

Drainage Summary Report

12 Godfrey Place

Prepared by

Redniss & Mead, Inc. 22 First Street Stamford, CT (203) 327-0500

Issued on: September 30, 2022

Revised on: February 28, 2023

Issued for: Site Plan Approval

21 Craig J. Flaherty CT Lic. No. 21149

Table of Contents

Narrative	Page 3
Drainage Basin Maps	Appendix 1
Water Quality Volume & 72 Hour Drawdown Calculations	Appendix 2
HydroCAD Model	Appendix 3
NRCS Soils Information	Appendix 4

Drainage Summary Narrative

Greenwich Realty Development LLC, the owner of 12 Godfrey Place, is proposing to replace the existing office building with a five-story residential building consisting of 42 apartments. The property is 0.625 acres and lies in the Wilton Center District. The property is located northeast of the intersection of Godfrey Place and Hubbard Road. It is bordered to its east by multi-family housing owned by the Wilton Library Association and to the north by a commercial property owned by the Town of Wilton and developed with multiple storefronts.

The site is located within Zone X as depicted on the Federal Emergency Management Agency – Flood Insurance Map Community No. 090020 Panel 383 Suffix F, effective date June 18, 2010. The site is served by public water and sanitary sewer service.

Existing Conditions

The site is currently developed with a three-story office building situated on the southern half of the site. Two parking lots are located in the northern half of the property. Impervious surfaces cover 18,653 square feet (68.5%) of the site.

The site lies in the Norwalk River Watershed. Runoff from the site drains overland to the north into Hubbard Road and to the southwest into Godfrey Place. Catch basins in Hubbard Road drain north then east through the Town of Wilton property, across Old Ridgefield Road and into the Norwalk River. Stormwater in Godfrey Place is captured and conveyed through the Stop & Shop property before crossing Old Ridgefield Road and discharging into the Norwalk River. Study points were established along both Hubbard and Godfrey.

The site currently has dry wells located in each of the parking lot. Both drywells are designed without outlet. The north lot dry well captures runoff from the surrounding pavement and theoretically overtops in the 25-year storm via the curb cut into Hubbard Road. The south lot dry well captures runoff from the surrounding pavement and building and theoretically overtops in the 10-year storm. Both drywells were factored in the existing conditions analysis with below and above-grade storage modeled. An exfiltration rate of 1.02 inches per hour was modeled, reflecting the Default (Rawls) infiltration rate for HSG B Sandy Loam soils consistent with those found on-site.

Proposed Conditions

The proposed work includes the demolition of the existing office and parking and construction of the new four-story residential building. Parking is provided on-grade, under the second story of the building. The improvements result in 20,353 (74.7%) of impervious coverage, an increase of 1,700 square feet. Atlas-14 rainfall rates were used in the drainage analysis.

The impacts resulting from the increase in impervious coverage and removal of the existing drywells are mitigated using an infiltration system consisting of (18) 5'-tall Retain-It units. The infiltration system is located within the footprint of the building, below the on-grade parking. The entire building, in addition to the area north and east of the building, is directed to the system. Water

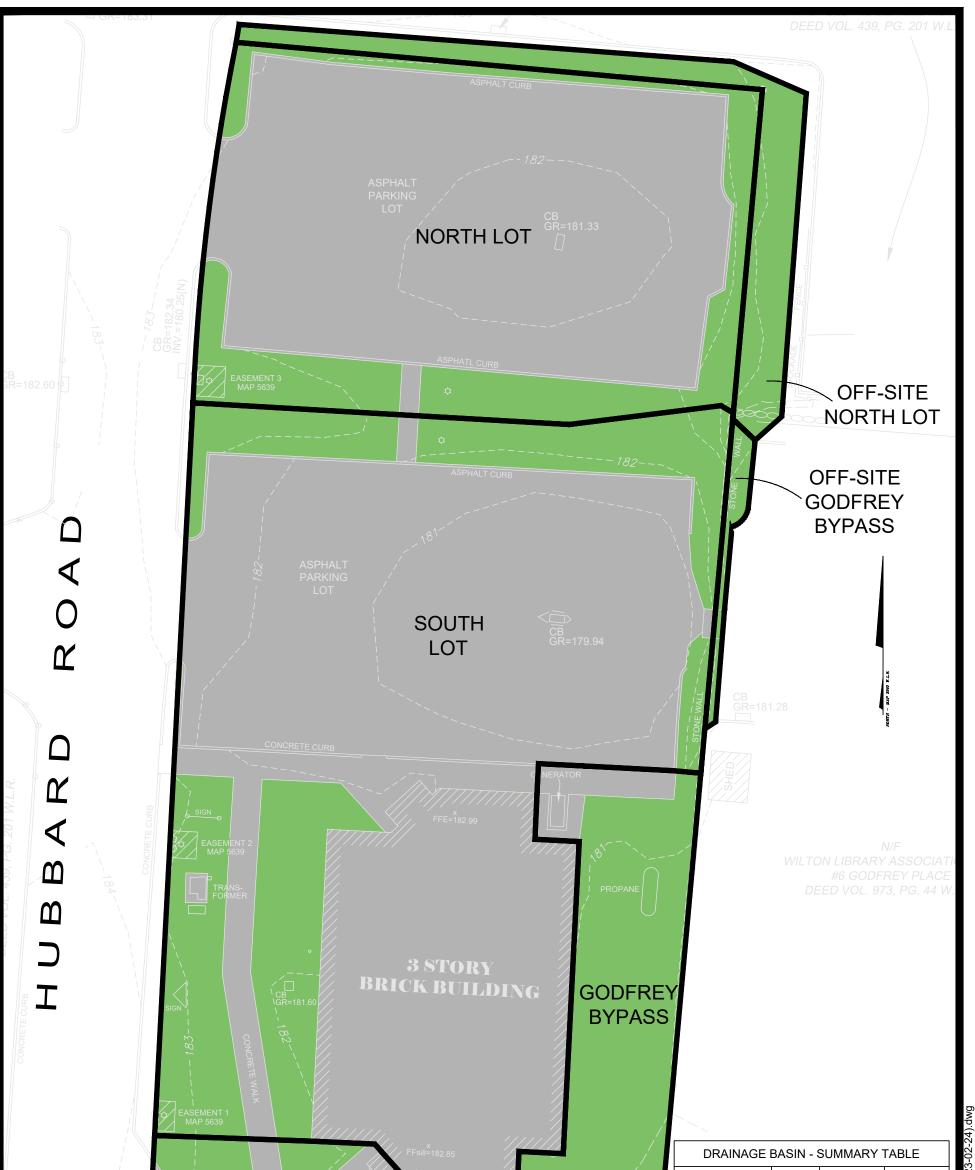
Quality treatment is provided to the tributary area via infiltration (Appendix 2). The infiltration system is sized to fully infiltrate runoff through the 25-year storm. In the 50 & 100-year storm, stormwater will discharge via a 6" pipe connected to the catch basin in Hubbard Road. Area Drain #4, located along the east side of the building, serves as the high overflow for the system in the event of an anomaly or greater than 100-year storm. It is not designed to discharge through the 100-year storm and is intended as a precaution for more severe rain events.

The remainder of the site bypasses the infiltration system and flows into Godfrey and Hubbard. These areas consist of the landscaping, walks and driveway which pitch away from the building and towards the back of curb. Given that the existing site only discharges to Hubbard when the north lot drywell overtops, the Hubbard Study Point does witness a minor increase in peak flows. The tables below compare existing and proposed conditions for both study points:

Peak Flow (cfs)						
Return Period (yrs)		Godfrey	Place	Hubbard Road		
1 enou (yis)	Ex	Pr	Change	Ex	Pr	Change
10	0.30	0.23	-0.07	0.00	0.17	0.17
25	0.42	0.33	-0.09	0.05	0.22	0.17

*Runoff values taken from the HydroCAD Report found in Appendix 3

Summary

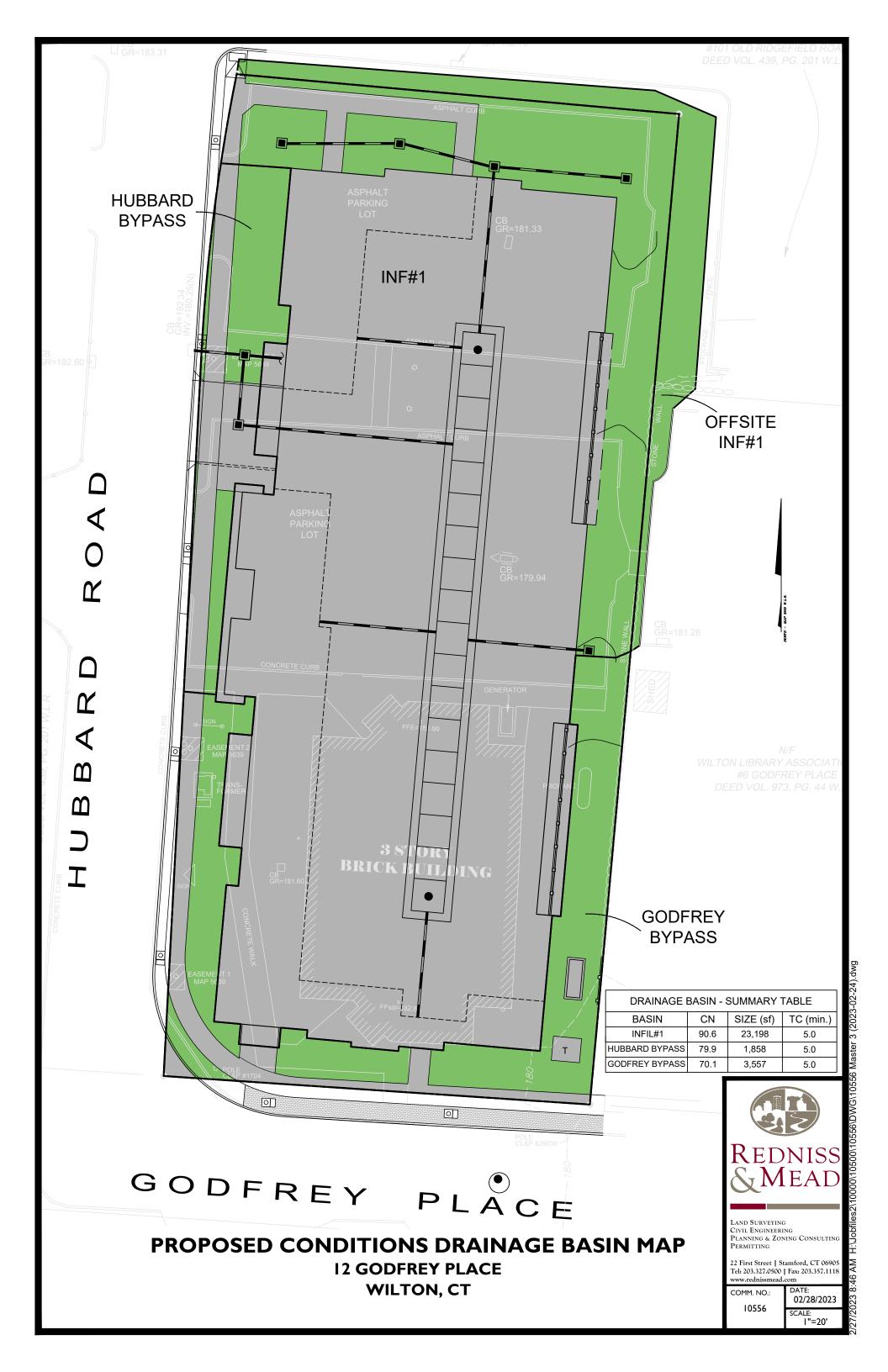

The proposed stormwater system is designed to capture and treat runoff originating from 80% of the site. The system is sized to infiltrate all tributary runoff through the 25-year storm. Minor areas of landscaping, walks, and drive discharge to the gutters along Hubbard Road and Godfrey place. It is our belief that the proposed drainage improvements are robustly designed and will not negatively impact downstream properties.

Appendix 1

Drainage Basin Maps

FFsill=	=182.85	/	DRAINAGE E	BASIN -	SUMMARY ⁻	TABLE
			BASIN	CN	SIZE (sf)	TC (min.)
			NORTH LOT	86.3	3,903	5.0
			SOUTH LOT	88.8	15,167	5.0
○ POLE CL&P #1704 ⁻⁷ 82		80.	GODFREY BYPASS	68.6	4,082	5.0
GODFREY	PLA	POLE CL&P #29636				P NISS EAD
EXISTING CONDITION	S DRAIN	AGE BASI	N MAP		CIVIL ENGINEER	
I2 GODI	FREY PLACE					tamford, CT 06905 Fax: 203.357.1118

EXISTING CON 12 GODFREY PLACE WILTON, CT


ww.rednissmead

COMM. NO.:

10556

DATE

SCALE: I"=20'

Appendix 2

Water Quality Volume Calculations 72-Hour Drawdown Calculations

oject: 12 Ge	odfrey Place		Project #:	10556	Date:	2/28/2023
cation: Wilto	By:	PBS	Checked:	CJF		
		Infil#1 Basir	1			
	Inf#1	Basin				
	Area=	0.533	acres			
	Impervious Area=	0.425	acres			
	I=	0.799	а			
	R=	0.769	b			
	WQV=	0.034	ac. ft. ^c			
			- 3 d			
	WQV=	1,486.6	ft. ^{° u}			
	WQV= cent Impervious Coverage 5+0.009(I); Volumetric runoff Coe	1,486.6		2004 Conr	ecticut	
	water Quality Manual section 7.4.1		on taken from 2	2004 Conn	lecticut	`
c WQV	=(1"xRxA)/12; Water Quality Vol water Quality Manual section 7.4.1	lume, Equation t	aken from 200	4 Connect	icut	

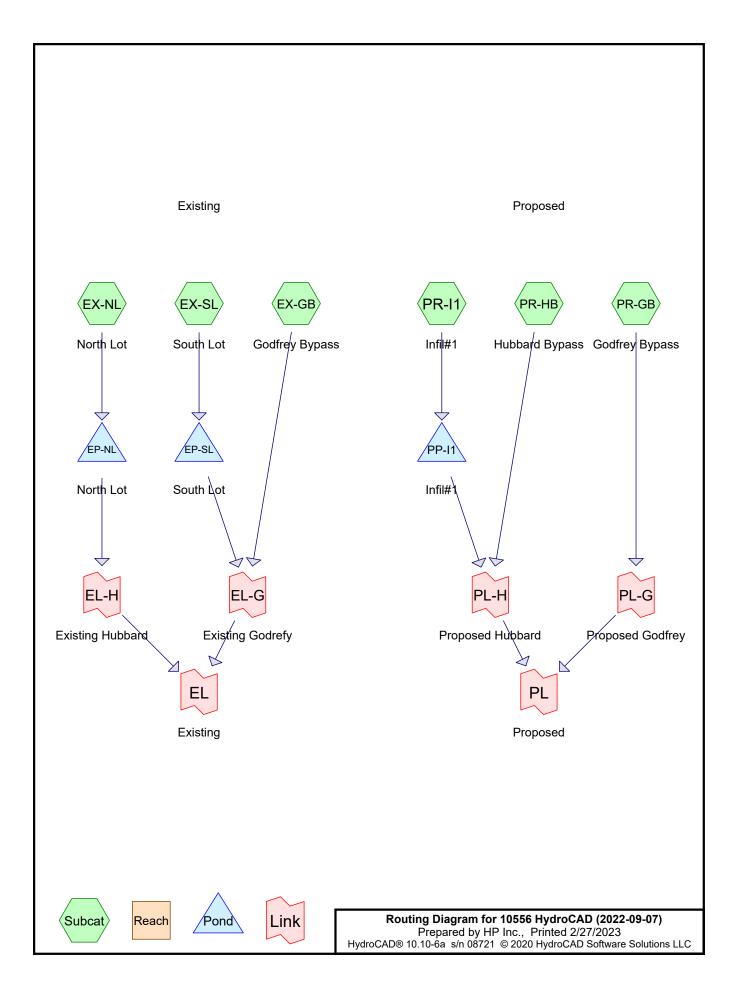
72-Hour Draw Down Calculations						
Project: 12 Godfrey Place	Project #:	10556	Date:	9/30/2022		
Location: Wilton, CT	By:	PBS	Checked:	CJF		
Location: Wilton, CT	By:	PBS	Checked:	CJF		

Inf#1		
Surface Area of Infiltration System (SA)	1,776	ft ²
Volume of Storage of Infiltration System (VS)	4,623	ft ³
Infiltration Rate (IR)	2.20	in/hr ^c
Theoretical Water Column Height	31.24	in ^a
Time of Draw Down	14.20	hr [⊳]

Note: The surface area reflects the footprint of the cultecs and perimeter stone. The volume of water is the storage in the system below the outlet.

^a Theoretical Water Column Height (WCH) = VS/SA*12

^b Time of Draw Down = WCH/IR


^c Infiltration Rate (IR) taken from PH#1 with FOS of 2 applied (1" in 13.33 min x 2)

Appendix 3

HydroCAD Report

10556 HydroCAD (2022-09-07) Prepared by HP Inc.
 Printed 2/

 HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC
 Printed 2/

Rainfall Events Listing (selected eve	nts)
---------------------------------------	------

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	10-Year	Type III 24-hr		Default	24.00	1	5.42	2
2	25-Year	Type III 24-hr		Default	24.00	1	6.59	2

10556 HydroCAD (2022-09-07) Prepared by HP Inc.	Type III 24-hr 10-Year Rainfall=5.42" Printed 2/27/2023
HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutio	
Time span=0.00-24.00 hrs, dt=0.0100 Runoff by SCS TR-20 method, UH=SC Reach routing by Stor-Ind+Trans method - Pond	S, Weighted-CN

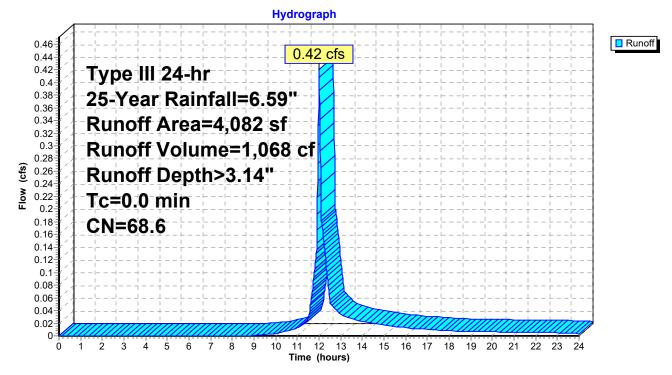
Subcatchment EX-GB: Godfrey Bypass	Runoff Area=4,082 sf 20.63% Impervious Runoff Depth>2.23" Tc=0.0 min CN=68.6 Runoff=0.30 cfs 760 cf
Subcatchment EX-NL: North Lot	Runoff Area=9,364 sf 68.38% Impervious Runoff Depth>3.89" Tc=5.0 min CN=86.3 Runoff=1.00 cfs 3,034 cf
Subcatchment EX-SL: South Lot	Runoff Area=15,167 sf 75.22% Impervious Runoff Depth>4.15" Tc=5.0 min CN=88.8 Runoff=1.70 cfs 5,246 cf
Subcatchment PR-GB: Godfrey Bypass	Runoff Area=3,557 sf 24.52% Impervious Runoff Depth>2.36" Tc=5.0 min CN=70.1 Runoff=0.23 cfs 699 cf
Subcatchment PR-HB: Hubbard Bypass	Runoff Area=1,858 sf 51.02% Impervious Runoff Depth>3.25" Tc=5.0 min CN=79.9 Runoff=0.17 cfs 503 cf
Subcatchment PR-I1: Infil#1	Runoff Area=23,198 sf 79.89% Impervious Runoff Depth>4.34" Tc=5.0 min CN=90.6 Runoff=2.69 cfs 8,398 cf
Pond EP-NL: North Lot Discarded	Peak Elev=182.59' Storage=2,474 cf Inflow=1.00 cfs 3,034 cf =0.01 cfs 561 cf Primary=0.00 cfs 0 cf Outflow=0.01 cfs 561 cf
Pond EP-SL: South Lot Discarded=0.0	Peak Elev=181.65' Storage=4,193 cf Inflow=1.70 cfs 5,246 cf 1 cfs 629 cf Primary=0.03 cfs 447 cf Outflow=0.04 cfs 1,077 cf
Pond PP-I1: Infil#1 Discarded=0.2	Peak Elev=180.15' Storage=4,196 cf Inflow=2.69 cfs 8,398 cf 20 cfs 7,315 cf Primary=0.00 cfs 0 cf Outflow=0.20 cfs 7,315 cf
Link EL: Existing	Inflow=0.30 cfs 1,207 cf Primary=0.30 cfs 1,207 cf
Link EL-G: Existing Godrefy	Inflow=0.30 cfs 1,207 cf Primary=0.30 cfs 1,207 cf
Link EL-H: Existing Hubbard	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link PL: Proposed	Inflow=0.40 cfs 1,202 cf Primary=0.40 cfs 1,202 cf
Link PL-G: Proposed Godfrey	Inflow=0.23 cfs 699 cf Primary=0.23 cfs 699 cf
Link PL-H: Proposed Hubbard	Inflow=0.17 cfs 503 cf Primary=0.17 cfs 503 cf

Total Runoff Area = 57,226 sf Runoff Volume = 18,640 cf Average Runoff Depth = 3.91" 31.84% Pervious = 18,221 sf 68.16% Impervious = 39,005 sf

Subcatchment EX-GB: Godfrey Bypass	Runoff Area=4,082 sf 20.63% Impervious Runoff Depth>3.14" Tc=0.0 min CN=68.6 Runoff=0.42 cfs 1,068 cf
Subcatchment EX-NL: North Lot	Runoff Area=9,364 sf 68.38% Impervious Runoff Depth>5.00" Tc=5.0 min CN=86.3 Runoff=1.27 cfs 3,903 cf
Subcatchment EX-SL: South Lot	Runoff Area=15,167 sf 75.22% Impervious Runoff Depth>5.28" Tc=5.0 min CN=88.8 Runoff=2.14 cfs 6,676 cf
Subcatchment PR-GB: Godfrey Bypass	Runoff Area=3,557 sf 24.52% Impervious Runoff Depth>3.29" Tc=5.0 min CN=70.1 Runoff=0.33 cfs 974 cf
Subcatchment PR-HB: Hubbard Bypass	Runoff Area=1,858 sf 51.02% Impervious Runoff Depth>4.30" Tc=5.0 min CN=79.9 Runoff=0.22 cfs 666 cf
Subcatchment PR-I1: Infil#1	Runoff Area=23,198 sf 79.89% Impervious Runoff Depth>5.49" Tc=5.0 min CN=90.6 Runoff=3.35 cfs 10,605 cf
Pond EP-NL: North Lot Discarded=0.0	Peak Elev=182.65' Storage=2,731 cf Inflow=1.27 cfs 3,903 cf 01 cfs 592 cf Primary=0.05 cfs 724 cf Outflow=0.06 cfs 1,316 cf
Pond EP-SL: South Lot Discarded=0.01	Peak Elev=181.67' Storage=4,297 cf Inflow=2.14 cfs 6,676 cf cfs 661 cf Primary=0.15 cfs 1,842 cf Outflow=0.16 cfs 2,503 cf
Pond PP-I1: Infil#1 Discarded=0.2	Peak Elev=181.17' Storage=5,442 cf Inflow=3.35 cfs 10,605 cf 24 cfs 8,953 cf Primary=0.00 cfs 0 cf Outflow=0.24 cfs 8,953 cf
Link EL: Existing	Inflow=0.42 cfs 3,634 cf Primary=0.42 cfs 3,634 cf
Link EL-G: Existing Godrefy	Inflow=0.42 cfs 2,911 cf Primary=0.42 cfs 2,911 cf
Link EL-H: Existing Hubbard	Inflow=0.05 cfs 724 cf Primary=0.05 cfs 724 cf
Link PL: Proposed	Inflow=0.55 cfs 1,641 cf Primary=0.55 cfs 1,641 cf
Link PL-G: Proposed Godfrey	Inflow=0.33 cfs 974 cf Primary=0.33 cfs 974 cf
Link PL-H: Proposed Hubbard	Inflow=0.22 cfs 666 cf Primary=0.22 cfs 666 cf

Total Runoff Area = 57,226 sf Runoff Volume = 23,893 cf Average Runoff Depth = 5.01" 31.84% Pervious = 18,221 sf 68.16% Impervious = 39,005 sf

Summary for Subcatchment EX-GB: Godfrey Bypass

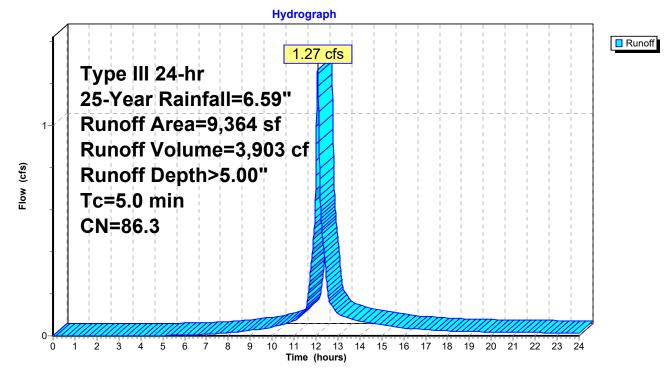

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.42 cfs @ 12.00 hrs, Volume= Routed to Link EL-G : Existing Godrefy 1,068 cf, Depth> 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description
*	842	98.0	Impervious
*	3,240	61.0	On-Site Lawn, HSG B
	4,082 3,240 842	68.6	Weighted Average 79.37% Pervious Area 20.63% Impervious Area

Subcatchment EX-GB: Godfrey Bypass


Summary for Subcatchment EX-NL: North Lot

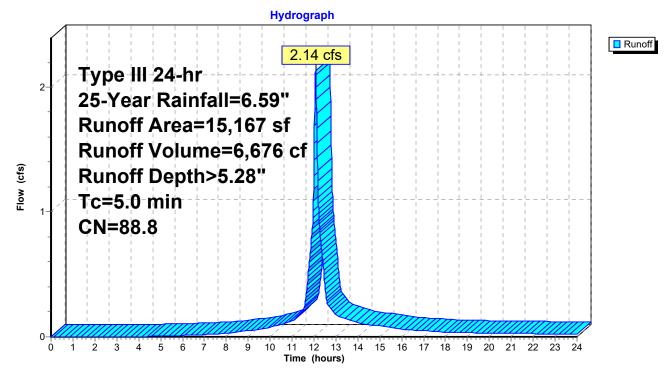
Runoff = 1.27 cfs @ 12.07 hrs, Volume= Routed to Pond EP-NL : North Lot 3,903 cf, Depth> 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

	A	rea (sf)	CN	Descriptic	n	
*		6,403	98.0	Imperviou	S	
*		1,771	61.0	On-Site L	awn, HSG	B
*		1,190	61.0	Off-Site L	awn, HSG	В
		9,364 2,961 6,403	86.3	Weighted Average 31.62% Pervious Area 68.38% Impervious Area		
(Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
	5.0					Direct Entry,

Subcatchment EX-NL: North Lot

Summary for Subcatchment EX-SL: South Lot

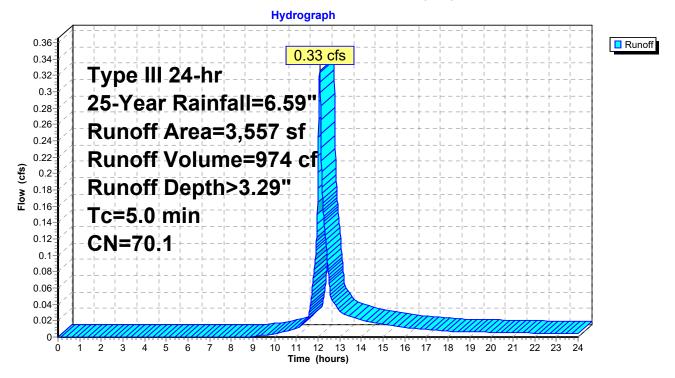

2.14 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond EP-SL : South Lot

6,676 cf, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

_	A	rea (sf)	CN	Descriptic	n	
*		11,408	98.0	Imperviou	S	
*		3,582	61.0	On-Site L	awn, HSG	B
*		177	61.0	Off-Site L	awn, HSG	B
		15,167 3,759 11,408	88.8		Average ervious Are npervious A	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
	5.0					Direct Entry,

Subcatchment EX-SL: South Lot

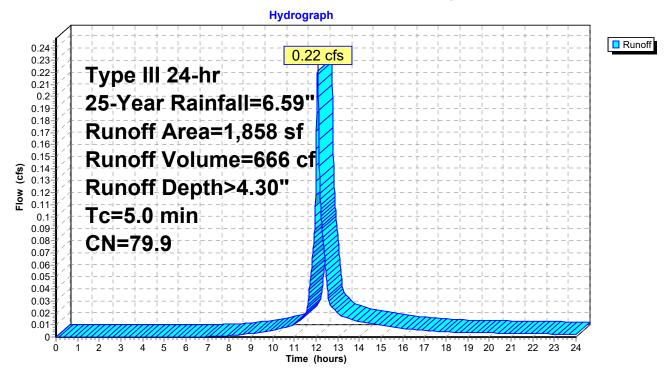

Summary for Subcatchment PR-GB: Godfrey Bypass

Runoff = 0.33 cfs @ 12.08 hrs, Volume= Routed to Link PL-G : Proposed Godfrey 974 cf, Depth> 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

_	A	rea (sf)	CN	Descriptic	n	
*		872	98.0	Imperviou	S	
*		2,685	61.0	On-Site L	awn, HSG	В
		3,557 2,685 872	70.1		Average ervious Are npervious A	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment PR-GB: Godfrey Bypass


Summary for Subcatchment PR-HB: Hubbard Bypass

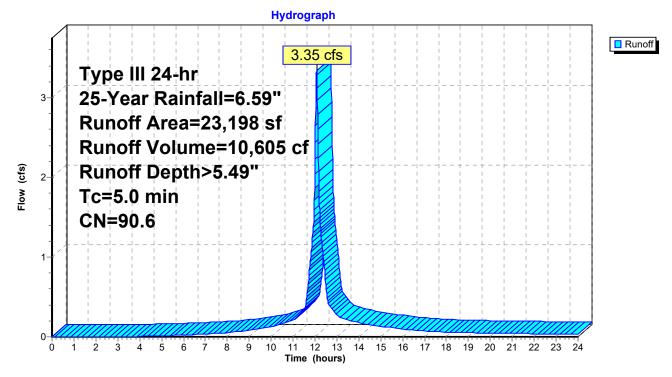
Runoff = 0.22 cfs @ 12.07 hrs, Volume= Routed to Link PL-H : Proposed Hubbard 666 cf, Depth> 4.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

Α	rea (sf)	CN	Descriptio	n	
*	948	98.0	Imperviou	S	
*	910	61.0	On-Site La	awn, HSG	В
	1,858 910 948	79.9	Weighted Average 48.98% Pervious Area 51.02% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment PR-HB: Hubbard Bypass

Summary for Subcatchment PR-I1: Infil#1


3.35 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond PP-I1 : Infil#1

10,605 cf, Depth> 5.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Type III 24-hr 25-Year Rainfall=6.59"

_	A	rea (sf)	CN	Descriptic	n	
*		18,532	98.0	Imperviou	S	
*		3,299	61.0	On-Site L	awn, HSG	B
*		1,367	61.0	Off-Site L	awn, HSG	B
		23,198 4,666 18,532	90.6	79.89% lr	ervious Are npervious A	Area
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	1
_	5.0					Direct Entry,

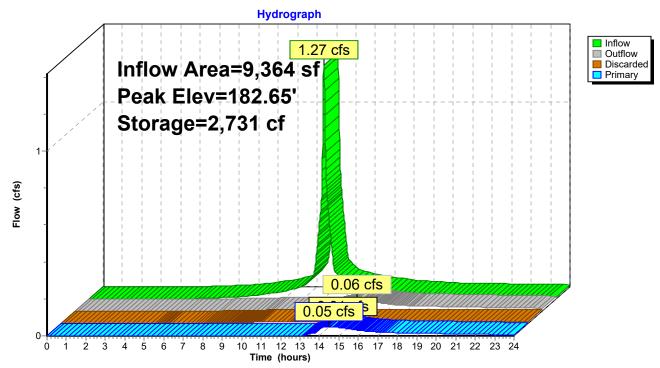
Subcatchment PR-I1: Infil#1

Summary for Pond EP-NL: North Lot

Inflow Area =	9,364 sf, 68.38% Impervious,	Inflow Depth > 5.00" for 25-Year event
Inflow =	1.27 cfs @ 12.07 hrs, Volume=	3,903 cf
Outflow =	0.06 cfs @ 14.48 hrs, Volume=	1,316 cf, Atten= 95%, Lag= 144.6 min
Discarded =	0.01 cfs @ 14.48 hrs, Volume=	592 cf
Primary =	0.05 cfs @ 14.48 hrs, Volume=	724 cf
Routed to Link	EL-H : Existing Hubbard	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Peak Elev= 182.65' @ 14.48 hrs Surf.Area= 4,718 sf Storage= 2,731 cf

Plug-Flow detention time= 345.2 min calculated for 1,315 cf (34% of inflow) Center-of-Mass det. time= 210.1 min (1,002.1 - 792.1)


Volume	Invert	Avail.Storage	Storage Description
#1	174.40'	50 cf	Dry Well Stone (Prismatic)Listed below (Recalc)
			300 cf Overall - 174 cf Embedded = 126 cf x 40.0% Voids
#2	174.40'	174 cf	Concrete Dry Well (Prismatic)Listed below (Recalc) Inside #1
#3	181.33'	4,421 cf	On-Grade Storage (Prismatic)Listed below (Recalc)
#4	180.40'	6 cf	CB from DW to Grade (Prismatic)Listed below (Recalc)
		4,651 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
174.40	50	0	0
180.40	50	300	300
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
174.40	29	0	0
180.40	29	174	174
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
181.33	0	0	0
182.00	1,486	498	498
183.00	6,361	3,924	4,421
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
180.40	6	0	0
181.33			

Device	Routing	Invert	Outlet Devices
#1	Primary	182.61'	Driveway Opening to Hubbard, C= 3.27
	·		Offset (feet) 0.00 0.01 25.44 25.45
			Height (feet) 0.85 0.00 0.43 0.85
#2	Discarded	174.40'	1.020 in/hr Sandy Loam (HSG B) Exfiltration over Surface area below 174.41'
			Conductivity to Groundwater Elevation = 173.40' Phase-In= 0.01'

Discarded OutFlow Max=0.01 cfs @ 14.48 hrs HW=182.65' (Free Discharge) **2=Sandy Loam (HSG B) Exfiltration** (Controls 0.01 cfs)

Primary OutFlow Max=0.03 cfs @ 14.48 hrs HW=182.65' (Free Discharge) —1=Driveway Opening to Hubbard (Weir Controls 0.03 cfs @ 0.27 fps)

Pond EP-NL: North Lot

10556 HydroCAD (2022-09-07) Type III 24

 Prepared by HP Inc.
 HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

ElevationSurfaceStorage (gert)ElevationSurfaceStorage (gert) $(174.60$ 500179.80501202 174.60 501179.9050202 174.70 5011180.1050201 174.80 5015180.1050213 174.90 50222180.3050221 175.10 5026180.4056224 175.20 5030180.5056226 175.50 5044180.6056226 175.50 5044180.8056227 175.60 5045180.9056227 175.70 5049181.0056228 175.80 5052181.1056229 176.00 5060181.3056229 176.30 5075181.7087382 176.60 5075181.7087382 176.60 5075181.70198475 176.60 5090182.102,029901 176.70 50101182.403,4921,71 176.80 5090182.102,029901 176.80 50105182.001,542728 176.80 50105182.503,9802,080 177.70 50108122.005,930						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
175.005022180.3050221175.105026180.4056224175.205030180.5056225175.305034180.6056226175.405037180.7056226175.505041180.8056227175.705049181.0056228175.805052181.1056229175.905066181.3056230176.105064181.40211235176.205067181.50433262176.305071181.50433262176.605082181.901,320590176.605082181.901,320590176.605090182.102,029901176.805097182.303,0051,393177.1050101182.403,4921,712177.0050123183.006,4174,651177.8050123183.006,4174,651177.8050123183.006,4174,651177.8050165183174.050157178.0050123183.306,4174,651178.8050153178.3050165178.9050153 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
175.105026 180.40 56224 175.20 5030 180.50 56226 175.30 5037 180.70 56226 175.50 5041 180.80 56227 175.60 5049 181.00 56228 175.80 5052 181.10 56229 175.90 5056 181.20 56229 175.00 5060 181.30 56229 176.00 5060 181.30 56230 176.10 5067 181.50 433262 176.30 5071 181.60 655311 176.40 5075 181.70 877382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5090 182.10 2.029 901 176.80 5094 182.20 2.517 1.122 177.00 5097 182.30 3.005 1.393 177.10 50105 182.50 3.980 2.080 177.30 50108 182.60 4.467 2.497 177.80 50120 182.90 5.930 4.040 177.70 50123 183.30 6.417 4.651 177.80 50153 183.30 6.417 4.651 178.80						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
175.305034 180.60 56 226 175.50 5041 180.80 56 227 175.70 5045 180.90 56 227 175.70 5049 181.00 56 228 175.80 5052 181.10 56 229 175.90 5056 181.20 56 229 176.00 5060 181.30 56230 176.10 5064 181.40 211 235 176.20 5067 181.50 433 262 176.30 5075 181.70 877 382 176.50 5075 181.70 877 382 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5094 182.20 2.517 1.122 177.00 5097 182.30 3.005 1.393 177.10 50105 182.50 3.980 2.080 177.30 50108 182.60 4.467 2.497 177.80 50123 183.10 6.417 4.651 177.80 50123 183.00 6.417 4.651 177.80 50126 182.90 5.930 4.040 177.80 50135 183.30 6.417 4.651 178.80 50153 178.80 5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
175.505041 180.80 56227 175.70 5049 181.00 56228 175.80 5052 181.10 56229 175.00 5060 181.30 56229 176.00 5060 181.30 56229 176.00 5064 181.40 211235 176.20 5067 181.50 433262 176.30 5071 181.60 655311 176.40 5075 181.70 877 382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029 901 176.90 5094 182.20 2.517 1.122 177.00 5097 182.30 3.905 1.393 177.10 50105 182.50 3.980 2.080 177.70 50116 182.80 5.442 3.477 177.60 50123 183.00 6.417 4.651 177.80 50134 183.40 6.417 4.651 178.80 50153 178.80 50154 178.80 50153 178.80 50157 178.70 50168 179.90 50168 179.0						
175.605045 180.90 56 227 175.70 5049 181.00 56 228 175.80 5052 181.10 56 229 175.90 5056 181.20 56 229 176.00 5060 181.30 56 230 176.10 5064 181.40 211 235 176.20 5067 181.50 433 262 176.30 5075 181.70 877 382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029 901 176.80 5094 182.20 2.517 1.122 177.00 5094 182.20 2.517 1.122 177.20 50101 182.40 3.492 1.712 177.30 50108 182.60 4.467 2.497 177.70 50120 182.90 5.930 4.040 177.70 50121 183.20 6.417 4.651 177.80 50131 183.20 6.417 4.651 178.00 50132 183.40 6.417 4.651 178.00 50153 178.50 50 157 178.70 50168 172.96						
175.705049 181.00 56228 175.80 5052 181.10 56229 175.90 5060 181.30 56229 176.10 5064 181.40 211235 176.20 5067 181.50 433262 176.30 5071 181.60 655311 176.40 5075 181.70 877382 176.50 5079 181.80 $1,098$ 475 176.60 5082 181.90 $1,320$ 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029901 176.90 5094 182.20 2.517 $1,122$ 177.00 5097 182.30 $3,005$ $1,393$ 177.10 50101 182.40 $3,492$ $1,712$ 177.50 50116 182.80 $4,467$ $2,497$ 177.70 50120 182.90 $5,930$ $4,040$ 177.70 50123 183.00 $6,417$ $4,651$ 177.80 50131 183.20 $6,417$ $4,651$ 178.80 50153 178.30 50168 178.90 50168 179.40 50153 178.80 50168 179.40 50172 179.10 50172 179.10 50174 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
175.80 50 52 181.10 56 229 176.00 50 60 181.20 56 2230 176.10 50 64 181.40 211 235 176.20 50 67 181.50 433 262 176.30 50 71 181.60 655 311 176.40 50 75 181.70 877 382 176.50 50 79 181.80 $1,098$ 475 176.60 50 82 181.90 $1,320$ 590 176.70 50 86 182.00 $1,542$ 728 176.80 50 90 182.10 $2,029$ 901 176.90 50 94 182.20 $2,517$ $1,122$ 177.00 50 97 182.30 $3,005$ $1,333$ 177.10 50 101 182.40 $3,492$ $1,712$ 177.20 50 105 182.50 $3,980$ $2,080$ 177.30 50 112 182.70 $4,955$ $2,962$ 177.70 50 120 182.90 $5,432$ $3,477$ 177.60 50 123 183.00 $6,417$ $4,651$ 177.80 50 131 183.20 $6,417$ $4,651$ 178.00 50 135 183.30 $6,417$ $4,651$ 178.40 50 135 183.30 $6,417$ $4,651$ 178.90 50 168						
175.905056 181.20 56 229 176.00 5060 181.30 56 230 176.10 5064 181.40 211 235 176.20 5067 181.50 433 262 176.30 5071 181.60 655 311 176.40 5075 181.70 877 382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029 901 176.90 5094 182.20 2.517 1.122 177.00 5097 182.30 3.005 1.393 177.10 50101 182.40 3.492 1.712 177.20 50105 182.50 3.980 2.080 177.30 50116 182.80 5.442 3.477 177.60 50120 182.90 5.930 4.040 177.70 50123 183.10 6.417 4.651 177.80 50131 183.20 6.417 4.651 178.00 50135 183.30 6.417 4.651 178.00 50153 178.70 50 153 178.60 50150 176 174.651 174.651 178.90 50168 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
176.005060 181.30 56230 176.10 5064 181.40 211235 176.20 5067 181.50 433262 176.30 5071 181.60 655311 176.40 5075 181.70 877382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029901 176.90 5094 182.20 2.517 1.122 177.00 5097 182.30 3.005 1.393 177.10 50105 182.50 3.980 2.080 177.30 50108 182.60 4.467 2.497 177.40 50112 182.70 4.955 2.962 177.70 50120 182.90 5.930 4.040 177.70 50123 183.00 6.417 4.651 177.80 50131 183.20 6.417 4.651 178.00 50138 183.40 6.417 4.651 178.70 50168 174.651 4.651 178.90 178.80 50153 178.30 50 168 179.00 50172 179.10 50 176 179.20 50180 177.20						
176.105064 181.40 211 235 176.20 5067 181.50 433 262 176.30 5071 181.60 655 311 176.40 5075 181.70 877 382 176.50 5079 181.80 1.098 475 176.60 5082 181.90 1.320 590 176.70 5086 182.00 1.542 728 176.80 5090 182.10 2.029 901 176.90 5094 182.20 2.517 1.122 177.00 5097 182.30 3.005 1.393 177.10 50101 182.40 3.492 1.712 177.20 50105 182.50 3.980 2.080 177.70 50112 182.70 4.955 2.962 177.50 50116 182.80 5.442 3.477 177.60 50123 183.00 6.417 4.651 177.80 50123 183.00 6.417 4.651 177.80 50135 183.30 6.417 4.651 178.60 50153 178.60 50 153 178.70 50164 172.776 776 179.00 50172 179.00 176 179.00 50164 172.776 177.766 178.80 501645 176.776						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	177.10	50	101			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	177.20	50	105	182.50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.30	50	108	182.60	4,467	2,497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.40	50	112	182.70	4,955	2,962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.50					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				183.40	6,417	4,651
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
178.8050165178.9050168179.0050172179.1050176179.2050180179.3050183179.4050187179.5050191						
178.9050168179.0050172179.1050176179.2050180179.3050183179.4050187179.5050191						
179.0050172179.1050176179.2050180179.3050183179.4050187179.5050191						
179.1050176179.2050180179.3050183179.4050187179.5050191						
179.2050180179.3050183179.4050187179.5050191						
179.3050183179.4050187179.5050191						
179.40 50 187 179.50 50 191						
179.50 50 191						
				l		

Stage-Area-Storage for Pond EP-NL: North Lot

Summary for Pond EP-SL: South Lot

Inflow Area =	15,167 sf, 75.22% Impervious,	Inflow Depth > 5.28" for 25-Year event
Inflow =	2.14 cfs @ 12.07 hrs, Volume=	6,676 cf
Outflow =	0.16 cfs @ 13.12 hrs, Volume=	2,503 cf, Atten= 93%, Lag= 62.8 min
Discarded =	0.01 cfs @ 13.12 hrs, Volume=	661 cf
Primary =	0.15 cfs @ 13.12 hrs, Volume=	1,842 cf
Routed to Link	EL-G : Existing Godrefy	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs Peak Elev= 181.67' @ 13.12 hrs Surf.Area= 4,989 sf Storage= 4,297 cf

Plug-Flow detention time= 295.4 min calculated for 2,503 cf (37% of inflow) Center-of-Mass det. time= 163.0 min (947.3 - 784.3)

Volume	Invert	Avail.Stor	rage	Storac	ge Description		
#1	173.00'	5				atic)Listed below (Re	
						mbedded = $126 \text{ cf } x$	
#2	173.00'					smatic)Listed below	
#3	179.94'	,				smatic)Listed below	
#4	179.00'					(Prismatic)Listed be	low (Recalc)
		6,11	17 cf	Total A	Available Storage		
Elevation		f.Area		.Store	Cum.Store		
(feet)	((cubic	:-feet)	(cubic-feet)		
173.00		50		0	0		
179.00		50		300	300		
Elevation		f.Area		.Store	Cum.Store		
(feet)	((sq-ft)	(cubic	c-feet)	(cubic-feet)		
173.00		29		0	0		
179.00		29		174	174		
Elevation		f.Area		.Store	Cum.Store		
(feet)	((sq-ft)	(cubic	c-feet)	(cubic-feet)		
179.94		0		0	0		
181.00		2,805		1,487	1,487		
182.00	!	5,995	2	4,400	5,887		
Elevation		f.Area		.Store	Cum.Store		
(feet)	((sq-ft)	(cubic	c-feet)	(cubic-feet)		
179.00		6		0	0		
179.94		6		6	6		
Device Ro	louting	Invert	Outle	et Devic	ces		
#1 Pr	rimary	181.64'	Offse	et (feet)	Sidewalk Overflow) 0.00 0.01 18.86 () 0.50 0.00 0.04	5 18.87	
#2 Di	iscarded	173.00'	1.020	0 in/hr Ś	Sandy Loam (HS		ver Surface area below 173 Phase-In= 0.01'

Discarded OutFlow Max=0.01 cfs @ 13.12 hrs HW=181.67' (Free Discharge) **2=Sandy Loam (HSG B) Exfiltration** (Controls 0.01 cfs)

Primary OutFlow Max=0.07 cfs @ 13.12 hrs HW=181.67' (Free Discharge) **1=Southeast Sidewalk Overflow** (Weir Controls 0.07 cfs @ 0.22 fps)

Pond EP-SL: South Lot

178.20

50

194

Prepared by HP Inc.	
HydroCAD® 10.10-6a s/n 08721	© 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
173.00 173.10	50 50	0 4	178.30 178.40	50 50	198 202
173.10	50	4 7	178.50	50	202
173.30	50	, 11	178.60	50	200
173.40	50	15	178.70	50	209
173.50	50	19	178.80	50	213
173.60	50	22	178.90	50	221
173.70	50	26	179.00	56	224
173.80	50	30	179.10	56	225
173.90	50	34	179.20	56	226
174.00	50	37	179.30	56	226
174.10	50	41	179.40	56	227
174.20	50	45	179.50	56	227
174.30	50	49	179.60	56	228
174.40	50	52	179.70	56	229
174.50	50	56	179.80	56	229
174.60	50	60	179.90	56	230
174.70	50	64	180.00	215	235
174.80	50	67	180.10	479	264
174.90	50	71	180.20	744	319
175.00	50	75	180.30	1,009	402
175.10	50	79	180.40	1,273	510
175.20	50 50	82 86	180.50	1,538	645 806
175.30 175.40	50	90	180.60 180.70	1,803 2,067	994
175.50	50	90 94	180.80	2,007	1,209
175.60	50	94 97	180.90	2,596	1,449
175.70	50	101	181.00	2,861	1,717
175.80	50	105	181.10	3,180	2,013
175.90	50	108	181.20	3,499	2,341
176.00	50	112	181.30	3,818	2,702
176.10	50	116	181.40	4,137	3,094
176.20	50	120	181.50	4,456	3,518
176.30	50	123	181.60	4,775	3,974
176.40	50	127	181.70	5,094	4,462
176.50	50	131	181.80	5,413	4,981
176.60	50	135	181.90	5,732	5,533
176.70	50	138	182.00	6,051	6,117
176.80	50	142	182.10	6,051	6,117
176.90	50	146			
177.00	50	150			
177.10 177.20	50 50	153 157			
177.30	50	161			
177.40	50	165			
177.50	50	168			
177.60	50	172			
177.70	50	176			
177.80	50	180			
177.90	50	183			
178.00	50	187			
178.10	50	191			
470.00	50	404			

Stage-Area-Storage for Pond EP-SL: South Lot

Summary for Pond PP-I1: Infil#1

23,198 sf, 79.89% Impervious, Inflow Depth > 5.49" for 25-Year event Inflow Area = Inflow = 3.35 cfs @ 12.07 hrs, Volume= 10.605 cf 0.24 cfs @ 13.23 hrs, Volume= 8,953 cf, Atten= 93%, Lag= 69.4 min Outflow = 0.24 cfs @ 13.23 hrs, Volume= Discarded = 8.953 cf 0.00 cfs @ 0.00 hrs, Volume= Primary = 0 cf Routed to Link PL-H : Proposed Hubbard

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs / 2 Peak Elev= 181.17' @ 13.23 hrs Surf.Area= 1,776 sf Storage= 5,442 cf

Plug-Flow detention time= 255.5 min calculated for 8,949 cf (84% of inflow) Center-of-Mass det. time= 190.6 min (968.9 - 778.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	176.50'	1,770 cf	12.00'W x 148.00'L x 6.17'H Field A
			10,952 cf Overall - 6,528 cf Embedded = 4,424 cf x 40.0% Voids
#2A	177.00'	4,848 cf	retain_it retain_it 5.0' x 18 Inside #1
			Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			1 Rows adjusted for 394.8 cf perimeter wall
		6,618 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	180.70'	6.0" Round JB#2 to EX.CB L= 11.0' Ke= 0.500
			Inlet / Outlet Invert= 180.70' / 180.35' S= 0.0318 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.20 sf
#2	Device 1	181.25'	6.0" Round JB#1 to JB#2 L= 15.0' Ke= 0.500
			Inlet / Outlet Invert= 181.25' / 180.80' S= 0.0300 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.20 sf
#3	Device 2	180.50'	6.0" Round Infil#1 to JB#1 L= 52.0' Ke= 0.500
			Inlet / Outlet Invert= 179.70' / 180.50' S= -0.0154 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#4	Primary	182.00'	4.0' long x 0.5' breadth AD#4 - HIGH OVERFLOW
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#5	Device 4	179.50'	6.0" Round Infil#1 to AD#4 L= 29.0' Ke= 0.500
			Inlet / Outlet Invert= 178.90' / 179.50' S= -0.0207 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.20 sf
#6	Discarded	176.50'	1.020 in/hr Sandy Loam (HSG B) Exfiltration over Surface area below 176.51'
			Conductivity to Groundwater Elevation = 175.50' Phase-In= 0.01'

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.24 cfs @ 13.23 hrs HW=181.17' (Free Discharge) **G=Sandy Loam (HSG B) Exfiltration** (Controls 0.24 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=176.50' (Free Discharge) 1=JB#2 to EX.CB (Controls 0.00 cfs) 2=JB#1 to JB#2 (Controls 0.00 cfs) 3=Infil#1 to JB#1 (Controls 0.00 cfs) 4=AD#4 - HIGH OVERFLOW (Controls 0.00 cfs) 5=Infil#1 to AD#4 (Controls 0.00 cfs)

Pond PP-I1: Infil#1 - Chamber Wizard Field A

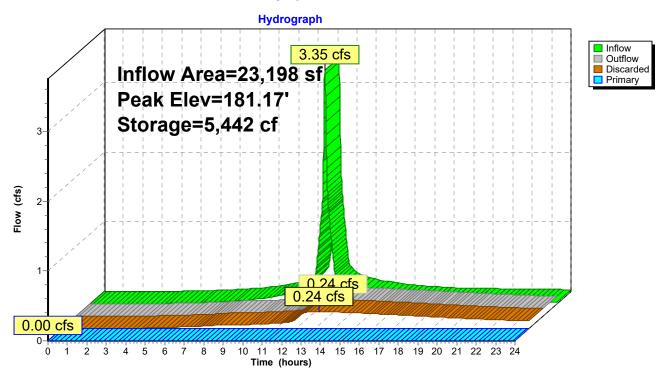
Chamber Model = retain_it retain_it 5.0' (retain-it®)

Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 1 Rows adjusted for 394.8 cf perimeter wall

18 Chambers/Row x 8.00' Long = 144.00' Row Length +24.0" End Stone x 2 = 148.00' Base Length 1 Rows x 96.0" Wide + 24.0" Side Stone x 2 = 12.00' Base Width 6.0" Stone Base + 68.0" Chamber Height = 6.17' Field Height

10.4 cf Sidewall x 18 x 2 + 10.4 cf Endwall x 1 x 2 = 394.8 cf Perimeter Wall 18 Chambers x 291.3 cf - 394.8 cf Perimeter wall = 4,848.2 cf Chamber Storage 18 Chambers x 362.7 cf = 6,528.0 cf Displacement

10,952.0 cf Field - 6,528.0 cf Chambers = 4,424.0 cf Stone x 40.0% Voids = 1,769.6 cf Stone Storage


Chamber Storage + Stone Storage = 6,617.8 cf = 0.152 af Overall Storage Efficiency = 60.4% Overall System Size = 148.00' x 12.00' x 6.17'

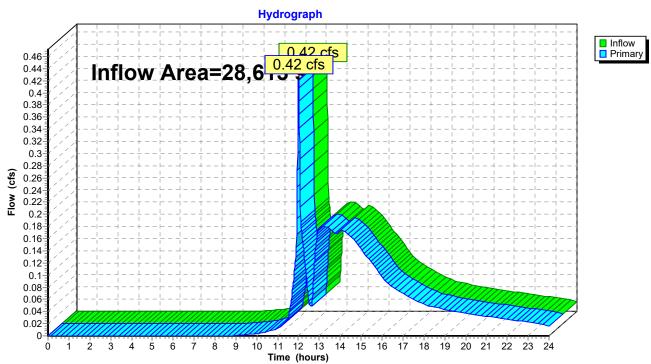
18 Chambers 405.6 cy Field 163.9 cy Stone

10556 HydroCAD (2022-09-07)

Prepared by HP Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Pond PP-I1: Infil#1

10556 HydroCAD (2022-09-07)Type III 24-hr25-Year Rain
PrintedPrepared by HP Inc.PrintedHydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLCPrinted


Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
176.50	1,776	0	181.80	1,776	6,208
176.60	1,776	71	181.90	1,776	6,329
176.70	1,776	142	182.00	1,776	6,451
176.80	1,776	213	182.10	1,776	6,476
176.90	1,776	284	182.20	1,776	6,501
177.00	1,776	355	182.30	1,776	6,526
177.10	1,776	477	182.40	1,776	6,551
177.20	1,776	599	182.50	1,776	6,576
177.30	1,776	721	182.60	1,776	6,601
177.40	1,776	843			
177.50	1,776	965			
177.60	1,776	1,087			
177.70	1,776	1,209			
177.80	1,776	1,331			
177.90	1,776	1,453			
178.00	1,776	1,574			
178.10	1,776	1,696			
178.20	1,776	1,818			
178.30	1,776	1,940			
178.40	1,776	2,062			
178.50	1,776	2,184			
178.60	1,776	2,306			
178.70	1,776	2,428			
178.80	1,776	2,550			
178.90	1,776	2,672			
179.00	1,776 1,776	2,794			
179.10 179.20	1,776	2,916 3,038			
179.30	1,776	3,159			
179.40	1,776	3,281			
179.50	1,776	3,403			
179.60	1,776	3,525			
179.70	1,776	3,647			
179.80	1,776	3,769			
179.90	1,776	3,891			
180.00	1,776	4,013			
180.10	1,776	4,135			
180.20	1,776	4,257			
180.30	1,776	4,379			
180.40	1,776	4,501			
180.50	1,776	4,623			
180.60	1,776	4,744			
180.70	1,776	4,866			
180.80	1,776	4,988			
180.90	1,776	5,110			
181.00	1,776	5,232			
181.10	1,776	5,354			
181.20	1,776	5,476			
181.30	1,776	5,598			
181.40	1,776	5,720			
181.50	1,776	5,842			
181.60	1,776	5,964			
181.70	1,776	6,086			
			I		

Stage-Area-Storage for Pond PP-I1: Infil#1

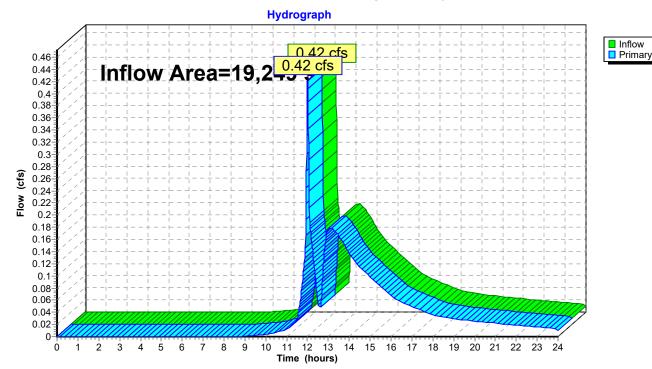
Summary for Link EL: Existing

Inflow Are	a =	28,613 sf,	, 65.19% Impervious,	Inflow Depth >	1.52"	for 25-Year event
Inflow	=	0.42 cfs @	12.00 hrs, Volume=	3,634 c	f	
Primary	=	0.42 cfs @	12.00 hrs, Volume=	3,634 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs

Link EL: Existing

Summary for Link EL-G: Existing Godrefy

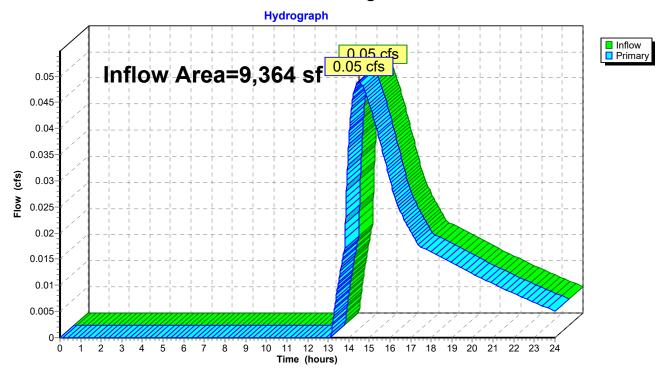

 Inflow Area =
 19,249 sf, 63.64% Impervious, Inflow Depth >
 1.81" for 25-Year event

 Inflow =
 0.42 cfs @
 12.00 hrs, Volume=
 2,911 cf

 Primary =
 0.42 cfs @
 12.00 hrs, Volume=
 2,911 cf, Atten= 0%, Lag= 0.0 min

 Routed to Link EL : Existing
 Existing
 12.00 hrs, Volume=
 2,911 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs

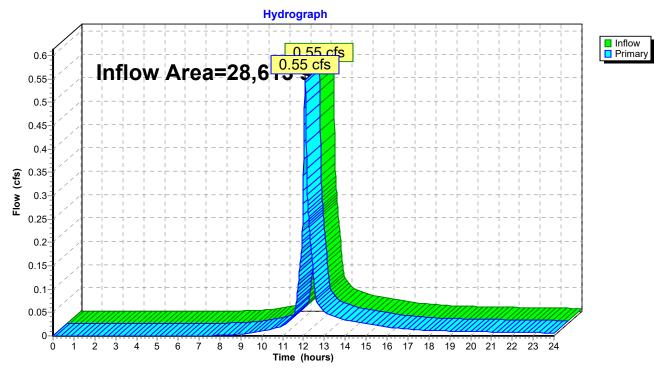


Link EL-G: Existing Godrefy

Summary for Link EL-H: Existing Hubbard

Inflow Area = 9,364 sf, 68.38% Impervious, Inflow Depth > 0.93" for 25-Year event Inflow = 0.05 cfs @ 14.48 hrs, Volume= 724 cf Primary = 0.05 cfs @ 14.48 hrs, Volume= 724 cf, Atten= 0%, Lag= 0.0 min Routed to Link EL : Existing

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs

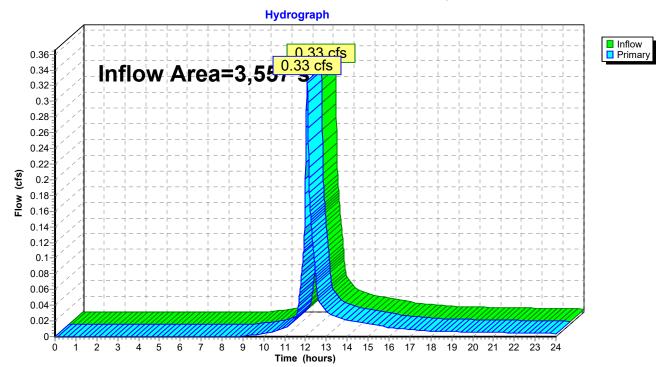


Link EL-H: Existing Hubbard

Summary for Link PL: Proposed

Inflow Are	a =	28,613 sf,	71.13% Impervious,	Inflow Depth >	0.69"	for 25-Year event
Inflow	=	0.55 cfs @	12.07 hrs, Volume=	1,641 c	f	
Primary	=	0.55 cfs @	12.07 hrs, Volume=	1,641 c	f, Attei	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs

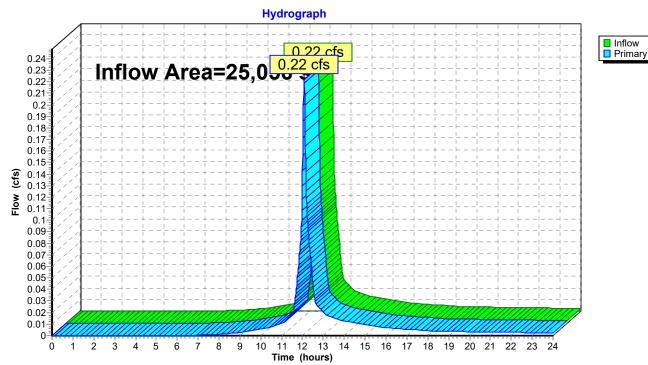


Link PL: Proposed

Summary for Link PL-G: Proposed Godfrey

Inflow Area = 3,557 sf, 24.52% Impervious, Inflow Depth > 3.29" for 25-Year event Inflow = 0.33 cfs @ 12.08 hrs, Volume= 974 cf Primary = 0.33 cfs @ 12.08 hrs, Volume= 974 cf, Atten= 0%, Lag= 0.0 min Routed to Link PL : Proposed

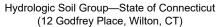
Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs

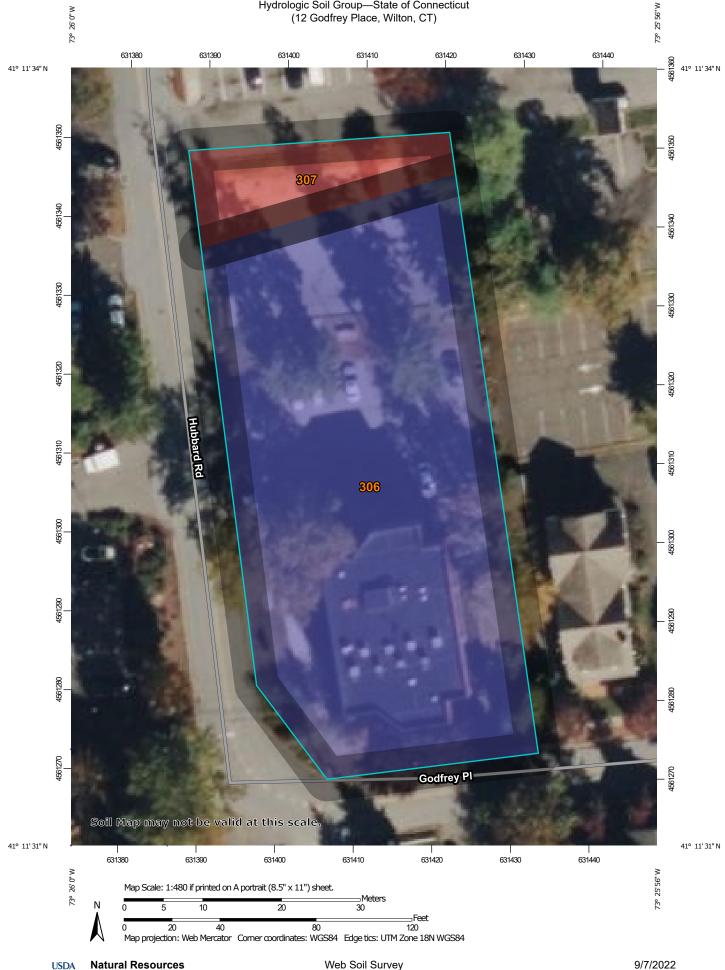


Link PL-G: Proposed Godfrey

Summary for Link PL-H: Proposed Hubbard

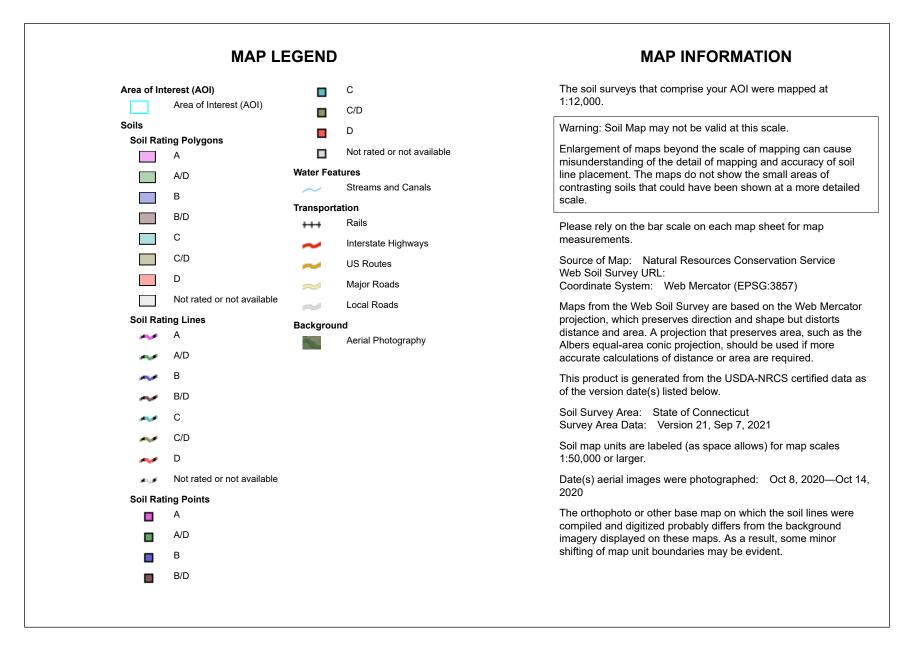
Inflow Area =		25,056 sf,	77.75% Impervious,	Inflow Depth >	0.32"	for 25-Year event	
Inflow	=	0.22 cfs @	12.07 hrs, Volume=	666 c	f		
Primary	=	0.22 cfs @	12.07 hrs, Volume=	666 c	f, Attei	n= 0%, Lag= 0.0 min	
Routed to Link PL : Proposed							


Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.0100 hrs



Link PL-H: Proposed Hubbard

NRCS Soil Information



Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
306	Udorthents-Urban land complex	В	0.6	88.9%
307	Urban land	D	0.1	11.1%
Totals for Area of Intere	st	0.7	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

SANITARY SEWER REPORT

12 Godfrey Place

Prepared by

Redniss & Mead, Inc. 22 First Street Stamford, CT (203) 327-0500

Issued on: September 30, 2022

Revised on: February 28, 2022

Craig J. Flaherty,

Craig J. Flaherty, P.P. CT Lic. No. 21149

Land Surveying Civil Engineering Planning & Zoning Consulting Permitting 22 First Street Stamford, CT 06905 203.327.0500 www.rednissmead.com

Table of Contents

Narrative	Page 3
Sanitary Flow Calculations	Appendix 1
Godfrey Place Sewershed Map	Appendix 2
Study Pont #1 Capacity Calculation	Appendix 3

Sanitary Sewer Narrative

The proposed redevelopment of the site includes the demolition of the existing office building and construction of the new four-story residential building with ground level parking. The apartment building will consist of 13 one-bedroom, 19 two-bedroom, and 10 three-bedroom apartments. The proposed change in use for the building is estimated to generate an average daily flow of 12,150 gallons per day, representing an increase of 11,063 gallons per day over existing conditions (Appendix 1-Sanitary Flow Calculations). A new lateral connection is proposed south of the building, connecting to the 8" ductile iron pipe in Godfrey Place via a chimney connection. The existing office building previously discharged via a sanitary lateral connecting to the main in Hubbard Road.

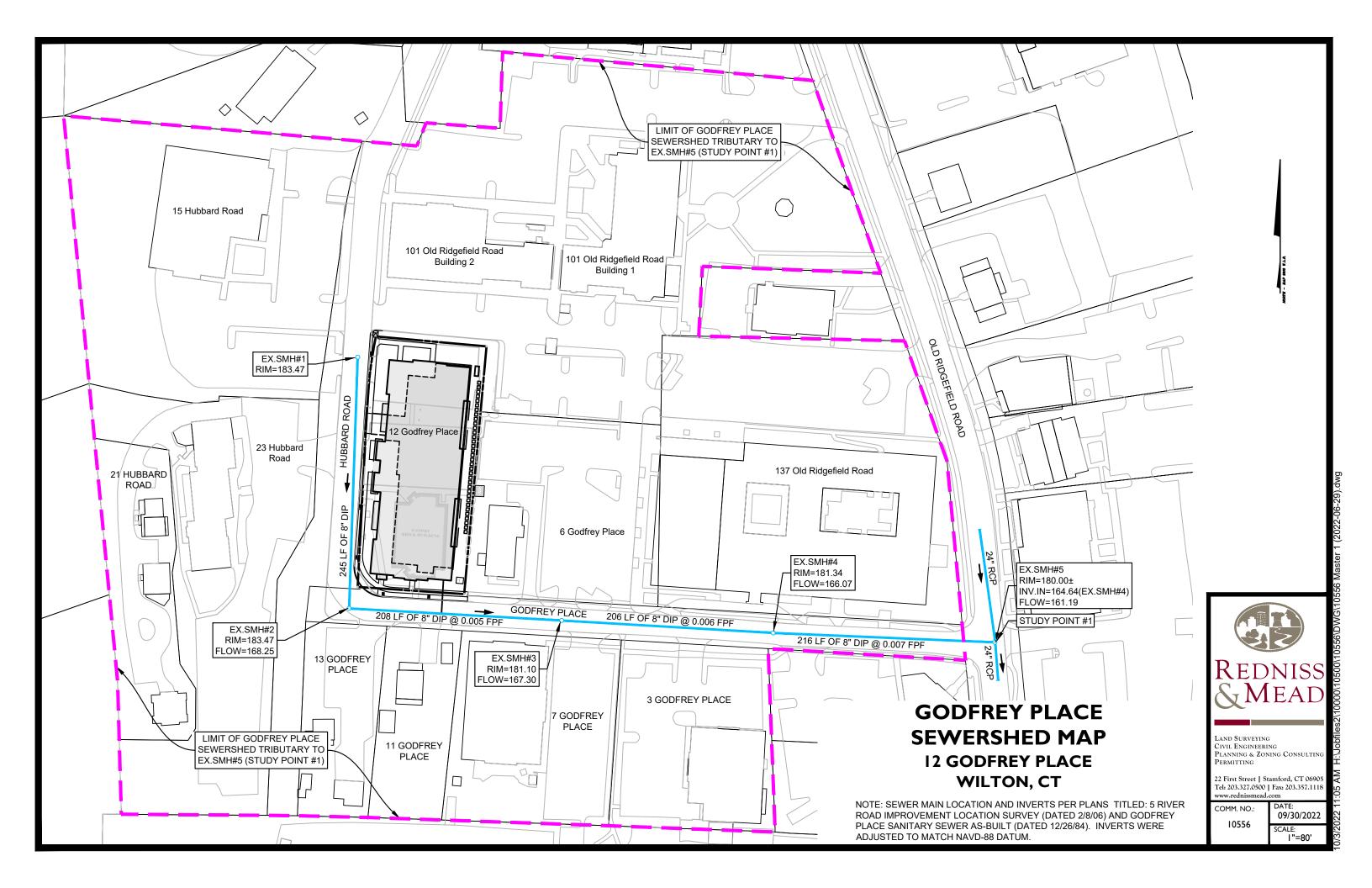
Effluent from the site is tributary to an 8" main that runs east to west in Godfrey Place before ultimately reaching the 24" main in Old Ridgefield Road (Appendix 2 – Godfrey Place Sewershed Map). An analysis along the final length of 8" main in Godfrey Place (Study Point #1) was done to confirm the existing infrastructure has the capacity to accommodate the proposed flows. This length of pipe receives the most effluent and maintains a slope very similar to the rest of the main (0.7%). The area tributary to Study Point #1 consists of the site and residential and commercial properties fronting on Old Ridgefield Road, Hubbard Road and Godfrey Place. Refer to the Offsite Properties sheet found in Appendix 1 for more information. Using Manning's Equation, the calculated capacity of the pipe is 1.008 cfs (Appendix 3). The proposed flow is 0.280 cfs (Appendix 1), accounting for 27.8% of the pipe's capacity, an increase of 6.8% over existing conditions.

Based on the narrative above supported by the calculations provided herewith, it is our opinion that the receiving municipal sewers have the capacity to accommodate flow from the redevelopment of the subject parcel and future development within the sewershed.

Sanitary Flow Calculations

Project:	12 Godfrey Place		Project #:	10556	Date:	2/28/2023	
Location:	Wilton, CT		By:	PBS	Checked:	CJF	
		below represent th Godfrey Place. Of		· ·			
		Existing On-S	ite Flow				
	Location	Building Use	Floor Area (SF)	Design Flow (GPD/SF)*	Total Flow		
	12 Godfrey Place	Office	10,871	0.100	1,087]	
	Existi	ng Sanitary Flow	(GPD) 1,087			1	
	Peak Rate (CFS Peaking Factor						
	Total E	xisting Peak Flov	w (CFS)	(CFS) 0.007			
	Pote	ential Proposed	On-Site F	low			
	Location	Building Use	# of Bedrooms	Design Flow (GPD /	Total Flow		
	12 Godfrey Place	Residential	81	150	12,150]	
	Proposed Sanitary Flow (GPD) 12,150						
	Peak Rate (CFS) 0.019						
		Peaking Factor			4		
	Total Pi	oposed Peak Flo	w (CFS)		0.075		

Offsite Sanitary Sewer Flow Estimates							
Project:	12 Godfrey Place		Project #:	10556	Date:	9/30/2022	
Location	Wilton, CT		By:	PBS	Checked:	9/30/2022	
	The flows listed below repres main in Godfrey Place connec		-	tributary to t	he sewer		
	I	Existing O	ffsite Flow:				
	Туре	Unit	GPD / Unit*	Flow (GPD)		
	Bedrooms	18	150	2,700			
	Retail (sf)	66,170	0.10	6,617			
	Office (sf)	17,678	0.10	1,768			
	Restaurant (est. seats)**	8,488	1.00	8,488			
	Medical Office	6,102	0.200	1,220			
	Day Care***	8,828	0.15	1,324			
	Sub-Total F	flow (GPD)		22,117			
	Factor o	f Safety		1.5			
	Total Flow (GPD) 33,176						
	Flow Rat	te (CFS)		0.051			
	Peaking	Factor		4			
	Peak Flow	Rate (CFS)		0.205			
	*Per State of CT Public Healt **30 GPD per seat. Assumed Group Child Care Homes Reg indoor usable program space program space".	1 50% of sf is gulation there	is a minimum o	f 35 square f	eet of total	floor area	



		Offsite	Properties List			
Project:	12 Godfr	rey Place	Project #:	10556	Date:	9/30/2022
Location	ocation Wilton, CT		By:	PBS	Checked	CJF
		Offsite Properties Tribu	tary to Study Point #1]	
		Address	Use Type	Building SF/BDRM		
	1	101 Old Ridgefield Road Building #1*	Restaurant Medical Office Office	1,601 4,003 10,406		
	2	101 Old Ridgefield Road Building #2*	Restaurant Bank	6,887 2,296		
	3	15 Hubbard Road	Retail (Post Office)	11,309		
	4	23 Hubbard Road**	Office Medical Office Residential	6,297 2,099 4		
	5	21 Hubbard Road	Residential	5	1	
	6	13 Godfrey Place	Office	975		
	7	11 Godfrey Place	Residential	3		
	8	7 Godfrey Place	Daycare	8,828		
	9	6 Godfrey Place	Apartment	6		
	10	3 Godfrey Place	Retail (Pet Store)	5,702		
	11	137 Old Ridgefield Road	Retail (Library)	46,863		

'Use type break down approximated based off of Town Green at Wilton Center Leasing Package **Use type break down approximated assuming that the four tenants equallly split leasable area

Godfrey Place Sewershed Map

Study Point #1 Capacity Calculation

	Manni	ng's Equatio	on - Circul	ar Pipe		
Project:	12 Godfrey Place		Project #:	10556		
Location:	Wilton, CT		By:	PBS	Date:	2/28/2023
Description:	8" Sanitary Main in Goa	lfrey Place	Checked:	CJF	Date:	2/28/2023
	-	Point #1 - 8" ate the flow ca		-	s equation.	
	Pipe material	Cast Iron Pipe (CIF	2)		▼	
	Manning's n	0.013				
	Pipe diameter, D	0.666 ft				
	Area, A _{full}	0.35 ft ²		$A = \frac{\pi}{4}D^2$		
	Wetted perimeter, P_{full}	2.09 ft		$P = \pi D$		
	Hydraulic radius, R _h	0.17 ft		$R_h = \frac{A}{P}$		
	Slope, S	0.0070 ft/	ft			
	Existing Pipe Capacity Flow, Q _{full}	^y 1.008 cfs	в <i>Q</i>	$=\frac{1.486}{n}$	$-AR_{h}^{\frac{2}{3}}S^{\frac{1}{2}}$	
	Existing Peak Flow	0.212 cfs	5			
	% of Pipe Capacity	21.0%				
	Proposed	0.280 cfs	5			
	% of Pipe Capacity	27.8%				

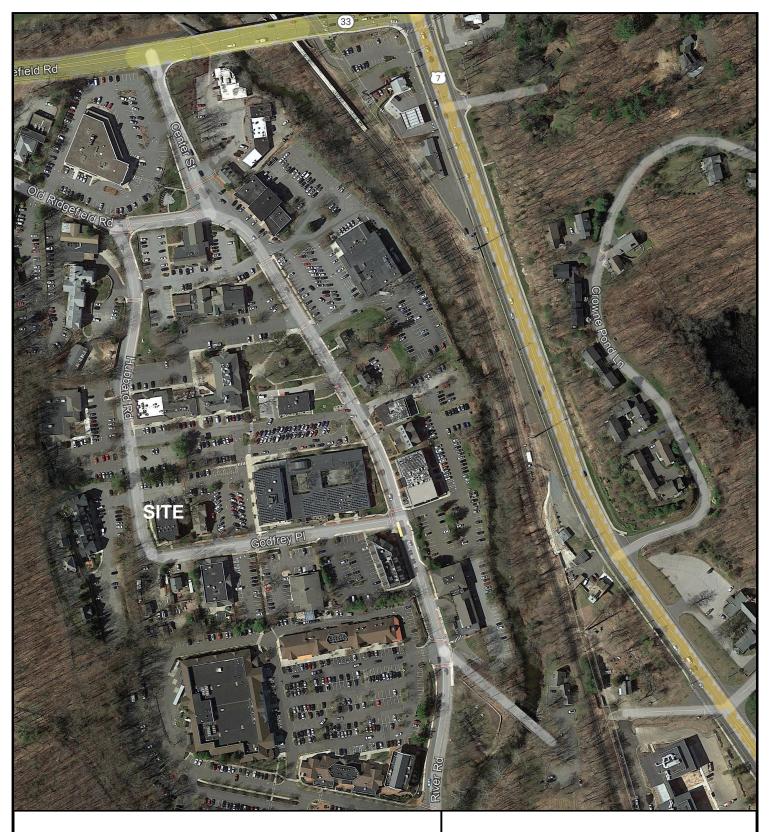
20 N. Main Street, Suite 218 Norwalk, CT 06854 T: 203.286.7814 www.hardestyhanover.com

February 28, 2023

Mr. Jay Ross Greenwich Realty Development, LLC 32 Field Point Road Greenwich, Connecticut 06830

Subject Traffic Evaluation – Proposed Residential Development – 12 Godfrey Place, Wilton, Connecticut (F5805.00)

Dear Mr. Ross:


As requested, we have conducted an evaluation of a proposed demolition of an existing office building located at 12 Godfrey Place and construction of a new residential building. The current office building of 10,871 square feet will be demolished and replaced with 42 residential units. The site driveways to Hubbard Road will be reduced from two to one, with the proposed driveway located between the two existing driveways. This Traffic Evaluation is suitable for submission to the Town and provides a description and better understanding of potential traffic-related impacts to adjacent roadways, if any, with the reuse of the Subject Property.

Roadways

The site is located on the northeast corner of Godfrey Place at Hubbard Road. The following is a brief description of nearby and adjacent roadways:

- <u>Godfrey Place</u> This is an east-west, two-lane, two-way, Town-maintained roadway. It begins to the east at the STOP sign controlled intersection of Old Ridgefield Road and continues west before turning 90-degrees to the north and continuing as Hubbard Road. This roadway provides a double yellow centerline, curbing and sidewalks along both sides of the roadway. NO PARKING ANYTIME signs are posted on both sides of the roadway. The roadway width is generally 21 feet. Land use is generally commercial and the Wilton Library.
- <u>Hubbard Road</u> This is a north-south, two-lane, two-way, Town-maintained roadway. It begins to the north at the STOP sign controlled intersection of Old Ridgefield Road and continues south before turning 90-degrees to the east and continuing as Godfrey Place. This roadway provides a double yellow centerline and curbing along both sides of the roadway. To the north of the site, a sidewalk is provided along the easterly side of the roadway. The roadway width is generally 24 feet. Land use is generally commercial.

Figure 1 illustrates the site location and surrounding roadways.

SITE LOCATION MAP

OFFICE TO RESIDENTIAL CONVERSION 12 Godfrey Place Wilton, Connecticut

7/8/22

Not to Scale

Mr. Jay Ross Page 2 February 28, 2023

Site Traffic Generation Comparison

The proposal is to demolish the current office building of 10,871 square feet and replace it with 42 residential units. Based on trip rates provided in the "Trip Generation Manual," 11th Edition, published by the Institute of Transportation Engineers (ITE) in 2021, site traffic estimates were determined for both the existing office building, as well as the proposed residential development. Note that the Connecticut Department of Transportation (CTDOT) approves and requires the use of the ITE trip rates for residential and office developments.

The proposed residential development is estimated to generate a total of 16 and 17 vehicle trip ends during the weekday morning and weekday afternoon peak hours, respectively. It is also estimated, based on ITE trip rates for general office buildings, that the existing office building would generate a total of 17 and 16 vehicle trip ends during the weekday morning and weekday afternoon peak hours, respectively. When compared to the existing office building, the proposed residential development will generate a total of 1 less vehicle trip end during the weekday morning peak hour and one additional vehicle trip end during weekday afternoon peak hour. Table 1 provides more details of the site traffic generation comparison discussed above.

It is assumed that residential site traffic patterns will generally be similar to the existing office building traffic and use the same intersections to arrive and depart from the site. Although the majority of residential trips exit in the morning and enter during the afternoon/evening peak, while office trips peak in the opposite direction, entering in the morning and exiting in the afternoon/evening.

Site Access Considerations

As noted above, the site driveways to Hubbard Road will be reduced from two to one. The proposed site driveway to the residential development will be located between the two existing driveways. Sight lines at the proposed driveway will be an improvement from the existing southerly driveway location, as it will be further away from the Godfrey Place/Hubbard Road intersection. The proposed driveway should provide a STOP sign and STOP bar.

Potential Traffic Impact

The results of the site traffic generation comparison indicated that there is a <u>reduction</u> in total site traffic of 1 <u>less</u> vehicle trip end during the weekday morning peak hour and one additional vehicle trip end during the weekday afternoon peak hour. In addition, the site driveways to Hubbard Road will be reduced from two to one. Surrounding roadways and intersections will continue to operate similar to the existing condition with the office building.

Findings

The proposal to demolish the current office building of 10,871 square feet and replaced with 42 residential units will result in an insignificant, if any, impact to the adjacent and surrounding roadways during the weekday morning and weekday afternoon peak hours. The results of the site traffic generation comparison indicate that there is a <u>reduction</u> in total site traffic of 1 vehicle trip end during the weekday morning peak

Table 1 SITE TRAFFIC GENERATION – PEAK HOURS Office to Residential Conversion 12 Godfrey Place Wilton, Connecticut

		TRAFFIC	VEHICLE	TRIP ENDS
LAND USE	SIZE	DIRECTION	Weekday Morning	Weekday Afternoon
1) Existing General	10,871 S.F.	Enter	15	3
Office Building		Exit	<u>2</u>	<u>13</u>
		Total	17	16
2) Proposed	42 Dwelling Units	Enter	4	10
Multifamily Housing	-	Exit	<u>12</u>	<u>7</u>
(Low-Rise)		Total	16	17
Net Difference Si	te Traffic (2-1)	Enter	-11	7
		Exit	<u>10</u>	<u>-6</u>
		Total	-1	1

Source: "Trip Generation," 11th Edition, published by the Institute of Transportation Engineers (ITE) in 2021 using

- 1) General Office Building, Code #710 average rates.
- 2) Multifamily Housing (Mid-Rise), Code #221 average rates for the weekday morning peak hour and fitted curve equation for the weekday afternoon peak hour.

Hardesty & Hanover, LLC

Y:\Shared\Projects\05805-Residential 12 Godfrey PL Wilton\500-Technical\50X-Template\42-Unit Update 2-27-23\Word Files\23-001.stc.docx 2/27/2023

Mr. Jay Ross Page 3 February 28, 2023

hour and one additional vehicle trip end during the weekday afternoon peak hour. The peak periods of the roadways are generally between 7:00 to 9:00 A.M. and 4:00 to 6:00 P.M.

In addition, site driveways to Hubbard Road will be reduced from two to one. Surrounding roadways and intersections will continue to operate the similar to the existing condition with the office building. There are no recommended improvements needed for the proposed development.

Respectfully submitted,

Serger Dul.

Greg Del Rio, PE Principal Transportation Engineer Hardesty & Hanover, LLC

y:\shared\projects\05805-residential 12 godfrey pl wilton\500-technical\50x-template\42-unit update 2-27-23\word files\23-000.stc.docx