	16.3 (13.7-19.2)	18.2 (15.1-21.6)	20.8 (16.6-25.4)	22.9 (17.7-28.4)	24.8 (18.4-31.7)	26.7 (18.9-35.4)	29.1 (19.6-39.8)	30.7 (20.1-43.0)

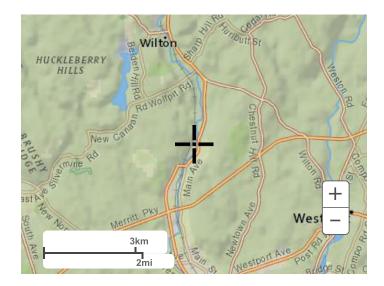

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration				
5-min	2-day			
10-min	— 3-day			
15-min	— 4-day			
30-min	- 7-day			
60-min	— 10-day			
— 2-hr	— 20-day			
— 3-hr	— 30-day			
— 6-hr	— 45-day			
- 12-hr	- 60-day			
— 24-hr				


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Apr 26 19:34:19 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

WQV CALCULATIONS

POST DEVELOPMENT Water Quality Volume (WQV) Calculations

$$WQv = \frac{P^*Rv^*A}{12}$$

Watershed Input Data

Watershed Area to be treated (UD (1, 2, 3, and 5) =1.480 Ac.Impervious Coverage =0.610 Ac.Lawn Coverage (HSG 2) =0.870 Ac.% Impervious Cover (I) =41.216

Rv = Volumetric Runoff Coefficient = 0.05+0.009 *(I)Rv = 0.420946

90% Rainfall Event (P) P = 1.5

WQv = 0.08 Ac-ft

WQv = <u>3392</u> cuft

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

DISCHARGE SUMMARY

1 Year Storm Runoff Reduction Volume Calculations

Runoff Volume - Pre-development - to River =	0.167 acre-ft
Runoff Volume - Post-development - to River =	0.077 acre-ft
Runoff Volume Delta (Vpost - Vpre) =	-0.09 acre-ft
Runoff Vol. treated by Proposed BMP (Vortech Chamber, VC) =	0.103 acre-ft

1 Year Storm Runoff Reduction Flow Calculations

Runoff Flow - Pre-development - to River =	1.37 cfs
Runoff Flow - Post-development - to River =	0.6 cfs
Runoff Flow Delta (Qpost - Qpre) =	-0.77 cfs

10 Year Storm Runoff Reduction Volume Calculations

Runoff Volume - Pre-development - to River =	0.569 acre-ft
Runoff Volume - Post-development - to River =	0.394 acre-ft
Runoff Volume Delta (Vpost - Vpre) =	-0.175 acre-ft
Runoff Vol. treated by Proposed BMP (Vortech Chamber, VC) =	0.357 acre-ft

10 Year Storm Runoff Reduction Flow Calculations

Runoff Flow - Pre-development - to River =	4.72 cfs
--	----------

- Runoff Flow Post-development to River = 5.54 cfs
 - Runoff Flow Delta (Qpost Qpre) = 0.82 cfs

25 Year Storm Runoff Reduction Volume Calculations

Runoff Volume - Pre-development - to River =	0.793 acre-ft
Runoff Volume - Post-development - to River =	0.562 acre-ft
Runoff Volume Delta (Vpost - Vpre) =	-0.231 acre-ft
Runoff Vol. treated by Proposed BMP (Vortech Chamber, VC) =	0.471 acre-ft

25 Year Storm Runoff Reduction Flow Calculations

Runoff Flow - Pre-development - to River =	6.35 cfs
Runoff Flow - Post-development - to River =	7.79 cfs
Runoff Flow Delta (Qpost - Qpre) =	1.44 cfs

100 Year Storm Runoff Reduction Volume Calculations

Runoff Volume - Pre-development - to River =	1.161 acre-ft
Runoff Volume - Post-development - to River =	0.917 acre-ft
Runoff Volume Delta (Vpost - Vpre) =	-0.244 acre-ft
Runoff Vol. treated by Proposed BMP (Vortech Chamber, VC) =	0.662 acre-ft

100 Year Storm Runoff Reduction Flow Calculations

Runoff Flow - Pre-development - to River =	7.3 cfs
Runoff Flow - Post-development - to River =	9.2 cfs
Runoff Flow Delta (Qpost - Qpre) =	1.9 cfs

90% Storm Runoff Reduction Volume Calculations

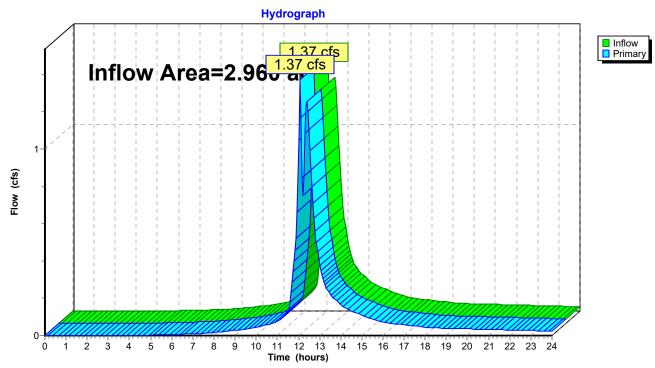
Runoff Volume - Pre-development - to River =	0.043 acre-ft
Runoff Volume - Post-development - to River =	0.022 acre-ft
Runoff Volume Delta (Vpost - Vpre) =	-0.021 acre-ft
Runoff Vol. treated by Proposed BMP (Vortech Chamber, VC) =	0.034 acre-ft

90% Storm Runoff Reduction Flow Calculations

Runoff Flow - Pre-development - to River =	0.57 cfs
Runoff Flow - Post-development - to River =	0.29 cfs

Runoff Flow Delta (Qpost - Qpre) = -0.28 cfs

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

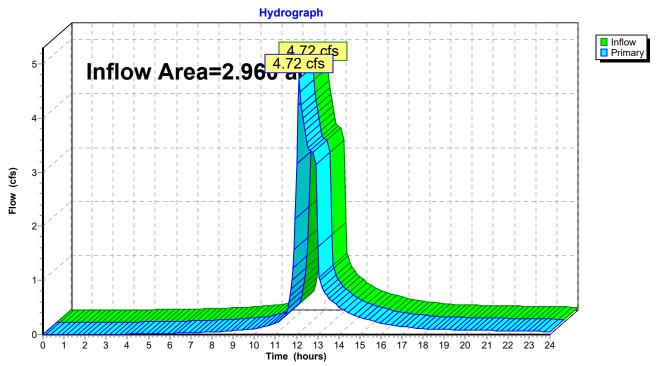

PRE END POINT DISCHARGES

HOTEL - PRE - 5.8.2023 Type III 24-hr 1-YR Rainfall=2.90" Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Link TD: DISCHARGE TO RIVER (TOTAL)

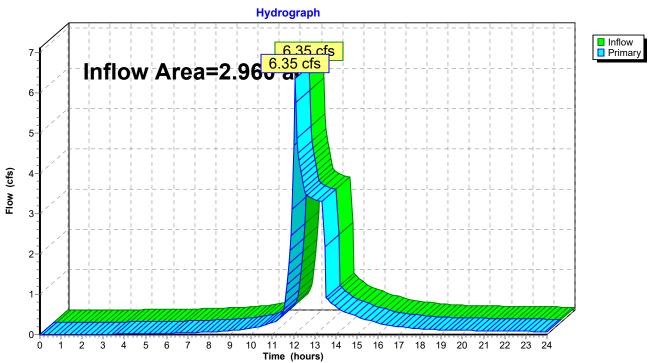
Inflow Area	a =	2.960 ac, 63.51% Impervious, Inflow Depth > 0.68" for 1-YR event
Inflow	=	1.37 cfs @ 12.06 hrs, Volume= 0.167 af
Primary	=	1.37 cfs @ 12.06 hrs, Volume= 0.167 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

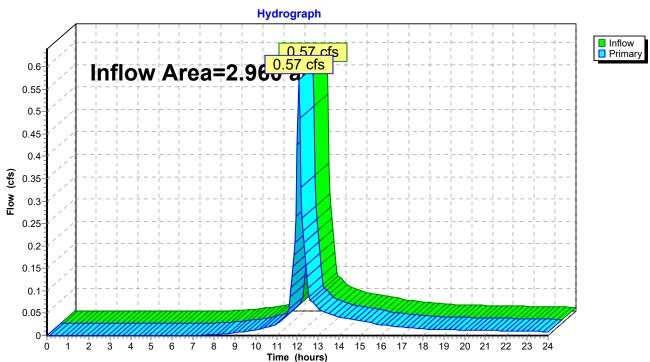


Link TD: DISCHARGE TO RIVER (TOTAL)

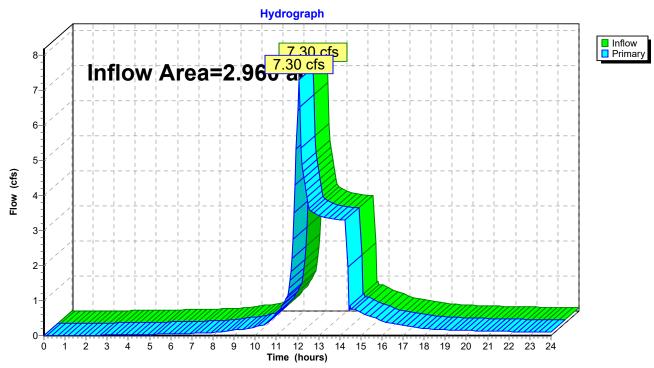
Pre Development


Inflow Area =	=	2.960 ac, 63.51%	Impervious, Inflow	Depth > 2.31"	for 10-YR event
Inflow =	=	4.72 cfs @ 12.11	hrs, Volume=	0.569 af	
Primary =	-	4.72 cfs @ 12.11	hrs, Volume=	0.569 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Inflow Area	a =	2.960 ac, 63.51% Impervious, Inflow Depth > 3.22" for 25-YR event
Inflow	=	6.35 cfs @ 12.06 hrs, Volume= 0.793 af
Primary	=	6.35 cfs @ 12.06 hrs, Volume= 0.793 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Inflow Area	ı =	2.960 ac, 63.51% Impervious, Inflow Depth > 0.18" for 90TH% event	
Inflow	=	0.57 cfs @ 12.06 hrs, Volume= 0.043 af	
Primary	=	0.57 cfs @ 12.06 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min	۱

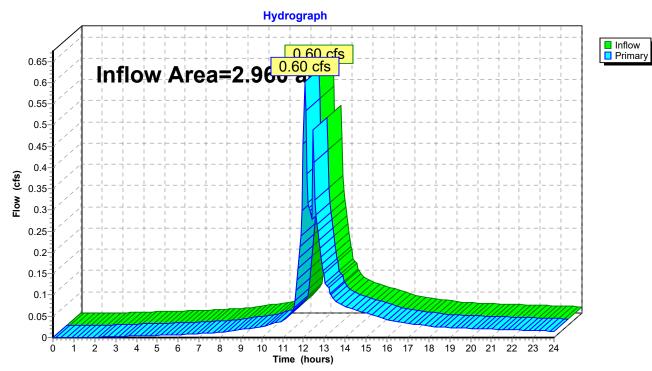
Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Inflow Area	a =	2.960 ac, 63.51% Impervious, Inflow Depth > 4.71" for 100-YR event
Inflow	=	7.30 cfs @ 12.05 hrs, Volume= 1.161 af
Primary	=	7.30 cfs @ 12.05 hrs, Volume= 1.161 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

POST END POINT DISCHARGES


 HOTEL - POST - 5.8.2023
 Ty

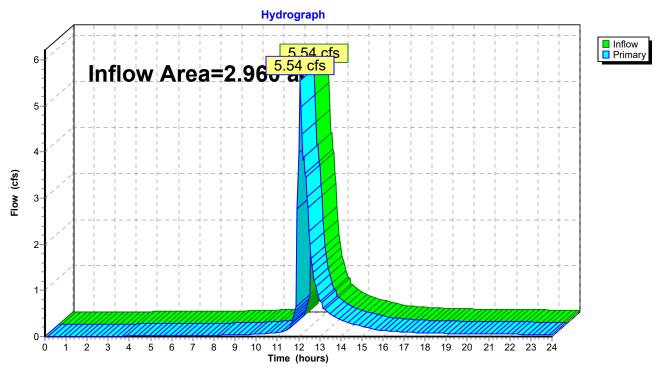
 Prepared by Pustola & Associates Consulting Engineers LLC
 HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Link R2: DISCHARGE TO RIVER

Inflow Area	=	2.960 ac, 60.47% Impervious, Inflow Depth > 0.31" for 1-YR event
Inflow	=	0.60 cfs @ 12.06 hrs, Volume= 0.077 af
Primary	=	0.60 cfs @ 12.06 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link R2: DISCHARGE TO RIVER

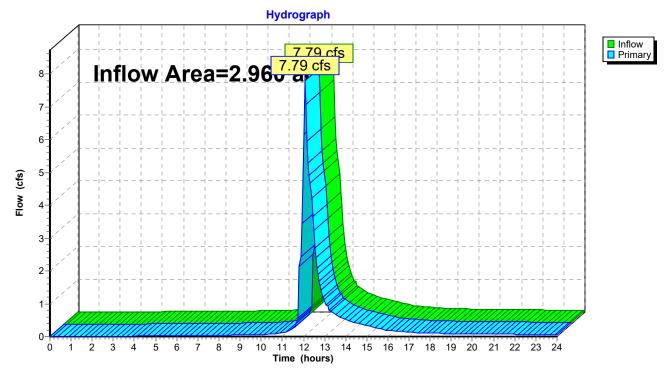

Post Development

Post DevelopmentHOTEL - POST - 5.8.2023Type III 24-hr10-YR Rainfall=5.38"Prepared by Pustola & Associates Consulting Engineers LLCPrinted 5/11/2023HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLCPage 2

Summary for Link R2: DISCHARGE TO RIVER

Inflow Area	a =	2.960 ac, 60.47% Impervious, Inflow Depth > 1.60" for 10-YR event
Inflow	=	5.54 cfs @ 12.06 hrs, Volume= 0.394 af
Primary	=	5.54 cfs @ 12.06 hrs, Volume= 0.394 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

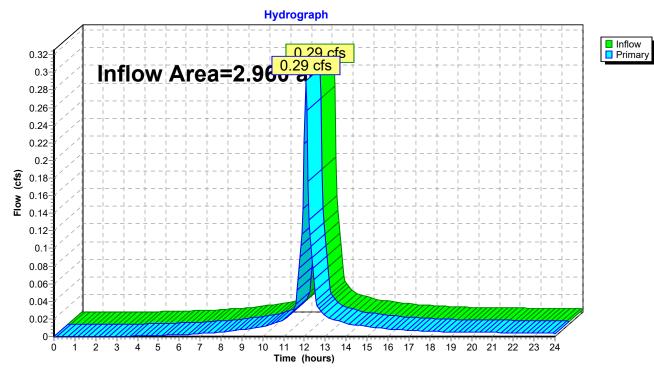

Link R2: DISCHARGE TO RIVER

Post DevelopmentHOTEL - POST - 5.8.2023Type III 24-hr25-YR Rainfall=6.53"Prepared by Pustola & Associates Consulting Engineers LLCPrinted 5/11/2023HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLCPage 3

Summary for Link R2: DISCHARGE TO RIVER

Inflow Area	a =	2.960 ac, 60.47% Impervious, Inflow Depth > 2.28" for 25-YR event	
Inflow	=	7.79 cfs @ 12.06 hrs, Volume= 0.562 af	
Primary	=	7.79 cfs @ 12.06 hrs, Volume= 0.562 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

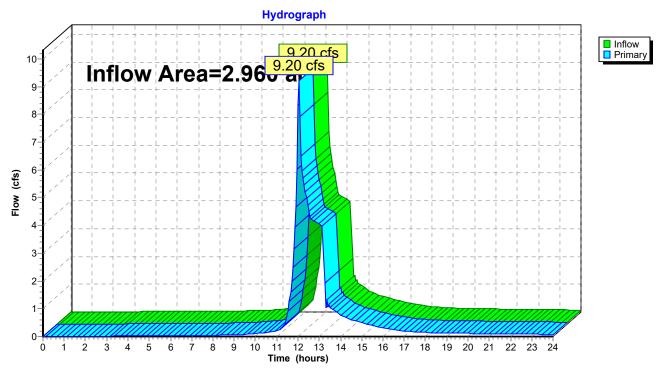

Link R2: DISCHARGE TO RIVER

Post DevelopmentHOTEL - POST - 5.8.2023Type III 24-hr90TH% Rainfall=1.50"Prepared by Pustola & Associates Consulting Engineers LLCPrinted 5/11/2023HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLCPage 4

Summary for Link R2: DISCHARGE TO RIVER

Inflow Area	=	2.960 ac, 60.47% Impervious, Inflow Depth > 0.09" for 90TH% event
Inflow	=	0.29 cfs @ 12.06 hrs, Volume= 0.022 af
Primary	=	0.29 cfs @ 12.06 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Link R2: DISCHARGE TO RIVER

Post DevelopmentHOTEL - POST - 5.8.2023Type III 24-hr100-YR Rainfall=8.32"Prepared by Pustola & Associates Consulting Engineers LLCPrinted 5/11/2023HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLCPage 5

Summary for Link R2: DISCHARGE TO RIVER

Inflow Are	a =	2.960 ac, 60.47% Impervious, Inflow Depth > 3.72" for 100-YR event
Inflow	=	9.20 cfs @ 12.05 hrs, Volume= 0.917 af
Primary	=	9.20 cfs @ 12.05 hrs, Volume= 0.917 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link R2: DISCHARGE TO RIVER

(203) 729-6675 • Fax (203) 720-2816

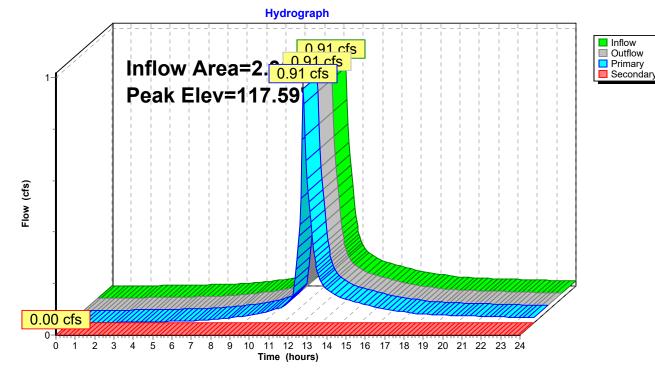
Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

PROPOSED VORTECH SYSTEM

HOTEL - POST - 5.8.2023 Prepared by Pustola & Associates Consulting

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BP: BYPASS


Inflow Area =	2.300 ac, 51.30% Impervious, Inflow De	epth > 0.54" for 1-YR event
Inflow =	0.91 cfs @ 12.07 hrs, Volume=	0.103 af
Outflow =	0.91 cfs @ 12.07 hrs, Volume=	0.103 af, Atten= 0%, Lag= 0.0 min
Primary =	0.91 cfs @ 12.07 hrs, Volume=	0.103 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 117.59' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.10'	12.0" Vert. Orifice/Grate	C= 0.600
#2	Secondary	118.00'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.88 cfs @ 12.07 hrs HW=117.58' (Free Discharge)

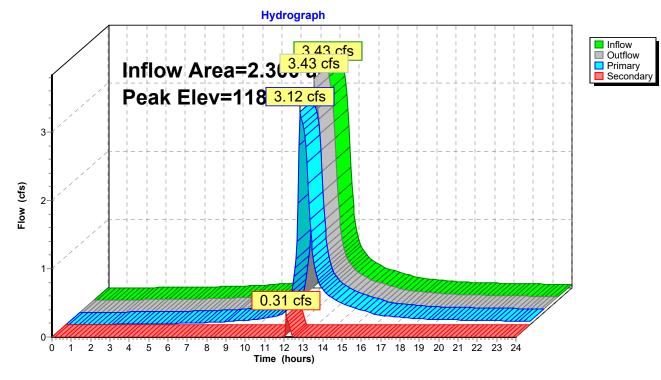
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=117.10' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Pond BP: BYPASS

HOTEL - POST - 5.8.2023 Prenared by Pustola & Associates Consultir

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BP: BYPASS


Inflow Area =	2.300 ac, 51.30% Impervious, Inflow De	epth > 1.89" for 10-YR event
Inflow =	3.43 cfs @ 12.12 hrs, Volume=	0.362 af
Outflow =	3.43 cfs @ 12.12 hrs, Volume=	0.362 af, Atten= 0%, Lag= 0.0 min
Primary =	3.12 cfs @ 12.12 hrs, Volume=	0.357 af
Secondary =	0.31 cfs @ 12.12 hrs, Volume=	0.005 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 118.28' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.10'	12.0" Vert. Orifice/Grate C= 0.600	
#2	Secondary	118.00'	12.0" Vert. Orifice/Grate C= 0.600	

Primary OutFlow Max=3.06 cfs @ 12.12 hrs HW=118.26' (Free Discharge) —1=Orifice/Grate (Orifice Controls 3.06 cfs @ 3.90 fps)

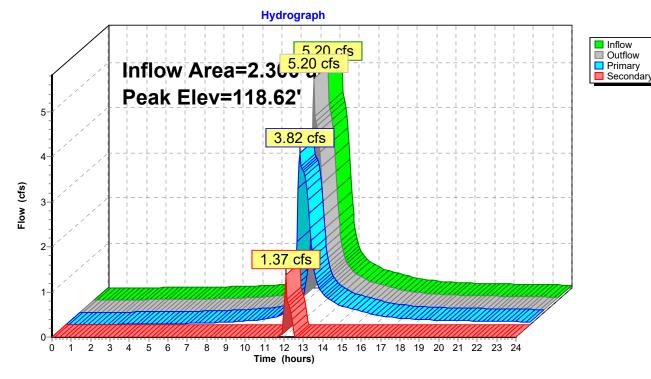
Secondary OutFlow Max=0.27 cfs @ 12.12 hrs HW=118.26' (Free Discharge) 2=Orifice/Grate (Orifice Controls 0.27 cfs @ 1.72 fps)

Pond BP: BYPASS

HOTEL - POST - 5.8.2023 Prenared by Pustola & Associates Consulti

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BP: BYPASS


Inflow Area =	2.300 ac, 51.30% Impervious, Inflow De	epth > 2.60" for 25-YR event
Inflow =	5.20 cfs @ 12.10 hrs, Volume=	0.499 af
Outflow =	5.20 cfs @ 12.10 hrs, Volume=	0.499 af, Atten= 0%, Lag= 0.0 min
Primary =	3.82 cfs @ 12.10 hrs, Volume=	0.471 af
Secondary =	1.37 cfs $\overline{@}$ 12.10 hrs, Volume=	0.028 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 118.62' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.10'	12.0" Vert. Orifice/Grate C= 0.600	
#2	Secondary	118.00'	12.0" Vert. Orifice/Grate C= 0.600	

Primary OutFlow Max=3.80 cfs @ 12.10 hrs HW=118.61' (Free Discharge) —1=Orifice/Grate (Orifice Controls 3.80 cfs @ 4.84 fps)

Secondary OutFlow Max=1.34 cfs @ 12.10 hrs HW=118.61' (Free Discharge) 2=Orifice/Grate (Orifice Controls 1.34 cfs @ 2.66 fps)

Pond BP: BYPASS

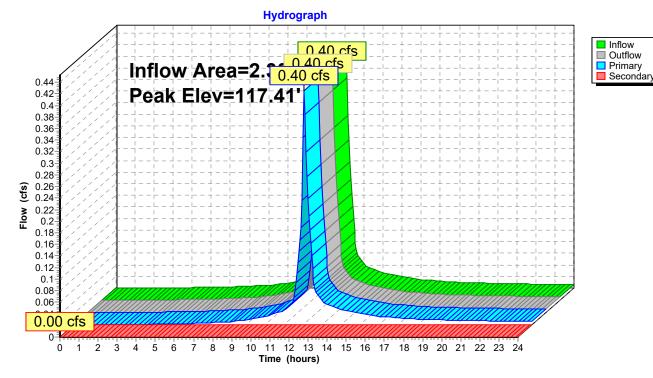
Page 3

Vortech Bypass

HOTEL - POST - 5.8.2023 Prepared by Pustola & Associates Consulting

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BP: BYPASS


Inflow Area =	2.300 ac, 51.30% Impervious, Inflow De	epth > 0.18" for 90TH% event
Inflow =	0.40 cfs @ 12.06 hrs, Volume=	0.034 af
Outflow =	0.40 cfs @ 12.06 hrs, Volume=	0.034 af, Atten= 0%, Lag= 0.0 min
Primary =	0.40 cfs @ 12.06 hrs, Volume=	0.034 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 117.41' @ 12.06 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.10'	12.0" Vert. Orifice/Grate	C= 0.600
#2	Secondary	118.00'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.40 cfs @ 12.06 hrs HW=117.41' (Free Discharge)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=117.10' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

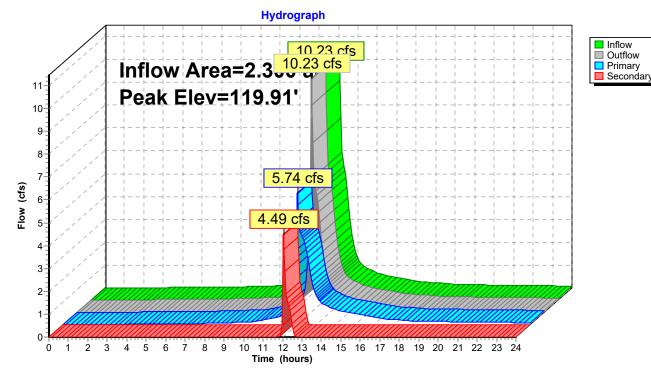
Pond BP: BYPASS

Page 4

Vortech Bypass

HOTEL - POST - 5.8.2023 Type III 24-hr 100-YR Rainfall=8.32" Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BP: BYPASS


Inflow Area =	2.300 ac, 51.30% Impervious, Inflow Depth > 3.99"	for 100-YR event
Inflow =	10.23 cfs @ 12.06 hrs, Volume= 0.764 af	
Outflow =	10.23 cfs @ 12.06 hrs, Volume= 0.764 af, At	ten= 0%, Lag= 0.0 min
Primary =	5.74 cfs @ 12.06 hrs, Volume= 0.662 af	
Secondary =	4.49 cfs $@$ 12.06 hrs, Volume= 0.102 af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 119.91' @ 12.05 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.10'	12.0" Vert. Orifice/Grate	C= 0.600
#2	Secondary	118.00'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=5.69 cfs @ 12.06 hrs HW=119.86' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 5.69 cfs @ 7.24 fps)

Secondary OutFlow Max=4.41 cfs @ 12.06 hrs HW=119.86' (Free Discharge) 2=Orifice/Grate (Orifice Controls 4.41 cfs @ 5.62 fps)

Pond BP: BYPASS

Page 5

Vortech Bypass

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

CONTECH INFILTRATION PERFORMANCE

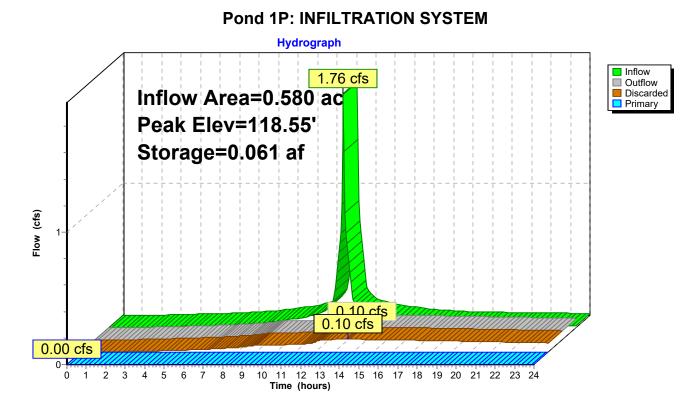
HOTEL - POST - 5.8.2023 Prepared by Pustola & Associates Consulting E

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: INFILTRATION SYSTEM

Inflow Area =	0.580 ac,100.00% Impervious, Inflow De	epth > 2.67" for 1-YR event
Inflow =	1.76 cfs @ 12.05 hrs, Volume=	0.129 af
Outflow =	0.10 cfs @ 13.70 hrs, Volume=	0.110 af, Atten= 95%, Lag= 99.4 min
Discarded =	0.10 cfs @ 13.70 hrs, Volume=	0.110 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 118.55' @ 13.70 hrs Surf.Area= 0.048 ac Storage= 0.061 af


Plug-Flow detention time= 246.6 min calculated for 0.110 af (86% of inflow) Center-of-Mass det. time= 183.6 min (939.1 - 755.5)

Volume	Volume Invert Avail.Storage Storage Description						
#1	#1 116.50' 0.048 af 63.00'W x 33.00'L x 3.54'H Gravel						
	0.169 af Overall - 0.049 af Embedded = 0.120 af x 40.0% Voids						
#2	#2 117.00' 0.049 af Cultec R-330XLHD x 40 Inside #1						
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf				
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap				
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows				
0.097 af Total Available Storage							
Device Routing Invert Outlet Devices							
#1 Discarded 116.50' 1.100 in/hr Exfiltration over Surface area							
Conductivity to Groundwater Elevation = 114.00'							
#2 Primary 118.83' 8.0" Vert. Orifice/Grate C= 0.600							
	Discarded OutFlow Max=0.10 cfs @ 13.70 hrs HW=118.55' (Free Discharge)						
T—1=Ex	←1=Exfiltration (Controls 0.10 cfs)						

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=116.50' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Infiltration System *Type III 24-hr 1-YR Rainfall=2.90"* Printed 5/11/2023 LC Page 2

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: INFILTRATION SYSTEM

Infiltration System

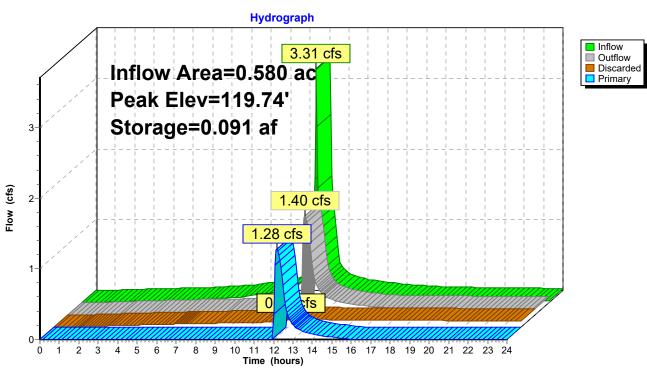
Printed 5/11/2023

Page 3

Type III 24-hr 10-YR Rainfall=5.38"

Inflow Area =	0.580 ac,100.00% Impervious, Inflow De	epth > 5.14" for 10-YR event
Inflow =	3.31 cfs @ 12.05 hrs, Volume=	0.249 af
Outflow =	1.40 cfs @ 12.20 hrs, Volume=	0.210 af, Atten= 58%, Lag= 9.0 min
Discarded =	0.12 cfs @ 12.20 hrs, Volume=	0.137 af
Primary =	1.28 cfs @ 12.20 hrs, Volume=	0.072 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 119.74' @ 12.20 hrs Surf.Area= 0.048 ac Storage= 0.091 af


Plug-Flow detention time= 170.4 min calculated for 0.209 af (84% of inflow) Center-of-Mass det. time= 104.2 min (848.0 - 743.8)

Volume	Invert	Avail.Storage	e Storage Description				
#1	116.50'	0.048 a	f 63.00'W x 33.00'L x 3.54'H Gravel				
			0.169 af Overall - 0.049 af Embedded = 0.120 af x 40.0% Voids				
#2	117.00'	0.049 a					
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf				
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap				
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows				
		0.097 a	If Total Available Storage				
	C C						
Device	Routing	Invert C	Dutlet Devices				
#1	Discarded	116.50' 1	.100 in/hr Exfiltration over Surface area				
		C	Conductivity to Groundwater Elevation = 114.00'				
#2	•						
	Discarded OutFlow Max=0.12 cfs @ 12.20 hrs HW=119.74' (Free Discharge)						
T—1=Ex	filtration (Co	ontrols 0.12 cfs	3)				

Primary OutFlow Max=1.28 cfs @ 12.20 hrs HW=119.74' (Free Discharge) **2=Orifice/Grate** (Orifice Controls 1.28 cfs @ 3.66 fps)

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Infiltration System *Type III 24-hr 10-YR Rainfall=5.38"* Printed 5/11/2023 LLC Page 4

Pond 1P: INFILTRATION SYSTEM

Type III 24-hr 25-YR Rainfall=6.53" Prepared by Pustola & Associates Consulting Engineers LLC Printed 5/11/2023 HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

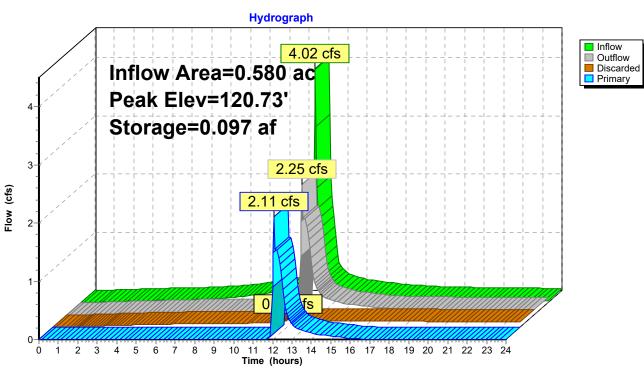
Summary for Pond 1P: INFILTRATION SYSTEM

Infiltration System

Page 5

Inflow Area =	0.580 ac,100.00% Impervious, Inflow De	epth > 6.29" for 25-YR event
Inflow =	4.02 cfs @ 12.05 hrs, Volume=	0.304 af
Outflow =	2.25 cfs @ 12.10 hrs, Volume=	0.252 af, Atten= 44%, Lag= 3.4 min
Discarded =	0.14 cfs @ 12.10 hrs, Volume=	0.144 af
Primary =	2.11 cfs @ 12.10 hrs, Volume=	0.108 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 120.73' @ 12.10 hrs Surf.Area= 0.048 ac Storage= 0.097 af


Plug-Flow detention time= 158.8 min calculated for 0.252 af (83% of inflow) Center-of-Mass det. time= 88.3 min (829.2 - 740.9)

Volume	Invert	Avail.Storage	e Storage Description				
#1	116.50'	0.048 a	8 af 63.00'W x 33.00'L x 3.54'H Gravel				
	0.169 af Overall - 0.049 af Embedded = 0.120 af \times 40.0% Voids						
#2	117.00'	0.049 a					
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf				
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap				
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows				
		0.097 a	f Total Available Storage				
Device	Routing	Invert C	Dutlet Devices				
#1	Discarded	116.50' 1	.100 in/hr Exfiltration over Surface area				
		C	Conductivity to Groundwater Elevation = 114.00'				
#2 Primary 118.83' 8.0" Vert. Orifice/Grate C= 0.600							
Discarded OutFlow Max=0.14 cfs @ 12.10 hrs HW=120.72' (Free Discharge)							
⁻ ─ 1=Ex	filtration (Co	ntrols 0.14 cfs					

Primary OutFlow Max=2.09 cfs @ 12.10 hrs HW=120.72' (Free Discharge) **2=Orifice/Grate** (Orifice Controls 2.09 cfs @ 6.00 fps)

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Infiltration System Type III 24-hr 25-YR Rainfall=6.53" Printed 5/11/2023 LLC Page 6

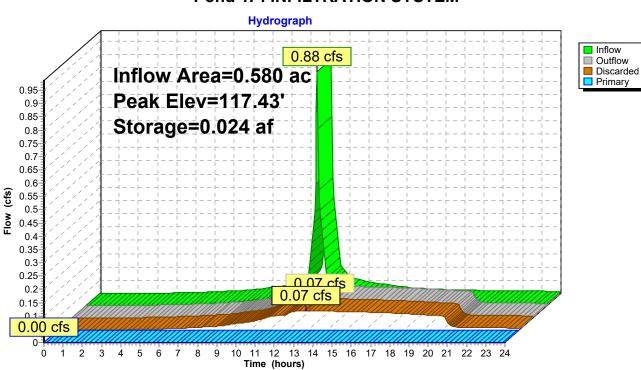
Pond 1P: INFILTRATION SYSTEM

Infiltration System Type III 24-hr 90TH% Rainfall=1.50" Prepared by Pustola & Associates Consulting Engineers LLC Printed 5/11/2023 HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC Page 7

Summary for Pond 1P: INFILTRATION SYSTEM

Inflow Area =	0.580 ac,100.00% Impervious, Inflow De	pth > 1.28" for 90TH% event
Inflow =	0.88 cfs @ 12.05 hrs, Volume=	0.062 af
Outflow =	0.07 cfs @ 12.92 hrs, Volume=	0.062 af, Atten= 92%, Lag= 52.2 min
Discarded =	0.07 cfs @ 12.92 hrs, Volume=	0.062 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 117.43' @ 12.92 hrs Surf.Area= 0.048 ac Storage= 0.024 af


Plug-Flow detention time= 120.9 min calculated for 0.062 af (100% of inflow) Center-of-Mass det. time= 119.9 min (892.2 - 772.3)

Volume Invert Avail.Storage Storage Description						
#1	116.50'	0.048 a				
		0.040	0.169 af Overall - 0.049 af Embedded = 0.120 af x 40.0% Voids			
#2	117.00'	0.049 a				
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap			
			Row Length Adjustment= $+1.50' \times 7.45$ sf x 4 rows			
0.097 af Total Available Storage						
Device Device Invert Outlet Devices						
Device Routing Invert Outlet Devices						
#1 Discarded 116.50' 1.100 in/hr Exfiltration over Surface area						
Conductivity to Groundwater Elevation = 114.00'						
#2 Primary 118.83' 8.0" Vert. Órifice/Grate C= 0.600						
Discarded OutFlow Max=0.07 cfs @ 12.92 hrs HW=117.43' (Free Discharge) -1=Exfiltration (Controls 0.07 cfs)						

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=116.50' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Infiltration System *Type III 24-hr 90TH% Rainfall=1.50"* Printed 5/11/2023 <u>S LLC Page 8</u>

Pond 1P: INFILTRATION SYSTEM

Infiltration System Type III 24-hr 100-YR Rainfall=8.32" Prepared by Pustola & Associates Consulting Engineers LLC Printed 5/11/2023 HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC Page 9

Summary for Pond 1P: INFILTRATION SYSTEM

Inflow Area =	0.580 ac,100.00% Impervious, Inflow De	epth > 8.08" for 100-YR event
Inflow =	5.13 cfs @ 12.05 hrs, Volume=	0.390 af
Outflow =	6.22 cfs @ 12.05 hrs, Volume=	0.360 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.37 cfs @ 12.05 hrs, Volume=	0.156 af
Primary =	5.86 cfs @ 12.05 hrs, Volume=	0.204 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 131.30' @ 12.05 hrs Surf.Area= 0.048 ac Storage= 0.097 af

Plug-Flow detention time= 105.0 min calculated for 0.359 af (92% of inflow) Center-of-Mass det. time= 63.5 min (801.3 - 737.7)

Volume	Invert	Avail.Storage	Storage Description				
#1	116.50'	0.048 af	63.00'W x 33.00'L x 3.54'H Gravel				
0.169 af Overall - 0.049 af Embedded = 0.120 af \times 40.0% Voids							
#2	117.00'	0.049 af					
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf				
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap				
			Row Length Adjustment= +1.50' x 7.45 sf x 4 rows				
		0.097 af	Total Available Storage				
Device	Routing	Invert O	utlet Devices				
#1	Discarded	116.50' 1.	100 in/hr Exfiltration over Surface area				
		C	onductivity to Groundwater Elevation = 114.00'				
#2 Primary 118.83' 8.0" Vert. Orifice/Grate C= 0.600							
Discarded OutFlow Max=0.36 cfs @ 12.05 hrs HW=131.00' (Free Discharge)							
T—1=Ex	filtration (Co	ontrols 0.36 cfs)					

Primary OutFlow Max=5.78 cfs @ 12.05 hrs HW=130.97' (Free Discharge) ←2=Orifice/Grate (Orifice Controls 5.78 cfs @ 16.55 fps)

Prepared by Pustola & Associates Consulting Engineers LLC HydroCAD® 10.00-26 s/n 09590 © 2020 HydroCAD Software Solutions LLC

Infiltration System *Type III 24-hr 100-YR Rainfall=8.32"* Printed 5/11/2023 <u>S LLC Page 10</u>

Pond 1P: INFILTRATION SYSTEM

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

CONTECH SYSTEM SPECFICATIONS

The Recharger[®] 330XLHD is a 30.5" (775 mm) tall, high capacity chamber. Typically when using this model, fewer chambers are required resulting in less labor and a smaller installation area. The Recharger[®] 330XLHD has the side portal internal manifold feature. HVLV[®] FC-24 Feed Connectors are inserted into the side portals to create the internal manifold.

Answer2.59 m x 1321 mm x 775 mmInstalled Length7'2.13 mLength Adjustment per Run1.50'0.46 mChamber Storage7.46 ft³/ft0.69 m³/m52.21 ft³/unit1.48 m³/unitMin. Installed Storage11.32 ft³/ft1.05 m³/m79.26 ft³/unit2.24 m³/unitMin. Area Required33.83 ft²31.11 kgShipping30 chambers/skid2,335 lbs/skid10 skids/48' flatbedMin. Center-to-Center Spacing4.83'1.47 mMax. Allowable Cover12'3.66 m		
Installed Length 7' Length Adjustment per Run 1.50' Length Adjustment per Run 0.46 m Chamber Storage 7.46 ft³/ft O.69 m³/m 52.21 ft³/unit 52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' Max. Allowable Cover 12' Max. Allowable Cover 12'	Size (L x W x H)	8.5' x 52" x 30.5"
2.13 m Length Adjustment per Run 1.50' O.46 m Chamber Storage 7.46 ft³/ft 0.69 m³/m 52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' Max. Allowable Cover 12' 3.66 m 3.66 m		2.59 m x 1321 mm x 775 mm
Length Adjustment per Run 1.50' O.46 m Chamber Storage 7.46 ft³/ft 0.69 m³/m 52.21 ft³/unit 1.48 m³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² 3.14 m² Chamber Weight 73.0 lbs 33.11 kg 31.11 kg Shipping 30 chambers/skid 10 skids/48' flatbed 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' Max. Allowable Cover 12' 3.66 m 3.66 m	Installed Length	7'
0.46 m Chamber Storage 7.46 ft³/ft 0.69 m³/m 52.21 ft³/unit 52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² 3.14 m² Chamber Weight 73.0 lbs 3.11 kg 31.11 kg Shipping 30 chambers/skid 10 skids/48' flatbed 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' Max. Allowable Cover 12' 3.66 m 3.66 m		2.13 m
Chamber Storage 7.46 ft³/ft 0.69 m³/m 52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m	Length Adjustment per Run	1.50'
0.69 m³/m 52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m 3.66 m		0.46 m
52.21 ft³/unit 1.48 m³/unit Min. Installed Storage 11.32 ft³/ft 1.05 m³/m 79.26 ft³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m	Chamber Storage	7.46 ft³/ft
I.48 m³/unit Min. Installed Storage 11.32 ft³/ft I.05 m³/m 79.26 ft³/unit 79.26 ft³/unit 2.24 m³/unit Min. Area Required 33.83 ft² 3.14 m² 3.14 m² Chamber Weight 73.0 lbs 3.11 kg 31.11 kg Shipping 30 chambers/skid 10 skids/48' flatbed 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m 1.47 m Max. Allowable Cover 12' 3.66 m 3.66 m		0.69 m³/m
Min. Installed Storage11.32 ft³/ft1.05 m³/m 79.26 ft³/unit2.24 m³/unitMin. Area Required33.83 ft² 3.14 m²Chamber Weight73.0 lbs 33.11 kgShipping30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbedMin. Center-to-Center Spacing4.83' 1.47 mMax. Allowable Cover12' 3.66 m		52.21 ft³/unit
1.05 m³/m79.26 ft³/unit2.24 m³/unitMin. Area Required33.83 ft²3.14 m²Chamber Weight73.0 lbs33.11 kgShipping30 chambers/skid2,335 lbs/skid10 skids/48' flatbedMin. Center-to-Center Spacing4.83'1.47 mMax. Allowable Cover12'3.66 m		1.48 m³/unit
79.26 ft³/unit2.24 m³/unitMin. Area Required33.83 ft²3.14 m²Chamber Weight73.0 lbs33.11 kgShipping30 chambers/skid2,335 lbs/skid10 skids/48' flatbedMin. Center-to-Center Spacing4.83'1.47 mMax. Allowable Cover12'3.66 m	Min. Installed Storage	11.32 ft³/ft
2.24 m³/unitMin. Area Required33.83 ft² 3.14 m²Chamber Weight73.0 lbs 33.11 kgShipping30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbedMin. Center-to-Center Spacing4.83' 1.47 mMax. Allowable Cover12' 3.66 m		1.05 m³/m
Min. Area Required33.83 ft²3.14 m²Chamber Weight73.0 lbs33.11 kgShipping30 chambers/skid2,335 lbs/skid10 skids/48' flatbedMin. Center-to-Center Spacing4.83'1.47 mMax. Allowable Cover12'3.66 m		79.26 ft³/unit
3.14 m² Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m		2.24 m³/unit
Chamber Weight 73.0 lbs 33.11 kg Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m	Min. Area Required	33.83 ft ²
33.11 kgShipping30 chambers/skid2,335 lbs/skid2,335 lbs/skid10 skids/48' flatbed10 skids/48' flatbedMin. Center-to-Center Spacing4.83'1.47 m1.47 mMax. Allowable Cover12'3.66 m		3.14 m ²
Shipping 30 chambers/skid 2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m	Chamber Weight	73.0 lbs
2,335 lbs/skid 10 skids/48' flatbed Min. Center-to-Center Spacing 1.47 m Max. Allowable Cover 3.66 m		33.11 kg
10 skids/48' flatbed Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m	Shipping	30 chambers/skid
Min. Center-to-Center Spacing 4.83' 1.47 m Max. Allowable Cover 12' 3.66 m		2,335 lbs/skid
1.47 m Max. Allowable Cover 12' 3.66 m		10 skids/48' flatbed
Max. Allowable Cover 12' 3.66 m	Min. Center-to-Center Spacing	4.83'
3.66 m		1.47 m
	Max. Allowable Cover	12'
Max, Inlet Opening in End Wall 24" HDPE, PVC		3.66 m
	Max. Inlet Opening in End Wall	24" HDPE, PVC
600 mm HDPE, PVC		600 mm HDPE, PVC
Max. Allowable O.D. 10" HDPE, 12" PVC		10" HDPE, 12" PVC
in Side Portal 250 mm HDPE, 300 mm PVC	in Side Portal	250 mm HDPE, 300 mm PVC
Compatible Feed Connector HVLV FC-24 Feed Connector	Compatible Feed Connector	HVLV FC-24 Feed Connector

Calculations are based on installed chamber length.

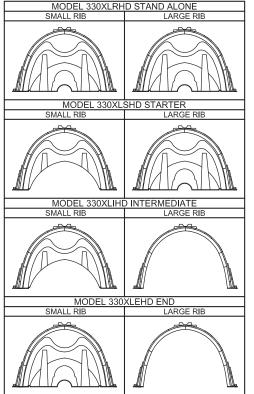
All above values are nominal. Min. installed storage includes 6" (152 mm) stone base, 6" (152 mm) stone above crown of chamber and typical stone surround at 58" (1473 mm) center-to-center spacing.

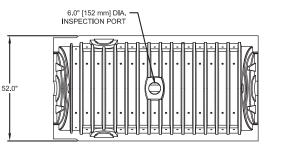
	Stone Foundation Depth			
	6"	12"	18"	
	152 mm	305 mm	457 mm	
Chamber and Stone Storage Per Chamber	79.26 ft ³	86.03 ft ³	92.79 ft ³	
Chamber	2.24 m ³	2.44 m ³	2.63 m ³	
Min. Effective Depth	3.54'	4.04'	4.54'	
	1.08 m	1.23 m	1.38 m	
Stone Required Per Chamber	2.50 yd ³	3.13 yd ³	3.76 yd ³	
	1.91 m³	2.39 m ³	2.87 m ³	

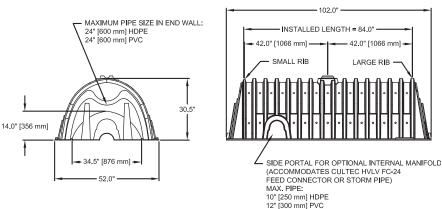
Recharger® 330XLHD Bare Chamber Storage Volumes

Eleva	ation	Inc	rement Volu	al Stor ume	age	Cumu Stor	lative age
in.	mm	ft³/ft	m³/m	ft³	m³	ft³	m³
30.5	775	0.000	0.000	0.000	0.000	52.213	1.479
30	762	0.019	0.002	0.133	0.004	52.213	1.479
29	737	0.051	0.005	0.357	0.010	52.080	1.475
28	711	0.084	0.008	0.588	0.017	51.723	1.465
27	686	0.124	0.012	0.868	0.025	51.135	1.448
26	660	0.150	0.014	1.05	0.030	50.267	1.424
25	635	0.173	0.016	1.211	0.034	49.217	1.394
24	609	0.191	0.018	1.337	0.038	48.006	1.360
23	584	0.207	0.019	1.449	0.041	46.669	1.322
22	559	0.221	0.021	1.547	0.044	45.220	1.281
21	533	0.233	0.022	1.631	0.046	43.673	1.237
20	508	0.244	0.023	1.708	0.048	42.042	1.191
19	483	0.254	0.024	1.778	0.050	40.334	1.142
18	457	0.264	0.025	1.848	0.052	38.556	1.092
17	432	0.271	0.025	1.897	0.054	36.708	1.040
16	406	0.283	0.026	1.981	0.056	34.811	0.986
15	381	0.294	0.027	2.058	0.058	32.830	0.930
14	356	0.296	0.027	2.072	0.059	30.772	0.871
13	330	0.299	0.028	2.093	0.059	28.700	0.813
12	305	0.301	0.028	2.107	0.060	26.607	0.754
11	279	0.303	0.028	2.121	0.060	24.500	0.694
10	254	0.304	0.028	2.128	0.060	22.379	0.634
9	229	0.306	0.028	2.142	0.061	20.251	0.574
8	203	0.313	0.029	2.191	0.062	18.109	0.513
7	178	0.321	0.030	2.247	0.064	15.918	0.451
6	152	0.322	0.030	2.254	0.064	13.671	0.387
5	127	0.323	0.030	2.261	0.064	11.417	0.323
4	102	0.324	0.030	2.268	0.064	9.156	0.259
3	76	0.325	0.030	2.275	0.064	6.888	0.195
2	51	0.327	0.030	2.289	0.065	4.613	0.131
1	25	0.332	0.031	2.324	0.066	2.324	0.066
Tot	tal	7.459	0.693	52.213	1.479	52.213	1.479

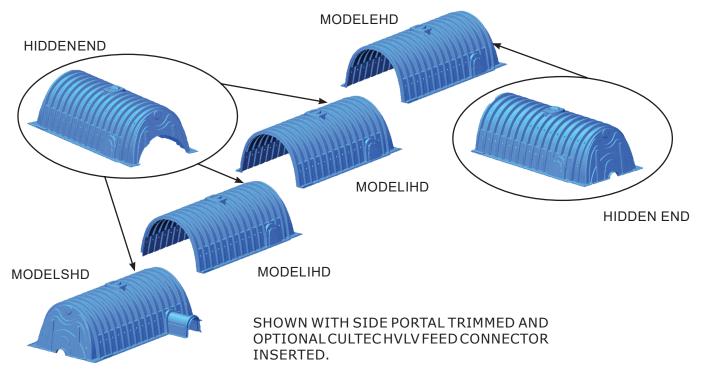
Calculations are based on installed chamber length.

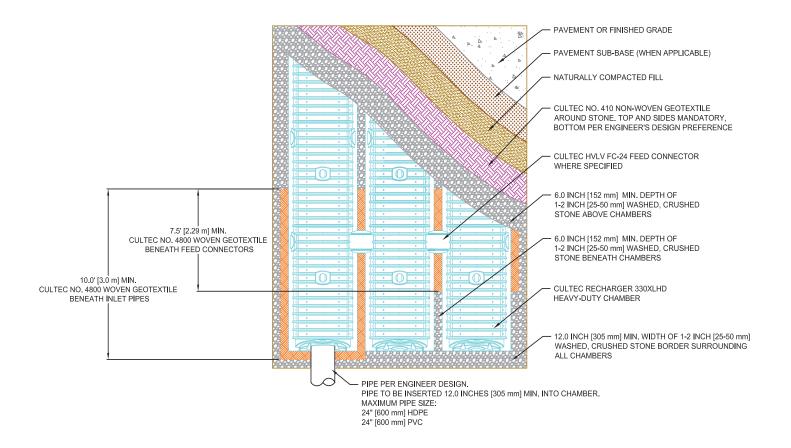

Visit http://cultec.com/downloads/ for Product Downloads and CAD details.


Calculations are based on installed chamber length.

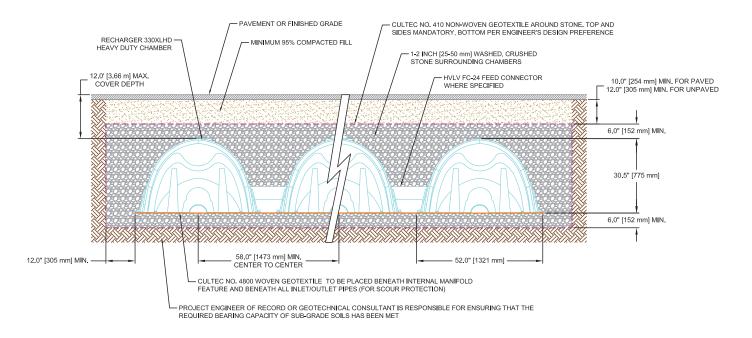

Includes 6" (305 mm) stone above crown of chamber and typical stone surround at 58"(1473 mm) center-to-center spacing and stone foundation as listed in table. Stone void calculated at 40%.

Three View Drawing




CULTEC RECHARGER 330XLHD CHAMBER STORAGE = 7.459 CF/FT [0.693 m³/m] INSTALLED LENGTH ADJUSTMENT = 1.5' [0.46 m] SIDE PORTAL ACCEPTS CULTEC HVLV FC-24 FEED CONNECTOR

Typical Interlock Installation



Plan View Drawing

Typical Cross Section for Traffic Application

Licensed Professional Engineers New York & Connecticut 185 Meadow Street Naugatuck, Connecticut 06770

PERCOLATION TESTING

SESI CONSULTING ENGINEERS

GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL

May 1, 2023

via email: lcalabria@nationalresources.com

Mrs. Lauren Calabria National Resources iPark Norwalk II, LLC. 485 W Putnum Avenue Greenwich, CT, 06830 <u>Principals</u> Anthony Castillo, PE Fuad Dahan, PhD, PE, LSRP Franz W. Laki, PE John M. Nederfield, PE Justin M. Protasiewicz, PE Michael St. Pierre, PE

RE: Proposed Hotel – Infiltration Testing Summary Letter 1 Cannondale Way Wilton, CT 06897 SESI Project No. 13021

Dear Mrs. Calabria:

In accordance with our Professional Services Agreement, dated April 19, 2023, we have completed our infiltration testing investigation for the proposed underground stormwater system located in the northern portion of the proposed site development to be constructed at 1 Cannondale Way, Wilton, CT. The investigation consisted of the excavation of three (3) soil profile test pits on April 24, 2023 and the completion of three (3) single ring infiltration tests, tested by a representative of SESI. The approximate locations of the soil profile test pits and infiltration tests are shown on the **Test Pit Location Plan**, which is included as **Figure 1**.

During the investigation, a representative of SESI observed the excavation of three (3) test pits, TP-1, TP-2, and TP-3, using your subcontracted track excavator, to depths of up to 10.5<u>+</u> feet below the ground surface. The excavations were performed in order to characterize the subsurface conditions and to determine the most hydraulically restrictive soil layer within approximately 4-feet below the bottom of the proposed underground stormwater system. The individual test pit logs, which describe the materials encountered, are presented as **Figures 2 through 4.** A key to soil terminology is included as **Figure 5**.

Once the most hydraulically restrictive soil layer was determined, three (3) infiltration tests were conducted adjacent to each of the soil profile test pits. The results of the infiltration tests (unfactored) and the calculated hydraulic conductivity tests are summarized on the individual test pit logs. The unfactored infiltration test results were greater than 1 in/hr in test pits TP-1, TP-2, and TP-3 at depths of 6.5+ feet, 5+ feet, and 6+ feet below grade, respectively. We recommend that the site civil engineer apply the standard factor of safety to the results for the design.

All fieldwork was performed under the direct technical observation of a representative from SESI Consulting Engineers. Our representative maintained continuous logs of the test pits, coordinated the soil sampling operations in order to develop the required subsurface information and performed the infiltration testing.

info@sesi.org www.sesi.org All soil samples were taken to our soil's laboratory for classification and geotechnical testing. Laboratory testing consisted of two (2) mechanical grain size analyses, two (2) percent passing sieve No. 200 tests, and two (2) moisture content determinations. The results of the percent passing sieve No. 200 tests and water content determinations are presented on the individual test pit logs. The results of the mechanical grain size analysis are presented on the individual test pit logs and in graphical form as **Figure 6** and **Figure 7**.

GENERALIZED SUBSURFACE CONDITIONS

The following subsurface conditions were encountered in order of increasing depth:

<u>Surface Materials</u>: A layer of topsoil was encountered in test pit TP-1. The topsoil ranged from approximately eight to ten inches in thickness within the limits of the excavation. Test pits TP-2 and TP-3 were performed within the existing pavement area and encountered an approximate 3-inch-thick asphalt layer.

<u>Fill</u>: Beneath the surface materials, a layer of fill was encountered in all test pit locations, except for test pit TP-1, consisting of a layer of brown sand with varied amounts of silt and gravel. The fill encountered during our investigation extended to depths ranging from 0.75 to 2.75 feet below the existing ground surface.

<u>Natural Soils:</u> Beneath the surface materials and fill, where encountered, all three test pits encountered the natural soils to the completion depths of the test pits. The soils generally consisted of sands with varied amounts of silt and gravel with cobbles. This stratum was found to be in a medium dense condition.

<u>Groundwater:</u> Groundwater seepage was not encountered in the soil profile pit excavations; however, mottling was observed in test pits, TP-1, TP-2, and TP-3, at elevations of 114.5<u>+</u>, 113.5<u>+</u>, and 113.5<u>+</u>, respectively. It should be anticipated that the groundwater level will vary by several feet based on the time of year, amount of recent precipitation, and tidal fluctuations from the Norwalk River.

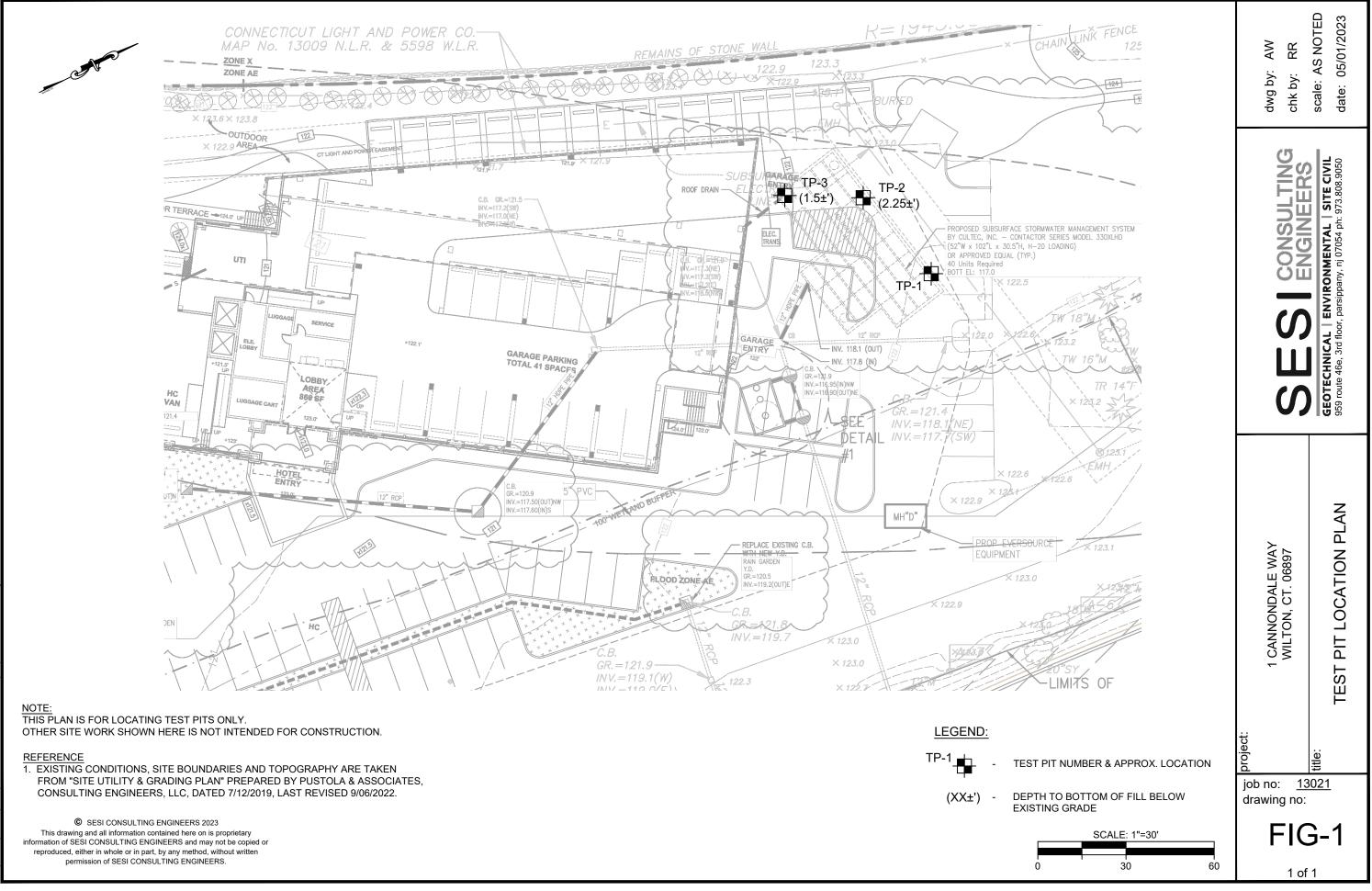
If you have any questions, please call.

Sincerely,

SESI CONSULTING ENGINEERS

the M. (ede

John M. Nederfield, P.E. Principal


Attachments:

- Figure 1 Test Pit Location Plan
- Figure 2 through 4 Test Pit Logs
- Figure 5 Key to Soil Terminology
- Figure 6 and 7 Particle Size Distribution Reports

Robert Rains, P.E. Project Engineer

959 Route 46E FI. 3 Ste.300 Parsippany, NJ 07054 info@sesi.org www.sesi.org phone 973.808.9050 fax 973.808.9099

N:\13021 - Wilton, CT\Letters & Memos\13021 Infiltration Letter

PRO	JECT NO. 13021 PROJECT Proposed Hotel	TEST PIT NO.	TP-1
LOC	ATION Wilton, CT APPROX. ELEV. ±123.5	INSPECTED BY	CJK
WATER OBSERVATION Not Encountered		DATE EXCAVATED	4/24/2023
DEPTH FT.	DESCRIPTION / SOIL CLASSIFICATION	RELATIVE DENSITY OR CONSISTENCY	
0	Topsoil 8-10"		
1	Brown coarse to fine Sand and Silt, some medium to fine Gravel with Root fibers		
2		Medium Dens	e
3	Yellow-brown coarse to fine SAND, some medium to fine Gravel, little Silt with frequent Cobbles		
4		Medium Dens	e
5	Yellow-brown coarse to fine SAND, some Silt, some medium to fine		
	Gravel, with occassional Cobbles		
6	W.C = 16.6% (-200) = 26.2%		
7	Unfactored Infiltration Rate = 4.5 in/hr at 6.5' below grade (Hydraulic Conductivity = 1.5 in/hr)		
·			
8		Medium Dens	e
9	Same as above with mottling		
10			
11	TEST PIT COMPLETED AT 10.5± FEET BELOW GRADE		
12			
13			
14			
15—			
NOTE:	Fig. 2	SESI CONSUL	LTING FFS

PRO	JECT NO. 13021 PROJECT Proposed Hotel	TEST PIT NO.	TP-2
LOC	ATION Wilton, CT APPROX. ELEV. ±122	INSPECTED BY	CJK
WATER OBSERVATION Not Encountered		DATE EXCAVATED	4/24/2023
DEPTH FT.	DESCRIPTION / SOIL CLASSIFICATION	RELATIVE DENSITY OR CONSISTENCY	
0	3" Asphalt		
	Fill: Yellow-brown coarse to fine SAND, some coarse to fine Gravel, little Silt		
1			
2—			
	Dark brown coarse to fine Sand, some Silt, some coarse to fine Gravel,		
3	with occassional Cobbles and Root fibers		
0		Medium Dens	e
4	Gray coarse to fine Sand, and Silt, some coarse to fine Gravel		
	W.C = 16.2% (-200) = 35.0%		
5	Unfactored Infiltration Rate = 3.26 in/hr at 5' Below Grade	Dense	
	(Hydraulic Conductivity = 1.1 in/hr)		
6—	Yellow-brown coarse to fine SAND, some Silt, some medium to fine		
	Gravel		
7 —			
		Medium Dens	е
8			
	Same as above with mottling		
9	TEST PIT COMPLETED AT ±9 FEET		
10			
11			
12			
13			
14 —			
15			
NOTE:			TING
	Fig. 3		FRS

PROJECT NO. 13021 PROJECT Proposed Hotel	TEST PIT NO.	TP-3
LOCATION Wilton, CT APPROX. ELEV. ±122	INSPECTED BY	CJK
WATER OBSERVATION Not Encountered	DATE EXCAVATED	4/24/2023
DEPTH DESCRIPTION / SOIL CLASSIFICATION FT.	RELATIVE DENSITY OR CONSISTENCY	
0 —— 3" Asphalt		
Fill: Brown coarse to fine SAND, some Silt, little coarse to fine Gravel		
1		
Dark brown coarse to fine Sand, some Silt, little coarse to fine Gravel, with frequent Cobbles and Root fibers	Medium Dens	e
3 — Red-brown coarse to fine SAND, some coarse to fine Gravel, trace Silt		
	Medium Dens	е
4 — Yellow-brown coarse to fine SAND, some Silt, some medium to fine		
Gravel		
5		
6 — Unfactored Infiltration Rate = 4.0 in/hr at 6' Below Grade		
(Hydraulic Conductivity =1.3 in/hr)	Dense	
7		
8		
——…Same as above with mottling		
9 TEST PIT COMPLETED AT ±9 FEET		
10		
11		
12—		
13		
14		
15		
NOTE: Fig. 4	SESI CONSUL FIGHT FIGHT FIGHT	LTING FRS

Definitions of Identification Terms for Granular Soils

Our experience has shown that the following field identification system, which is pattered somewhat after the Burmister System, permits a more detailed breakdown of the components within a soil sample than other identification systems allow. It also compels the supervising technician to examine a sample quite closely in order to accurately describe the components within the sample.

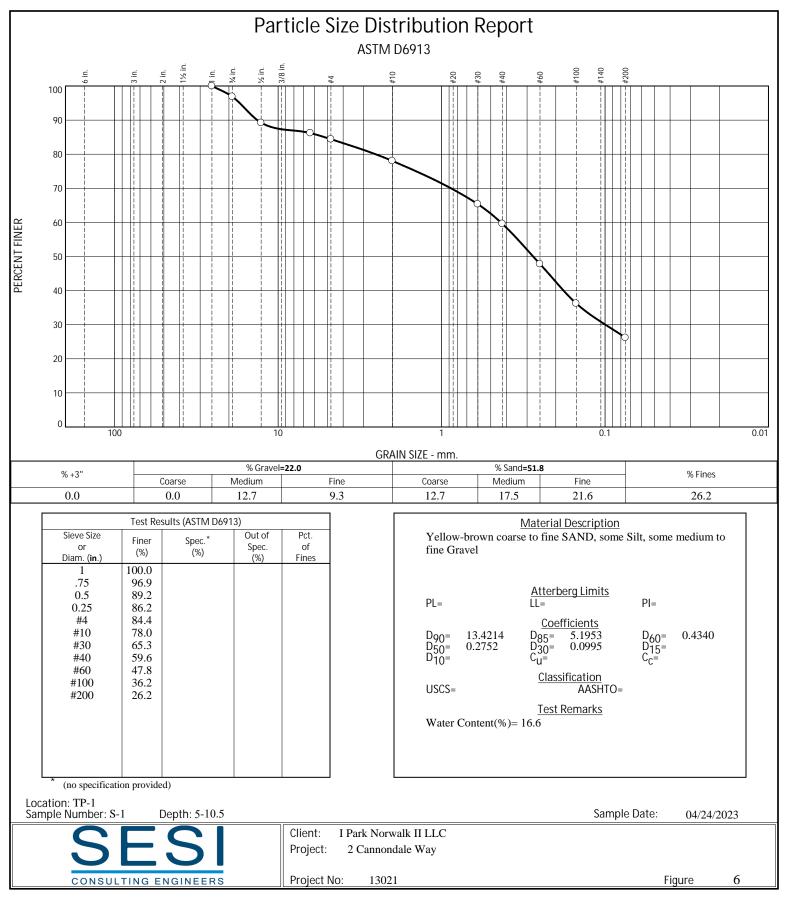
Principal Component (All Capitalized)

- GRAVEL More than 50% of the sample by weight is Gravel
- SAND More than 50% of the sample by weight is Sand
- SILT More than 50% of the sample by weight is Silt

Minor Component (Proper Case)

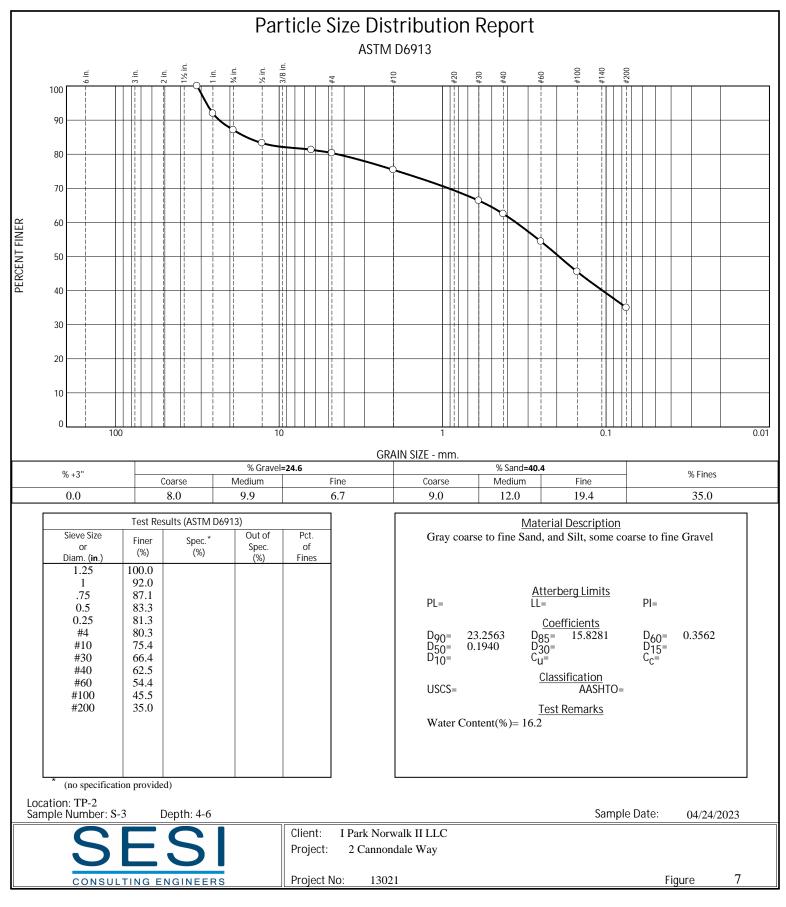
- Gravel Less than 50% of the sample by weight is Gravel
- Sand Less than 50% of the sample by weight is Sand
- Silt Less than 50% of the sample by weight is Silt

Proportion Terms


- and Component ranges from 35% to 50% of the sample by weight
- some Component ranges from 20% to 35% of the sample by weight
- little Component ranges from 10% to 20% of the sample by weight
- trace Component ranges from 0% to 10% of the sample by weight

Size of Soil Components

- Gravel
 - Coarse gravel ranges from 3 inches to 1 inch
 - Medium gravel ranges from 1 inch to 3/8 inch
 - Fine gravel ranges from 3/8 inch to No. 10 sieve
- Sand
 - Coarse sand ranges from No. 10 sieve to No. 30 sieve
 - Medium sand ranges from No. 30 sieve to No. 60 sieve
 - Fine sand ranges from No. 60 sieve to No. 200 sieve
- Silt
 - Material which passes the No. 200 sieve
- Clay
 - Material which passes the No. 200 sieve
 - Exhibits varying degrees of plasticity


Gradation Designations

- Coarse to fine (c-f) All fractions greater than 10% of the component
- Coarse to medium (c-m) Less than 10% of the component is fine
- Medium to fine (m-f) Less than 10% of the component is coarse
- Coarse (c) Less than 10% of the component is medium and fine
- Medium (m) Less than 10% of the component is coarse and fine
- Fine (f) Less than 10% of the component is coarse and medium

Tested By: AV

Checked By: MLT

Tested By: AV

Checked By: MLT