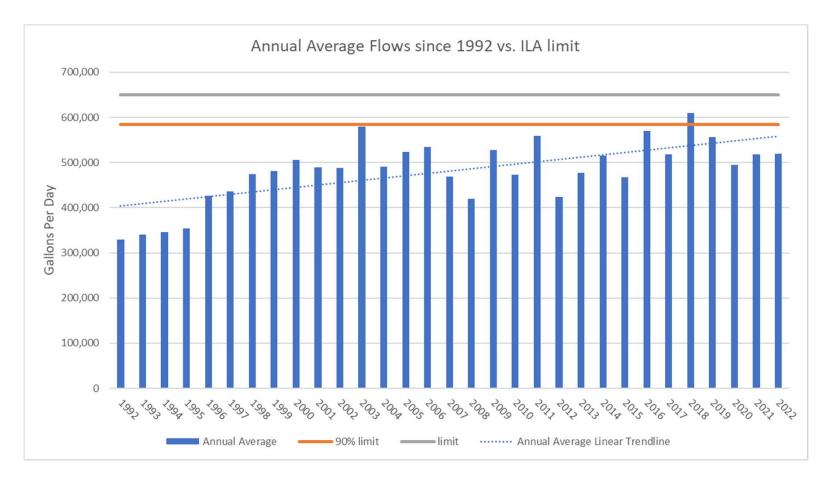
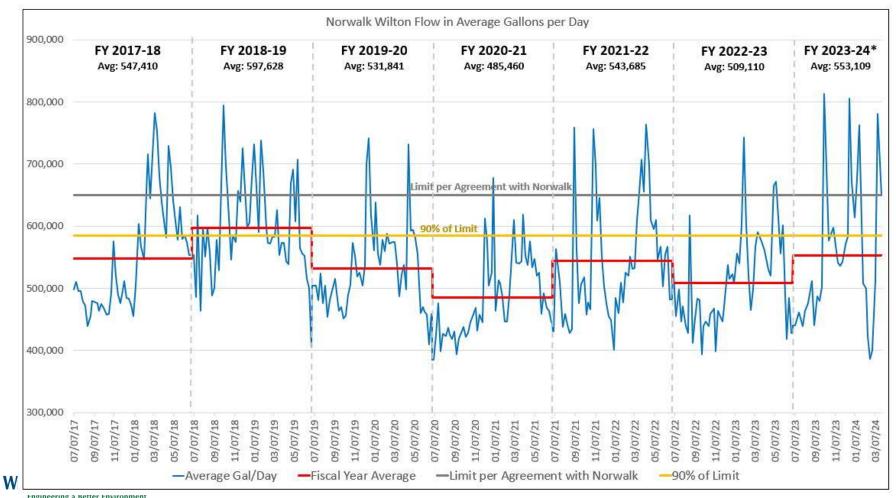
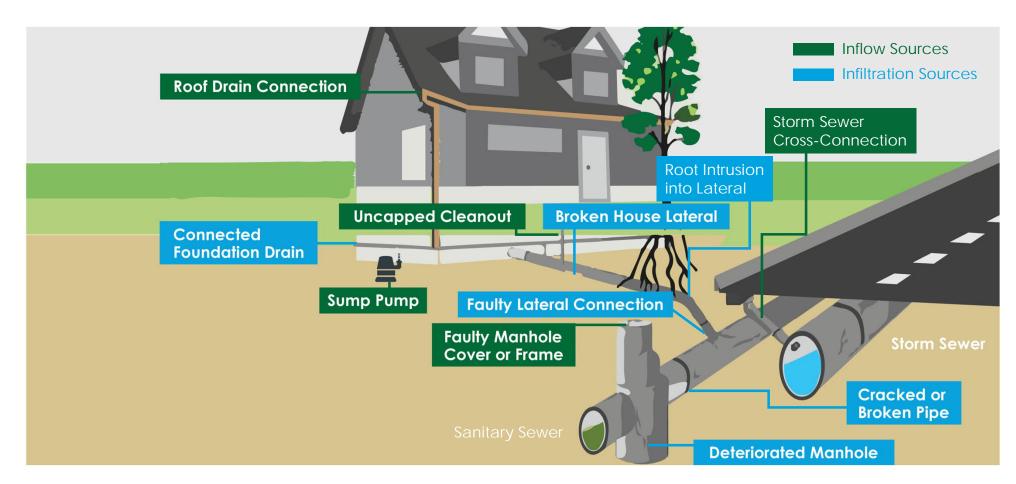
Inflow and Infiltration Evaluation Summary Sanitary Sewer Evaluation Study

April 2024


Christine Kurtz, PE

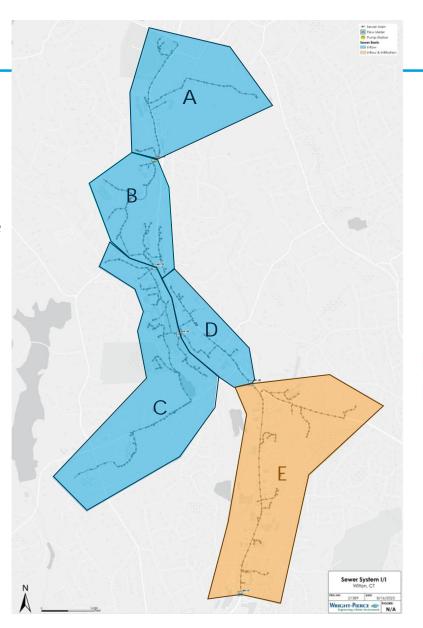


Annual Wastewater Totals


Monthly Wastewater Totals

Engineering a Better Environment

3


I/I Sources

Sewer Sub-Areas

- Orange sub-areas have excessive inflow & infiltration
- Blue sub-areas have excessive inflow

> Sewer Main

M Flow Meter

Sewer Basin

Inflow

PS Pump Station

Inflow & Infiltration

Dry Weather Results - Based on Spring Season

Net Base Infiltration (BI)

Sewer Sub- Area	Net Average Dry Day Flow (MGD)	Net Average Minimum Night Flow (MGD)	Net Base Infiltration (MGD)	Inch- diameter- mile (IDM)	Net BI Unit Rate (GPD/IDM)	Excessive Threshold (GPD/IDM)
A+B	0.152	0.101	0.090	54.91	1,639	< 4,000
C+D	0.203	0.140	0.123	75.70	1,625	< 4,000
E	0.602	0.431	0.344	58.32	5,898	> 4,000

Wet Weather Results - Based on Spring Season

Inflow for 1-Year, 6-Hour Design Storm (2.02")

Sewer Sub-Area	Net Total Inflow Volume (MG)	Net Direct Inflow Volume (MG)	Net Delayed Inflow Volume (MG)	Percent Total Inflow
A+B	0.229	0.054	0.175	26%
C+D	0.211	0.064	0.147	24%
E	0.457	0.123	0.334	51%
Total	0.897	0.241	0.656	100%

<u>Iypical Recommendations</u> → <u>Inspection Scope of Work</u>

Infiltration

 Excessive if infiltration unit rate ≥ 4,000 GPD/IDM

Sanitary Sewer Evaluation Survey (SSES)

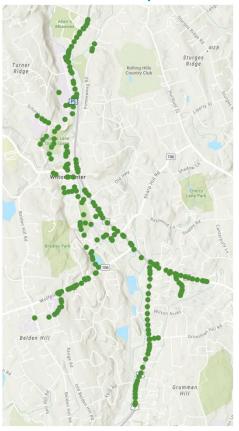
- Manhole inspections
- Closed-circuit television (CCTV) pipe inspections
- Night flow isolations and/or micrometering

Inflow

- Excessive if sub-area contributes to large percent of total inflow volume (for 1-year, 6-hour design storm)
- All inflow should be eliminated

Sanitary Sewer Evaluation Survey (SSES)

- Manhole inspections (top portion only; focus on cover, frame, and chimney)
- Smoke testing
- Dye testing

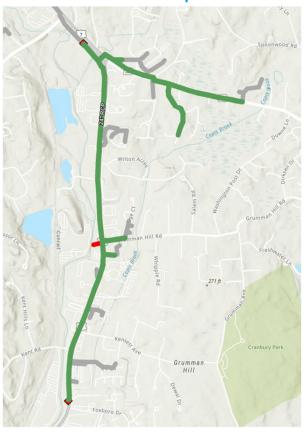

Manhole Inspections Completed

Rehabilitation

Improvement Type	Number of MHs	
Grout	64	
Chimney Seal	59	
Line Manhole	34	
Fix Pipe Seal(s)	19	
Patch	18	
Replace Frame & Cover	17	
Line Chimney	5	
Light Clean	3	
Point Repair	1	

Approximately \$400,000

220 MHs Inspected

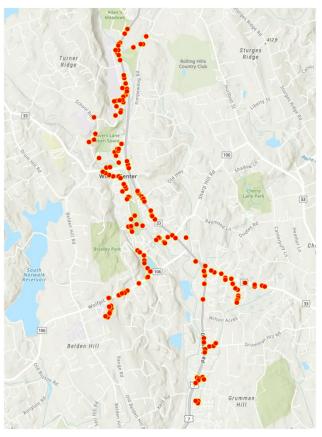

Pipe Inspections Completed

Rehabilitation

Improvement Type	Number of Pipe Segments (MH to MH)	Approximate LF
Test & Seal	33	6,300
Clean	7	1,700
Lining	2	400
Point Repair	1	100
No Action	28	5,200

Approximately \$200,000

14,000 LF Inspected


Smoke Testing Completed

Observations - Potential Repairs

- 51 defective manhole frames (~\$100,000)
- 3 vented manhole cover
- 3 cleanout caps missing
- 2 potential illicit building connections
- 1 potential broken lateral
- 1 potential defective grease trap

Town can do some of this work. Unknown cost until further investigation.

61 Defective Results

Report Deliverable

Evaluation

- Identification of structural and O&M issues
- Location of I/I sources
- Estimated quantification of I/I
- Cost-effective analysis (assumes 50% I/I removal)
- Rehabilitation recommendations (follow up meter)
- Estimated costs and schedule (~\$1,000,000)

Format

- Draft and final
- GIS submittal

Next Steps (Proposed Dates)

Design proposal/approval (May 2024)

Design package (July-September 2024)

> Bidding (October 2024)

> > Construction Start (~January 2025)

Post-construction flow monitoring (~Spring or Fall 2025)

